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1Abstract—This paper presents a new approach for
improving performances of magnetic levitation system.
Controlled parameter is the amplitude which levitated object
achieves during movement from one levitation position to
another. Two position levitation with improved amplitude
performances is obtained by implementing orthogonal neural
network in standard levitation control logic. Proposed network
is a nonlinear autoregressive neural network with newly
developed activation function based on orthogonal polynomials.
Performed experiments on a system with default control logic
showed that it could not provide stable two position levitation
when specified amplitude of the levitation object is greater than
10-4 m. Artificial network was trained using real experimental
data and it was based on standard tangent and sigmoid
activation functions. Default activation functions were then
substituted with a newly developed orthogonal polynomial
functions. The amplitude 10-3 m was achieved with stable two
position levitation after parameter optimization. It is proven
that simple control logic with nonlinear autoregressive neural
network and proper activation function can provide improved
amplitude performances.

Index Terms—Activation function; magnetic levitation
system; neural networks; orthogonal polynomials.

I. INTRODUCTION

The main focus of this paper is the improvement of two
position levitation performances of magnetic levitation
system (MLS). Different methods for establishing stable
levitation performances are already presented in many
existing papers. Two position control scheme based on the
lead-lag control and the sliding mode control (SMC) of a
stage system is used in [1]. Another usage of SMC for the
purpose of levitation control is presented in [2]. Linear and
nonlinear controllers for controlling the height of a steel ball
during the levitation process are presented in [3]. Position
control of a MLS is achieved using a Lyapunov function [4].
A generalized proportional integral controller, which
compensates the errors during levitation is shown in [5]. The
controller provides robustness of a closed-loop system and
shows satisfactory experimental results for stabilization and
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trajectory tracking tasks. Fuzzy-Tuning PID controller which
uses fuzzy logic to adjust PID parameters is proposed in [6].
Intelligently adjusted controller showed the improvement of
performances and greater flexibility than a conventional PID
controller. Other examples of fuzzy logic usage for the
purpose of levitation control are shown in [7-10]. Next
widely used technique for position control of a levitation
object in MLS is model predictive control (MPC). The
simulation results and obtained levitation performances by
using MPC are presented in [11], [12].

In this paper, a laboratory model of MLS, manufactured
by Inteco [13], is used for experimental purposes. The main
goal of the experiments was to improve two position
levitation performances of the metal ball by implementing
improved neural network in the system control logic. The
network implementation in a control logic introduces a more
efficient control approach in control systems theory. Usage
of a feedforward network with one hidden layer in levitation
control logic is presented in [14]. An intelligent method is
proposed for controlling three degrees of freedom of
magnetic suspension system in [15]. Educational paper [16]
describes a real-time digital control environment with a
magnetic levitation device usage, optimized for neural
network implementation. Reference control model of the
levitation system is a neural network in [17] where the
embedded linear model is used for network weights forming
procedure. A hybrid model of a neural network, which is
based on a radial basis function, is designed for modelling a
MLS in [18]. The model is capable to control the levitation
process and to provide precisely tracking of reference signal.
Finally, it can be concluded from [1]–[18] that systems
which include soft computing techniques inside standard
control logics could possess better control performances
compared to conventional controllers.

Herein, a maximal distance (amplitude) from the first
levitation position to the second levitation position, during
two position levitation process, will be used as the
performance parameter. The levitation system with default
linear quadratic (LQ) tracking mode control logic will be
used for experimental purposes. Finally, tracking control
logic will be modified by a neural network implementation
and three different control logics will be experimentally
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tested. Disadvantages of examined controls will be observed
and improved performances obtained by network
implementation will be presented.

II. LQ TRACKING MODE CONTROL LOGIC AND NEURAL
NETWORK IMPLEMENTATION

Standard linear quadratic (LQ) tracking mode control
logic is used to achieve two position state of the levitating
object. LQ controller can be used when the state of the plant
is available for direct measurement. It is often used for
tracking specified trajectories, which will be of main interest
for this paper. Also, it is very effective for stabilization of
the closed loop system. LQ control is based on minimization
of a quadratic cost function. The feedback control law of LQ
controller can be expressed as

      1( ) ,Tu t Kx t R B P t x t    (1)

where R is a matrix which defines the control input weights
in the cost function, B is an input matrix in the state space
model,  P t is the solution of a Riccati differential
equation. Generally, K represents a gain of a state feedback
which is time dependent. In this paper, LQ controller
operates in the way that the velocity of the suspended body,
coil current values and the control signal are recalculated for
each new value of the ball position. The suspended body of
this magnetic levitator is a metallic ball of 57.1g mass.
Block diagram of the system with LQ tracking mode control
logic is shown in Fig. 1. Additional information could be
found in [13].

Fig. 1. Block diagram of LQ tracking mode control system.

The signal generator block and the Pulse Width
Modulation (PWM) block in Fig. 1 are the most important
parts of the input signal forming procedure. The signal
generator block can produce one of three different
waveforms: sine wave, square wave and sawtooth wave.
Amplitude and frequency parameters determine the values of
the desired output signal. Square wave signal will be used in
the experiments. The PWM block generates excitation
pulses. The signal generator time period is adjusted to T =
4 s and two different movement amplitudes for generating
desired square wave signal are selected ( 4

1 10 mA  and
3

2 10 mA  ).
Next step was to implement a neural network inside

control logic from Fig. 1. Block diagram of the levitation
system with an integrated neural network is shown in Fig. 2.

The network is implemented in the system to improve the
characteristics of the input signal. The sum of the LQ
controller output signal and the network output signal is
formed, and its mean value is calculated as

2
LQ NN

ML
U U

U


 . Variable MLU is a final control signal

which is forwarded to the MLS input, LQU is a control

signal on the LQ controller output and NNU is a neural
network control signal.

Fig. 2. Block diagram of control system with integrated neural network.

Nonlinear autoregressive neural network with external
inputs (NARX) [19] was used as a foundation in this paper.
It was shown in our previous researches that this type of the
network is an optimal solution for implementation inside
Inteco MLS control logics [13], [19], [20].

Two types of experiments are performed on the system
which control logics are presented in Fig. 1 and Fig. 2.
Three different control logics are used for each experiment.
First one is the default LQ control logic (Fig. 1). Second and
third control logics are based on modified logics from Fig. 2.
The difference is the type of implemented activation
function inside the network. Smooth functions are used for
obtaining better stability performances because they could
smooth out local minima of the total output of the network.
Sigmoid activation function (2) is used in the first modified
logic, and hyperbolic tangent function (3) is implemented in
the second one. Both activation functions are described in
[21]:

1( ) ,
1 xy x

e



(2)

2
2( ) 1.

1 xy x
e

 


(3)

The network was trained with real experimental data
obtained from levitation system. Current values from
electromagnetic coil are chosen for input data. Position
values which metallic ball had at individual moments of the
time are used for network outputs. Input and output signals
were sampled every 1 ms for a time period of 20 s. On the
basis of this, resulting input and output training vectors had
20000 samples each. Training method is selected by the
empirical testing procedure. The neural network is trained
with commonly used training types which are implemented
inside Matlab software. The best performances (the least
mean squared errors) are obtained when basic Quasi-Newton
method is used. Quasi-Newton method is unconstrained
optimization algorithm which possesses fast convergence.
One iteration of updating neural network weights during the
training procedure, by using this method, can be presented as

1 ,k k k k
i i d     (4)
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where kd is the direction parameter which purpose is to

approximate Newton’s direction, k is the step size, k
i

and 1k
i
 are values of weight coefficient i at iterations k

and 1k  , respectively. Direction parameter kd can be
obtained from

  ,k k kd B f    (5)

where kB is a positive definite matrix which is adjusted
from iteration to iteration.

Fifteen neurons are used in the hidden layer of the neural
network. Time period T = 4 s and amplitude value

4
1 10 mA  are used for setting up the first experiment.

Specified amplitude presents desired movement (distance
from the first levitation position to the second levitation
position). Experimental results of the ball levitation process
(during the time interval t = 10 s) are shown in Fig. 3.

Fig. 3. Comparison of two-position ball movement for three different
control logics, for specified amplitude A1 = 10-4 m.

It can be concluded that two positional state of the ball is
successfully achieved with all three control logics.
Oscillations in all cases are up to 1 % compared to the
desired position, which are satisfactory results. Irregularities
during the first second are excluded because they are the
consequences of a human factor (the ball placement in
levitation position is performed manually).

Identical control logics are used for the second
experiment. Amplitude value is the only change which is
made. The task was to test the system with larger movement
which the ball must perform during position switching.
Amplitude value is set to 3

2 10 mA  , which increased
desired movement 10 times compared to the first experiment
( 2 1 10A A  ). Poor position performances after increasing
specified amplitude can be seen in Fig. 4. The system is
losing control of suspended ball for all three control logics
after first time period T = 4 s. Lost control caused the
levitation process to interrupt (position approximately equal
to 0.014 in Fig. 4). It is also obvious from Fig. 4 that
presence of oscillations is significantly greater compared to
results from the first experiment. The system is not capable

to establish control of the ball again itself, so performed an
experiment failed to complete.

Fig. 4. Comparison of two-position ball movement for three different
control logics, for specified amplitude A2 = 10-3 m.

Two experiments are repeated multiple times and the
results changes were negligible. It can be concluded that
default and modified control logics can satisfactory control
the ball during the levitation process when the specified
amplitude is the most 410 m . Poor control performances
and unsatisfactory results are obtained for all three control
logics by selecting levitation amplitude to be 310 m . A
newly developed neural network based on orthogonal
activation functions will be presented in the next section
with purpose to improve these poor performances.

III. NEURAL NETWORK ACTIVATION FUNCTIONS BASED ON
ORTHOGONAL POLYNOMIALS

Reasons for using orthogonal functions inside neural
networks are stability and tracking performances
improvement – which these functions could provide to a
system [22]. In this paper, activation functions from Section
II will be changed with the new orthogonal trigonometric
function [23]

  sin .tt e t  (6)

The complete necessary mathematical background of this
orthogonal trigonometric polynomials can be found in [18].
The newly obtained generalized quasi-orthogonal
polynomials of order k = 1 [20] were used for experimental
purposes. These polynomials are a generalization of
previously performed quasi-orthogonal polynomials, also
carried out by the authors of this paper [24]. The usage of
these polynomials is justified by two reasons: considered
MLS is a technically imperfect system [25]–[27], and
second, orthogonal polynomials can have stabilization
function when they are used as neural network activation
functions [20]. Mathematical apparatus for performing these
polynomials will be briefly presented below. Generalized
polynomials of Legendre type are combination of three
polynomial classes (very suitable for further considerations),
almost [25], [26], improved almost [27] and quasi-
orthogonal Legendre polynomials [20]. The can be
represented by
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In (7) and (8) k represents a quasi-orthogonal order,
whereas δ is a constant, defined as [20], [25]

1 ,   0 1.      (9)

Parameters δ and ε are uncertain quantities, which
describe imperfection of the system. Variations of δ and ε
contain cumulative impacts of all imperfect elements,
measurement noise on the system output, and model
uncertainties. The responses are in certain boundaries, which
depend mostly on parameters δ and ε. Boundaries could be
also dependent on the system components quality, and the
noise level which is present in a signal. Inner product
orthogonality of the interval (0, 1) with weight w(x) = 1 is

       
 1 , ,
,

0 ,

,    ,

,       ,
kk k

m n k
n n
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 



  


 (10)

where   2
0 1 2

k
k kQ q q q q        represents the

polynomial, which for a given value of the δ has a finite
value. Several generalized first order quasi-orthogonal
polynomials (k = 1) on the interval (0, 1) with weight
coefficient w(x) = 1 are given by:

       
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where  1,
11 1a    ,  1,
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IV. NEWLY DEVELOPED NEURAL NETWORK AND
EXPERIMENTAL RESULTS

Experimental results of applied generalized quasi-
orthogonal polynomials (11) are presented in Table I.
Testing procedure is performed by selecting values of the
parameter δ from the range 1.000–1.050 with step size
0.005, according to (9). Levitation experiments are done for

functions (11), and obtained results are given in Table I.
Four levitation states are experimentally observed:
 average levitation (AL) – performances are similar with
performances obtained from three control logics
(Section II),
 stabilized levitation (SL) – one position levitation
performances were improved (obtained in [15]),
 no levitation state (NLS) – levitation of the ball was not
performed,
 levitation with motions (LWM) – two position levitation
was obtained.
Results from Table I showed that the activation function

based on orthogonal polynomials positively affects the
realization of improved two position ball levitation.

Magnetic levitation system used for experimental
purposes is susceptible to external conditions and
environmental impacts. Minor deviations occurred in
accordance to these imperfections during experiments
repetition. Hence, two position levitation of the ball is
provided by using the function

       

     

1, 1, 1,4 3
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(13)

The function    1,
4P x provides improved two position

levitation of the metallic ball for all examined function
values. It is shown experimentally that the most stable results
were obtained for selecting parameter δ in the interval
1.000–1.020. Range of parameter δ between 1.000–1.020
was examined further by performing new experiments on the

function    1,
4P x . Parameter δ was selected from the

specified range with a step size 0.002.
The best performances of presented orthogonal functions

are obtained when the uncertain quantity parameter is

selected to be 1.02  . The function    1,
4P x then takes

the following form

   1, 4 3
4

2

8,9194 20,4634

15,4340 7,2257 0,2653.

P x x x

x x

    

   (14)

The main experiment is performed after the new-formed
activation function (14) is implemented in the neural
network.
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TABLE I. MAGNETIC LEVITATION SYSTEM EXPERIMENTS BASED ON NEURAL NETWORK
ACTIVATION FUNCTION (PARAMETER Δ).

Parameter δ
Function 1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050
   1,

1P x SL AL

   1,
2P x AL

   1,
3P x AL NLS

   1,
4P x LWM

System performances are presented in Fig. 5 and Fig. 6.
Figure 5 shows the results of developed neural network
when specified amplitude is 410 m . A new response is
compared with responses from Fig. 3.

Fig. 5. Two-position ball movement comparison between Fig. 3 and
developed network after 4th order orthogonal activation function
implementation, amplitude A1 = 10-4.

It can be concluded that the new network based on
orthogonal activation function provides similar results
compared to control logics presented in Section II. This
activation function showed stable levitation performances
for each repeated experiment. Figure 6 presents a
comparison of experimental results when specified
amplitude is 3

2 10 mA  .

Fig. 6. Two-position ball movement comparison between Fig. 4 and
developed network after 4th order orthogonal activation function
implementation, amplitude: 3

2 10 mA  .

It can be easily concluded that the new network provided
stable levitation when the amplitude is increased, which is a
significant performance improvement. Amplitude value 2A

is confirmation that properly used neural network with
developed orthogonal activation function can improve
levitation performances and resolve two position levitation
problem from Section II (Fig. 4).

A large oscillations appearance is the main observed
disadvantage. Oscillations are up to 12,8 % compared to the
ideal lower levitation position, which is not a satisfactory
result. Oscillations are further 2,5 % on the higher position,
which is acceptable. Default system oscillations are 1 %
(Fig. 3) and compared to the new levitation performances
(Fig. 5), the system lost on precision. Those disadvantages
will be examined in a future work.

V. CONCLUSIONS

The magnetic levitation problem is examined in the paper.
Two position ball levitation was performed by three control
structures: default LQ tracking mode, and two modified LQ
structures with implemented NARX neural networks. All
examined control logics did not obtain satisfactory results
when the specified amplitude between the two positions was
greater than 410 m . This problem was further analysed and
resolving method is proposed. Neural network with
orthogonal polynomial activation function is presented and
integrated into the standard LQ control logic. Generalized
quasi-orthogonal polynomials from 1st to 4th order are used
for experimental purposes. Improved two position levitation
is observed in the instances when 4th order activation
functions are used. Function coefficients are adjusted by
properly selecting uncertain quantity parameter δ.
Experimental results are shown and it can be concluded that
amplitude performances improved significantly during two
position levitation process. New maximal obtained
movement of the metal ball between levitation positions (the
amplitude) is 310 m approximately. Developed activation
function influenced the appearance of larger levitation
oscillations compared to the standard control logic
performances. Finally, modified control logic proved to be
an effective method for significant improvement of magnetic
levitation performances.
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