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Abstract—The paper addresses problems related to
classification of images obtained by various types of remote
sensing devices. Development and use of Bayes type land cover
classifiers based on multidimensional Gaussian, Dirichlet and
gamma distributions is analysed and compared on the basis of
sample data from RGB and hyperspectral thermal sensing
devices with unequal spatial resolution. Approaches to data
fusion for design of the combined classifiers are presented
including the cases where different families of
multidimensional distributions are used to model the sensor
data and classifiers are designed using combinations of their
probability density functions. The best classification results are
obtained when the fusion of data from both images is used
together with classification based on all three considered
distributions combined together.

Index Terms—Data  fusion; image classification;
multidimensional distribution; remote sensing.
I. INTRODUCTION
Development of accurate and fast methods for

classification of remotely sensed image pixels to predefined
classes remains one of the major tasks in Earth observation
from satellites and planes. To increase the amount of
available information and raise the classification accuracy,
combination of data from different sensors is often used thus
adding complexity to the task. In the paper [1], Bayes
classification approach to this task was presented, based on
the assumption that each class can be interpreted as a sample
realisation from the multidimensional universe with
Gaussian distribution. However, it was noticed that this
assumption may not fit well to data for several classes.
Therefore, in this study an attempt was made to use different
multidimensional distributions [2], [3], develop related
classifiers and data fusion approaches, and perform
comparative analysis. As in [1], it was done on the basis of
the “subset” images of the data set “grss dfc 2014”
presented for the 2014 IEEE GRSS Data Fusion Contest
(DFC) [4].

II. INITIAL DEFINITIONS AND ASSUMPTIONS

Input data sources were 2 images (/, I') of the same land
surface area captured in two different regions of spectrum
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and with different spatial resolution. [ is a visible image
made by airborne high resolution RGB camera during one
overflight of the area; /' is the image of the same area taken
by LWIR hyperspectral device in 84 spectral bands with
wavelengths from 7.8 pm to 11.5 um. Pixels of the RGB

. T
image are represented by vectors X =(x,x,,x3) where x;

is the sensed light intensity of the corresponding color.
Pixels of the other image are represented by vectors

T . _r
uz(ul,uz,...,ug4) , where u; is the sensed radiation

intensity in the spectral band with a central wavelength 4.

Further we will call this image TI (thermal infrared) image.
Spatial resolution of RGB images is a ~0.2x0.2 m while
that of the TI image is b = 1x1 m, and b is not a multiple of
a.

Classification of pixels into 7 categories (roads, trees, red
roof, grey roof, concrete roof, vegetation and bare soil) was
considered using the ground truth areas of all categories
made available in the image / by the organizers of the
contest. These pixels were used to design the intended
classifiers and therefore they are elements of the design set.
In this study, the designed classifiers were tested using the
same set of pixels in the same way as it was done in [1] and
with the same justification. As I' is the image of the same
scene, ground truth areas depicted in / can be transformed
into the corresponding areas related to the same categories
in image /' and pixels within these areas form the design set
for the TI image.

Let us denote by S the design set of pixels in image / and
by S’ the design set of pixels in image I'. Subsets of these

sets related to the category k, k=1,7 will be denoted
correspondingly by S, and S; .
From the TI image, 8 spectral bands (4, 14, 26, 36, 47, 57,

69, and 78) out of 84 were chosen in the same way as in [1]
so that pixels of this image were represented by 8-

dimensional vectors yz(yl, V2ses VR )T. The problem of

selection of the more informative bands from the
hyperspectral image T1 is not considered in this paper.

On the basis of this research lies the hypothetic postulate
that the intensity vectors x resp. y of a category can be
qualified as sample realizations from a multidimensional
universe X, resp. Y . This postulate is supplemented by

the plausible assumption that all probability distributions of



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

X, resp. Yy, k=17 belong to the same family of

distributions.

All pixel classifiers designed within this research are
constructed as Bayes type classifiers based on corresponding
probability distributions. As there is no information
available about the prior probabilities of categories, they are
assumed to be equal.

The goal of this study was to assess the influence of
different probability distributions and their combinations to
the accuracy of classifiers constructed on their basis both for
separate classification of single images and using data
fusion.

III. FAMILIES OF MULTIDIMENSIONAL PROBABILITY
DISTRIBUTIONS

From the families of multidimensional probability
distributions described in literature [2], [3] we chose the
Gaussian, Dirichlet and gamma distributions for analysis
because their probability density functions are easy to use in
analytical expressions. Generalized Gaussian distribution [3]
was initially considered as well but it was noticed that, in
most cases, commonly used Gaussian distribution, which is
a specific case of the generalized Gaussian distribution,
provided the best classification accuracy or differed from
the best result insignificantly. Using Gaussian distribution is
additionally driven by the fact that various authors consider
it to be the adequate model for optical images [5], [6]. Of
course, it cannot be considered an ideal model as all
components of the intensity vectors x and y are non-negative
values. For the same reason, Dirichlet and gamma
distributions deserve attention as well. Obviously, neither
Dirichlet nor gamma distribution can be referred to pixel
intensity vectors directly. Dirichlet distribution can describe

T . . T
only vectors X =(x1,x2,...,xn) , for which x; >0, i=1Ln,

n
and > x; =1. As to chosen case of gamma distribution, it is
i=l1
necessary thatx; >0, and x;,; > x;. There are several ways
to overcome these “obstacles”. To apply the Dirichlet
distribution, vectors X can be transformed to vectors

- T

x=(x/c,xy/¢c,sx,/c) , where ¢=Y" x;. The only
deficiency of this transformation is the fact that two vectors
with proportional components will be transformed to the
same vector. We can avoid this situation by choosing the
positive real value ¢'as a divider, which is greater than all

possible values of c¢. It however leads to the necessity of
. . . . n
introduction of an additional variable x,,,; =1->" x; .

For the chosen case of gamma distribution, it is also
necessary to perform a transformation in order to meet
conditions set up for this distribution. Here we need to

. * * % *
transform vector X into X =(x1,x2,...,xn

o X =20

The described transformations are performed both for
RGB and TI images. As the probability density functions of
considered distributions depend on the particular parameter
values, construction of the classifiers should be started from

T
) , where

* *
X =X, Xp=x+x, ..
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the estimation of these parameters for each category of
pixels.

IV. ESTIMATION OF DISTRIBUTION PARAMETERS

To use the n-dimensional Gaussian distribution as a
model for the pixel vectors of category £, it is necessary to
calculate the estimates of parameters p, and X, of the

probability density function

fx, (x)=(22) "2 2 x

xexp(—l/z(x—uk)TE;l(x—pk)), (1)

where is the mean value and

me=E(X)
X, = E[(Xk —n ) (X —my )T} is the covariance matrix.

As the probability density function for the Dirichlet
distribution is equal to

N I . a1l \n~l
fx(xl,X2,...,Xn_l):n#Hxil l(l_zx[j 5 (2)
HF(VZ') i=1 i=1
i=1

n n-1
where v=> v, > x <1, x;20, v;>0, then it is
i=1 i=1
necessary to develop formulas for the estimation of
parameters v;.
It is proven (see [2]) that the mean value of marginal

distribution X; of the random

; vector

X= (X1, X Xpq ) is equal to E(X;

l)zvi/v but
variance Var(Xl»):vl-(val-)/(vz(wl)). It means that
Vl:VE(Xl) Var(Xi):E(Xl')X

x(1-E(X;))/(v+1), from where we obtain that

In this case,

v=(E(X;)(1-E(X;))-var(X;))/ var(X;). Hence

v, :((E(Xl.))z(1—E(Xl.))—E(Xi)var(Xi))/Var(Xi). 3)

X,

1

By substituting E(X;) and var(
estimates obtained from the pixel intensity vectors
belonging to Sk, we get estimates v, of v; and a plausible

) with their statistical

analytical expression for the Dirichlet probability density
function of the pixel intensity vectors of category k

3 A

2 ik

3]

3
11T
i=1

3 .
vv~k—l
[1x"
N i=1
(i)

“

fx, (5. %) =

where X3 =1-X - X, 934 :%[ﬁ’+0”](l—E(Xl)—E(Xz)),

((E(Xl ))(1-E(X;))-var(X, ))/Var(Xl ),

v =
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7 =((E(X2))(1-E(X3))—var(X,))/ var(X,).
Estimates v, , should be soundly based on the transformed

intensity vectors X. If the vector x is substituted by vector
T
X = (fcl , X, X3 ) , and the additional variable

Xy =1- Zf’zl x; is introduced, then we obtain the plausible

density function for the Dirichlet model

X )

If we consider the gamma distribution to be the model of
probability distribution of pixel intensity vector for category
k, then it should be taken into account that, in n-dimensional
case, this probability density function is analytically
described by the equality

% 0{1—1
# (x1 —7/1)
fx(x ):a*"—x
BT ()
i=l1
* n
n . . -1 xn_g‘i%
<TI(x —x-7) oo ——=—|,  (©)
i=2 Vi
where «; >0, a:=§a,—, B£>0, x;Z;/l-ZO. By
i=l

considering intensity vectors x of pixels of category £ and
corresponding transformed vectors X*, we can assume that
all y; =0.

It is proven (see [2]) that E(X,-):a;kﬂ and

*

where o Hence

M-

a;:

Var(Xl-) = ﬁza: R -

j=1

p=var(X;)/ E(X;), a = (E(X,)) 1var(X;),

ay =(pas—pen )1 B =(E(X,)-E(X,))E(X)/var (X)), ...,

a, =(Ban-pay)/ B=(E(X,)-E(X,_))E(X,)/var(X;).
By substituting £(X;) and var(X;

l
estimates obtained from the pixel intensity vectors
belonging to Si, we get estimates ¢, and j, . As a result,

) with their statistical

we obtain the probability density function of the possible
model for the gamma distribution

*

@ -1
X

All parameter estimation formulas and analytical
expressions of the probability density functions, with
necessary formal changes, remain in force also for the TI
image.

V. CLASSIFICATION OF SEPARATE IMAGES

At the first stage, classifiers K;, (i = 1,3 is the index of
used probability distribution; K is the classifier based on
Gaussian distribution; K, is the classifier based on Dirichlet
K3
distribution) targeting differentiation of pixels within the set

S between 7 categories are constructed, using only
information from image /. In the same way, classifiers K;

distribution; is the classifier based on gamma

targeting differentiation of pixels within the set S’ between 7
categories are constructed using only information from
image /.

Let us denote by f;; the probability density function
defined using the parameter estimates of the corresponding
distribution, calculated from the pixel intensity vectors x of
category k taken from the design set S. In an analogous way,
we denote by g;; the probability density function defined
using the parameter estimates of the corresponding
distribution, calculated from the pixel intensity vectors y of
category k taken from the design set S".

The separate Bayes classifier K; is defined by the
condition that it classifies a pixel » with the intensity vector
x from the set S as a pixel of category £ if and only if the
following inequality is met

Jii (X)) f75(x)>1, (8)

for all j#k. This inequality can be replaced by the
equivalent inequality

In . (x)=Infj; (x) >0. ©)

In an analogous way, the classifier K is defined: Kj

classifies pixel 7' from the set S’ with intensity vector y as a
pixel of category k if and only if

2 ()& (¥)>1, (10)

for all j# k. Inequality (10) is replaced by the equivalent
inequality

lngk,l-(y)—lngjj (y)>0. (11)

VI. CLASSIFICATION USING DATA FUSION

Combination of classifiers using data from single image is
possible in several ways. Our experiments were focused on
3 ways of designing classifier U; ; for classification of

pixels from data set S using fusion of classifiers K; and

iz
Option 1. U;, j classifies pixel » from RGB image with
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intensity vector x as a pixel of category £ if and only if

In fi ; (x)=In fy; (x)+Ingy ; (y“)—ln g5, (y“ ) >0, (12)

r

forall s=1,7, s#k, y* is the intensity vector of the pixel »
from the TI image, associated with pixel r as it corresponds
to the same area, namely includes the area related to pixel r.
To eliminate possible errors related to edges of defined
ground truth areas where the associated pixels ' can include
places of different category, initial ground truth areas were
cropped by applying morphologic erosion.

Option 2. U, ; classifies pixel r from RGB image with

intensity vector x as a pixel of category k if and only if
%(ln Sri (x)=Infy; (X)) +
+%(lngkaj (ya)—lngsaj (y“ )) >0,

forall s=1,7, s #k . This option provides the possibility to
use different weights for data from images RGB and TI (2/3
and 1/3 is just an example).

Option 3. Classify each image separately using separate
classifiers K; and K}- ; if both results are the same, accept

it; if they differ:
— Sort the values of probability density functions obtained
for each image for all categories in descending order;
— Choose the decision of the classifier for which the
difference between the first (highest) and the second
values of the probability density function is larger.
Combination options of classifiers described above can be
applied without significant statement changes to
classification of individual images as well. Thereby we can

define e.g. classifiers V;; and V;;, where V;; is a

combination result of the RGB image classifiers K; and
K;, but V',
Kj

(13)

is a combination result of the TI image

classifiers and K}. Obviously, such combined

classifiers will depend on the chosen combination option.

For example, classifier V; ; can be defined as follows: V; ;

classifies pixel » of the RGB image with the intensity vector

X = (x1, X, 3 )T as a pixel of category k if and only if

In f; (x)=In f{; (x)+1nfk’j (x)—lnfs’j (x)>0, (14)

forall s#k.
It is easy to check that the classification condition (14)
can be re-formulated as follows: V; . classifies pixel » of the

iJ
RGB image with the intensity vector X = (xl,xz,x3 )T as a
pixel of category k if and only if

m'cLX(fs,i (x) /. (X)) = fri (x) fi,j (%)

s=1,7

(15)

The described combination procedure of classifiers can be
generalized and referred to the number of distributions n >

2. Thus, for example, we can create the classifier V] il
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V;

defined as follows: V; ;; classifies pixel r of the RGB

image with the intensity vector x as a pixel of category £ if
and only if

In fi ; (x)+1In fi ; (x)+1n fi; (x) =
(m(f“( ))+In(fy, (x))+In( i (x))). (16)

= max
s=1,7

!

In an analogous way, classifier V;;, can be defined for

pixel of the TI image with the intensity vector y.

But if we want to exploit information from both images
and use combination of all 3 distributions, it is possible to
define the classifier W), 3 which classifies pixel r of the

RGB image with the intensity vector x as a pixel of category
k if and only if

In fi 1 (X)+1In fi 5 (x)+In fi 5 (x)+
+1ngk1(ya)+1ngkz( )+lngk3(Y)

In( £y (x))+In(f; 5 (x))+In(f5(x))+

= max

s=17| in{ g (v7))+1n( g2 (v) )+ 1n 03 (v*)

Results of experiments performed using classifiers V;

’
Vi and W3

estimates presented below.

.(17)

ok
provided the classification accuracy

VII. RESULTS AND CONCLUSIONS

Table 1 illustrates estimated accuracy of separate
classifiers K; and K; . It can be noticed that the best results
are obtained wusing classifiers based on Gaussian

distribution. It suggests that the Gaussian distribution is the
most adequate model to the real data, of course, remaining
within the informal sense of this concept.

TABLE 1. OVERALL ACCURACY (%) OF CLASSIFIERS BASED ON
SEPARATE IMAGES AND SINGLE PROBABILITY DISTRIBUTION.

Distribution \ Image RGB TI
Gaussian 93.03 54.88
Dirichlet 90.65 44.16
Gamma 71.64 32.88

Table II presents estimated accuracy of classifiers U; j

using the combination option 1 that proved to be the most
fruitful. It can be noticed that assuming Gaussian
distribution for both images is the best variant but usage of
Dirichlet distribution for the RGB image data provides
considerable accuracy as well.

TABLE II. OVERALL ACCURACY (%) OF CLASSIFIERS USING
DATA FUSION AND DIFFERENT PROBABILITY DISTRIBUTIONS.

Classifer U ij j=1 j=2 =3
i=1 94.96 92.36 91.74
i=2 94.41 90.70 91.66
i=3 87.28 76.99 66.81

Table III shows overall accuracy estimates obtained using
combinations of different distributions for individual images
together with data fusion.
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- road
- trees
- red roof

grey roof
- concrete roof
- vegetation

bare soil

a)
Fig. 1. Classification results (classified pixels coloured over the RGB image) of the individual ground truth pixels in the “subset” image using data from
both images and combination of all 3 considered distributions: (a) lower part of the “subset” image; (b) upper part of the “subset” image.

TABLE III. OVERALL ACCURACY (%) OF CLASSIFIERS USING
DATA FUSION AND COMBINATIONS OF DISTRIBUTIONS.

Distributions\images RGB TI RGB+TI
i=1, j=2 93.29 54.30 95.23
i=1, j=3 93.09 51.88 94.14
i=2, j=3 93.06 52.12 94.56
i=1,j=2,1=3 94.23 54.02 95.79

TABLE IV. CONFUSION MATRIX (%) OF THE CLASSIFIER W, ;3
FOR THE RGB IMAGE USING COMBINATION OF DISTRIBUTIONS.

Classified category

road | trees | redr. |greyr. | concr. | veget. | b.soil

o, road 96,31 | 0,00 | 1,07 | 1,69 | 0,13 | 0,01 | 0,78
s trees 0,00 | 80,82 | 0,00 | 0,28 | 0,00 | 18,91 | 0,00
%ﬂ red roof 0,34 | 0,00 | 93,41 | 0,64 | 0,07 | 0,00 | 5,55
S| greyroof | 8,09 [ 0,00 | 2,08 [84,25] 5,55 | 0,01 | 0,02
E concrete r. 0,48 | 0,00 | 0,05 | 2,17 | 97,25 | 0,00 | 0,05
E vegetation | 0,00 | 1,99 | 0,28 | 0,10 | 0,00 | 94,30 | 3,33
bare soil 0,00 | 0,08 | 0,88 | 0,10 | 0,34 | 1,59 | 97,01

TABLE V. CONFUSION MATRIX (%) OF THE CLASSIFIER W3
FOR THE TI IMAGE USING COMBINATION OF DISTRIBUTIONS.

Classified category

road | trees | redr. | greyr. | concr. | veget. | b.soil

o road 96,28 | 0,04 | 0,00 | 2,87 | 0,53 | 0,00 | 0,28
H trees 0,61 [32,35] 0,00 | 1,20 | 1,46 | 54,51 | 9,87
%ﬂ red roof 13,86 | 4,66 | 4,75 | 70,19 | 1,19 | 447 | 0,89
S| greyroof |1505] 1,67 | 0,28 |80,85| 1,75 | 0,19 | 0,21
E concreter. | 4,30 | 31,85 | 0,00 | 8,59 | 2,99 | 41,09 | 11,18
E vegetation | 0,05 | 22,72 | 0,00 | 0,21 | 0,30 | 65,22 | 11,49
bare soil 0,00 | 11,19 | 0,00 | 0,00 | 0,00 | 36,32 | 52,49

TABLE VI. CONFUSION MATRIX (%) OF THE CLASSIFIER W, ;3
USING DATA FUSION AND COMBINATION OF DISTRIBUTIONS.

Classified category

road | trees | redr. | greyr. | concr. | veget. | b.soil

o road 97,45 | 0,00 | 1,26 | 1,18 | 0,10 | 0,00 | 0,00
s trees 0,00 | 78,94 | 0,00 | 0,03 | 0,00 | 21,03 | 0,00
%ﬂ red roof 0,23 | 0,00 | 91,94 | 2,03 | 0,03 | 0,30 | 547
S| greyroof | 3,25 | 0,00 | 1,18 [ 91,18 | 4,40 | 0,00 | 0,00
E concreter. | 0,40 | 0,00 | 0,07 | 1,94 | 97,38 | 0,00 | 0,20
E vegetation | 0,00 | 1,38 | 0,16 | 0,08 | 0,00 | 97,08 | 1,29
bare soil 0,00 | 0,05 | 0,00 | 0,00 | 0,23 | 2,87 | 96,85

It is noticed that combination of different distributions for
modelling the image data improves classification. The best
results are provided by the classifier ) ; 5 using data from
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both images and combination of all 3 considered
distributions (see Fig. 1, corresponding confusion matrices
are presented in Table [IV-Table VI).

Such result is somewhat problematic to interpret. Further
study might be necessary to provide proper explanation. The
first hypothesis is that combination of different distributions
might compensate for the imperfections of models based on
individual distributions.
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