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Abstract—The paper presents a Markov chain reliability 

model of a cogeneration power plant substation. Stochastic 

automata networks formalism and functional transition rates 

were used to specify the reliability behavior of a system. 

Iterative solution techniques were used to find steady-state 

solution of Markov models with different sets of randomly 

generated failure and repair rates. Modeling results were used 

to perform uncertainty and sensitivity analysis of the reliability 

model.  

 
Index Terms—Power system reliability, Markov processes, 

iterative algorithms, uncertainty.  

I. INTRODUCTION 

Markov chain is an effective statistical modeling 

technique which can describe complex behavior of various 

stochastic systems and has a well-developed mathematical 

apparatus. Examples of Markov chain models can be found 

in computer and telecommunication networks [1], 

engineering [2] or biological systems [3]. Markov chains can 

also be used in reliability modeling. 

However, some examples of Markov chains in reliability 

modeling deals with relatively small (less than 100 states) 

systems [4], assumes total independence of model units [5] 

or does not address model solution [6]. Markov chain 

models of industrial power systems can have thousands or 

even millions of states.  This means that the use of efficient 

model specification techniques and fast computation 

algorithms is very important in reliability modeling.  

In this paper, Markov chain is used to model the 

reliability of cogeneration power plant substation. In order to 

specify system behavior, stochastic automata networks 

(SAN) formalism [7] was used. Stochastic automata 

networks were successfully applied to model the availability 

of large computer networks [8]. We think that SAN 

formalism is suitable for specifying reliability models of 

power systems and estimating performance measures of a 

system under investigation.  

One of the advantages of using Markov chain model is that it 

allows computing steady state probabilities of all system states, 

 
Manuscript received February 15, 2012; accepted January 15, 2013.  

This work was supported by grant (ATE - No. 04/2012) from the 

Research Council of Lithuania. 

 

 

which helps to estimate probabilities of rare events and failure 

scenarios. This would be a difficult task in performing 

simulation, and would require a lot of CPU time or 

implementation of special modeling techniques [9]. 

The lack of statistical data is an important issue in 

reliability modeling, since parameter uncertainty can lead to 

the misestimation of system measures [10]. In this paper, 

Markov chain model is used to solve a reliability problem 

with different sets of parameters, which allows performing 

uncertainty and sensitivity analysis [11]. Necessary 

computations can be executed efficiently using a Markov 

chain model and iterative solution algorithms. 

II. MARKOV CHAIN MODELS AND SAN 

In this paper stationary analysis of irreducible and 

homogenous continuous-time Markov chain is performed. 

Markov chain describes a system as a discrete set of states 

with possible transitions among them. In realistic models the 

size of state space can be large (thousands or millions of 

states), thus numerical modeling techniques must be applied. 

Numerical analysis can be divided in three main stages. 

1) Generation of system states and transition matrix (an 

infinitesimal   generator matrix). In reliability modeling it 

means specification of possible failure scenarios, failure and 

repair rates etc. Failure and repair rates can be evaluated 

statistically and stored in an infinitesimal generator matrix 

Q.  

2) Computation of a steady-state probability vector π from 

the system of linear equations  

 0Qπ =⋅ . (1) 

Equation (1) can also be interpreted as a left eigenvector 

problem. Since the infinitesimal generator matrix Q is 

singular, an additional condition is used, i.e. the sum of all 

probabilities must be equal to 1. It can be expressed in a 

matrix form as 

 1=⋅eπ , (2) 

where e denotes a column vector consisting of units. 

Investigating the reliability model of a complex system 

the size of the infinitesimal generator matrix Q can be quite 
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large.  It means that numerical methods should be applied to 

find a steady-state solution. The standard methods to solve 

such type of problems are the following: direct algorithms, 

iterative and projective methods [12].  

3) Computation of reliability measures using steady-state 

probabilities. Usual measures in reliability modeling include 

system availability, the mean time between system failures, 

frequency of system failure, etc. For example, system 

availability (i.e., probability that system is available) can be 

calculated according to the formula 

 ∑ π=
∈Ai

ipavail , (3)      

where A denotes the set of states in which the system is 

available.   

The third stage requires a thorough reselection and 

analysis of all system states, though it is not as time 

consuming as the computation of steady-state solution. 

One of the main problems in Markov chain modeling is 

the rapid growth of system states. For example, Markov 

chain model of the system, consisting of 10 parallel items 

(each can be in 2 possible states: failed or operating) has 
102  states.  Moreover, each additional item doubles the size 

of state space – the phenomenon called state space 

explosion. This problem must be addressed in system 

specification and solution.  

One of the methods to mitigate the state space explosion 

is the use of stochastic automata networks (SANs) 

formalism. SAN method is based on specifying the system 

by its division into smaller interacting subsystems, called 

automata. Each automaton 
( )iA  is associated with its own 

state space and the transition among the states can depend on 

other automata. Interactions among different automata can 

be modelled by synchronising events and functional 

transition rates. The infinitesimal generator matrix Q of the 

entire network, i.e. SAN descriptor, can be represented as a 

sum of Kronecker products of infinitesimal generators 
( )i

Q    

(each describes the behaviour of an individual automaton 

[13]). The Kronecker product of matrices nm×ℜ∈A  and 

qpB ×ℜ∈  is defined as the matrix 

 
nqmp

mnm

n

aa

aa
×ℜ∈

















=⊗

BB

BB

BA

⋯

⋮⋱⋮

⋯

1

111

. (4) 

The Kronecker sum BAC ⊕=  of two squared matrices 

mm×ℜ∈A  and nnB ×ℜ∈  is defined as the matrix  

mnmn
mn

×ℜ∈⊗+⊗=⊕ BIIABA  ( nI  and mI  are 

identity matrices of size n and m respectively).        

Since the Kronecker product is associative [13], i.e. 

( ) ( )CBACBA ⊗⊗=⊗⊗ , the Kronecker sum of k square 

matrices 
( ) ii nni ×ℜ∈A   can be defined as follows 

( ) ( )∑ ⊗⊗⊗⊗⊗⊗=⊕
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III. SAN DESCRIPTOR OF POWER PLANT SUBSTATION 

RELIABILITY MODEL  

We assume a co-generative power plant substation 

(0.4/10.5 kV), consisting of two independent blocks. The 

first block has a single transformer (T1), and the second 

block has two transformers (T2-T3) connected to a busbar 

section (B2). Each block consists of transformers (T1-T3), 

switches (S1-S6), circuit breakers (C1-C3) and busbar 

sections (B1-B2). These items are connected with lines, 

which can also fail. Fig. 1. shows the diagram of co-

generative power plant substation. 
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Fig. 1.  Diagram of cogeneration power plant substation. 

The reliability model of the power plant substation is 

created with the following assumptions:  

1) Each item can be in one of two possible states, i.e. 

operating or failed;  

2) The failed items are detected immediately and repair 

is initiated;  

3) There is no limit on repair capacity;  

4) The repaired item is as good as new; 

5) An item can not fail if the power is disconnected;  

6) The duration of failure and repair times are 

distributed according to exponential law. 

The reliability model of the power plant substation is 

created with the following assumptions:  

1) Each item can be in one of two possible states, i.e. 

operating or failed;  

2) The failed items are detected immediately and repair 

is initiated;  

3) There is no limit on repair capacity;  

4) The repaired item is as good as new; 

5) An item can not fail if the power is disconnected;  

6) The duration of failure and repair times are 

distributed according to exponential law.  

There are 14 different items connected with 12 line 

segments, it means that a Markov chain reliability model has 

2610 , i.e. more than 67 million states. However, most of 

those states are unreachable under the model assumptions. In 

this paper, we propose a model description which allows 

reducing the state space significantly.  

Two methods to decrease the number of system states of 

the Markov chain are applied. Under the 5-th assumption, 

multiple failures in a consecutive branch are impossible, 

because electric current is off due to reparation.  This allows 

us to define each consecutive branch as a single automaton, 

which can be described as a Markov chain with arrow 

62



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013 

shaped transition matrix. 

The second method of state space reduction is lumping of 

the states with identical items. For example, if there are two 

switches in a consecutive branch, they can be represented by 

one state instead of two. In this case, identical failure rates 

add up and repair rate remains the same. 

Failure rates of transformers, busbars, switches, circuit 

breakers and line segments are denoted as tλ , bλ , sλ , cλ  

and lλ  respectively. Similarly, the repair rates of those 

items are denoted as tµ , bµ , sµ , cµ  and lµ . 

The proposed model description leads to a network 

consisting of 4 automata. The first automaton 
( )1A  describes 

the first block (T1-S1-C1-S1-B1). An infinitesimal generator 

of the first automaton is represented as follows 
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The first row in (6) signifies an operating state, while the 

others mean that one item has failed. In the first row of (6) 

failure rates  sλ2  and lλ4  denote the lumping of the states. 

Diagonal elements (denoted as *) are negative sums of all 

row elements of the matrix (6).  

In the model, the second block is described by three 

automata according to the resulting circuit breaker actions 

when items are being repaired. The second and the third 

automata 
( )2A  and 

( )3A  describe two identical parts of 

consecutive branches in the second block of the substation. 

( )2A  and 
( )3A  consist of (T2-S3-C2) and (T3-S5-C3) 

respectively. Infinitesimal generator of the second 

automaton   is represented as 
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Since the second and third automata consists of identical 

items, so 
( ) ( )32

QQ = .  

The fourth automaton   represents the (S4-B2-S6) part of 

the power plant substation. The infinitesimal generator 

matrix of 
( )4A  is represented as 
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In matrices (7) and (8) f refers to functional transition 

rates, because failure rates of these automata depend on each 

other. Each function can be expressed as 
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and 
( )isA  denotes the state of the i-th automaton – i.e., each 

function indicates, if the respective automaton is in the 

operating state.  For example, if the transformer T2 is under 

repair, the branch (T2-S3-C2) is disconnected, while (T3-

S5-C3) can still operate. 

Global infinitesimal generator matrix Q of the whole 

reliability model can be expressed as a Kronecker sum of 

infinitesimal generators of automata  

  
( ) ( ) ( ) ( )

.
ggg

4321 QQQQQ ⊕⊕⊕=  (10)       

The subscript g in (10) denotes the generalization of 

Kronecker sum to matrices with functional transition rates.  

The space of states of the system can be described as a 4-

tuple 

 ( )4321 ,,, nnnn ; 5,01 =n ; 4,0=in , .4,3,2=i   (11)           

For example, the state (0;1;0;0) means that the second 

automaton 
( )2A  is in a failed state number 1 (which means 

that transformer T2 has failed), while every other automata 

are in the operating state. 

IV. MODELING RESULTS 

After reducing the state space, the Markov chain 

reliability model of the power plant has only 750 states. In 

this case it is possible to store the infinitesimal generator 

matrix Q in RAM and to solve the model by the direct 

methods. However, since matrix Q is very sparse (most of its 

elements are zeros), more efficient approach is the use of 

sparse storage and iterative solution methods.  

One of the advantages of Markov model is that it allows 

generating all possible system states and calculating steady 

states probabilities of the rarest failure scenarios. This task 

would be more difficult using simulation approach since it 

would require a lot of CPU time [9].  

Statistical data collected by the Lithuanian Energy 

institute and from [14] were used to obtain modeling results. 

The model parameters (failure and repair rates per year) are 

presented in Table I. 

TABLE I. FAILURE AND REPAIR RATES. 

tλ  sλ  cλ  bλ  lλ  

0.015 0.0002 0.006 0.002 0.002 

tµ  sµ  cµ  bµ  lµ  

146 1095 182 2190 162 

 

Steady state solution was calculated with 1510−  precision, 

using Gauss-Seidel algorithm. In Table II we present some 

probable failure scenarios and their steady-state 
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probabilities. 

TABLE II. FAILURE SCENARIOS AND STEADY-STATE 

PROBABILITIES.  

System state Probability 

(0;1;0;0) 0.00010268 

(5;0;0;0) 0.00004936 

(0;4;0;0) 0.00003702 

(0;0;3;0) 0.00003295 

(0;0;0;3) 0.00002468 

 

A special property of reliability modelling is the lack of 

statistical data to evaluate failure and repair rates precisely. 

Parameter uncertainty can lead to unreasonable conclusions 

and significant misestimation of system measures. 

Uncertainty analysis can mitigate the problem, but it requires 

repetitive model solution in order to estimate system 

measures with different sets of model parameters. Markov 

chain models have a certain advantage over some other 

techniques (e.g. simulation) if iterative solution algorithms 

are applied to find steady state probabilities. 

Time requirements to perform the uncertainty analysis by 

simulation approach and Markov model is shown in Table 

III. N denotes the number of different sets of model 

parameters. 

TABLE III. TIME REQUIREMENT TO PERFORM UNCERTAINTY 

ANALYSIS. 
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The Markov model has an advantage since steady-state 

solution vectors 
( )i
π  are relatively close to each other. 

Setting a vector 
( )1
π  as the first iteration step ensures fast 

convergence for the rest calculations. This can be described 

using pseudo-code: 

 

1.
( ) ( )( )←Npp ,,1
… GenerateRandomParameterSets(); 

2. ←it FirstIteration(); 

3.
( ) ←1π SteadyStateProbabilities(

( )1p , it ); 

4.
( ) ←1s SystemMeasures(

( )1π ); 

5.for 2=i to  N   do 

6.    
( ) ←iπ SteadyStateSolution(

( )ip , 
( )1π ); 

7.    
( ) ←is SystemMeasures(

( )iπ ); 

8. end   for. 

 

In this paper, uncertainty analysis was performed by the 

use of Markov chain model with 2 sets of parameters (size of 

each set is 1000) with different distribution laws. The first 

set of failure and repair rates have uniform distribution 

(Table IV) with probability density function 
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TABLE IV. UNIFORMLY DITRIBUTED PARAMETERS OF 

RELIABILITY MODEL. 

Failure 

rates 
Distribution Repair rates Distribution 

tλ  U(0.005;0.025) tµ  U(50,100) 

sλ  U(0.0001;0.0003) sµ  U(548;1644) 

cλ  U(0.003;0.009) cµ  U(84;252) 

bλ  U(0.001;0.003) bµ  U(1095;3285) 

lλ  U(0.001;0.003) lµ  U(81;243) 

 

Random generation of model parameters and steady- state 

calculation were performed in C++ Builder, using PC with 

AMD Athlon 64 X2 dual core processor 4000+ 2.10 GHz 

and 896 MB of RAM physical address extension. It took 

1.514 seconds of CPU time to perform the entire calculation. 

System availability was estimated with different sets of 

model parameters, which allows evaluating the distribution 

of the system availability (Fig. 2).  
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Fig. 2.  Uncertainty of system availability with uniformly distributed model 

parameters. 

It was assumed that system is available, if at least two 

transformers are operating. In that case, the set of states in 

which system is available consists of 4-tuples (11), satisfying 

the following condition 

 ( ) ( ) 1020 4

3

1
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MATLAB statistics toolbox was used to analyze the 

modeling results. The experiments showed that beta 

distribution, with probability density function 
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was the best fit the modeling data (Table V), since it 

provides the highest log likelihood value (Γ in (9) denotes 

the gamma function).  

TABLE V. DISTRIBUTION FITTING TO THE SYSTEM AVAILABILITY 

WITH UNIFORMLY DISTRIBUTED MODEL PARAMETERS   

Distribution  fit 

Distribution: Beta 

Log likelihood:            6776.31 

Domain:                     0 < y < 1 

Mean:                        0.999081 

Variance:                  8.13287e-008 

Parameter  estimation 

Parameter Estimate 

a 11272.3 

b 10.3635 

 

Beta distribution is also more suitable than left bounded 

distributions (e.g., lognormal or Weibull), because its 

domain (between 0 and 1) matches the range of probability.   

 The estimated average system availability is about 

0.999081, which means that the power plant is shut down on 

average for 8 hours and 3 minutes per year. 

Chi-square goodness-of-fit test affirmed our distribution 

fitting results. The estimated p-value was 0.1733, which 

indicates that null hypothesis, i.e. system availability has the 

beta distribution with parameters a = 11272.3 and b = 

10.3635, can not be rejected at the standard 0.05 

significance level. 

The estimated distribution of system availability can be 

used as a part of a larger simulation model, because system 

availability can now be rapidly simulated by generating beta-

distributed random variables. 

Other numerical experiments were conducted under the 

assumption that model parameters are distributed normally. 

However, since failure and repair rates can not be negative 

numbers, one sided truncation (left tail) of normal 

distribution was used, which leads to the probability density 

function 
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In order to generate normally distributed model 

parameters with mean values and variations close to those of 

uniformly distributed parameters (Table IV), the following 

formulas were used: 

    ,
2

ba +
=µ  (16) 
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 .
10

a
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Parameters a and b in (12) mean minimum and maximum 

values of uniform distribution U(a;b). According to (16)–

(18) and Table IV, transformer failure rates have truncated 

normal distribution with parameters 015.0=µ , 0058.0=σ  

and 0005.0=lx .  

Truncated normal random numbers were generated using 

acceptance-rejection method. In this case it requires similar 

amount of CPU time as the generation of the standard 

normal random numbers, since the left truncation lx  is far 

from the mean value µ. 

As for the uniformly distributed model parameters, we 

computed steady state probabilities with 1000 different sets 

of normally distributed model parameters and estimated the 

distribution of system availability (Fig. 3). 
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Fig. 3.  Uncertainty of system availability with normally distributed model 

parameters. 

Similarly as with uniformly distributed model parameters, 

beta distribution was the best fit (Table VI).  

TABLE VI. DISTRIBUTION FITTING TO THE SYSTEM 

AVAILABILITY WITH NORMALLY DISTRIBUTED MODEL 

PARAMETERS. 

Distribution fit 

Distribution: Beta 

Log likelihood:            6808.47 

Domain:                     0 < y < 1 

Mean:                        0.999091 

Variance:                  7.60278e-008 

Parameter estimation 

Parameter Estimate 

a 11933.8      

b 10.858 

 

The estimated average probability of system availability is 

about 0.999091, which means that the power plant is shut 

down on average for 7 hours and 58 minutes per year: 

slightly less than in the case of uniformly distributed model 

parameters case.  

Chi-square goodness-of-fit test confirmed our null 

hypothesis, i.e. system availability has beta distribution with 

parameters a=11933.8 and b=10.858. In this case estimated 

p-value 0.3247 is almost two times higher than in the case of 

uniformly distributed parameters case and it is significantly 

higher than the standard 0.05 level of significance. This 

proves that beta distribution provides a good fit to model the 

system availability.  

Sensitivity analysis was performed in order to evaluate the 

model parameters which significantly contribute to the 

system availability. For this purpose we measured the 

correlation between randomly generated failure and repair 
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rates and computed system availability. The following 

correlation coefficient were estimated: Pearson’s r, 

Spearman’s ρ and Kendall’s τ. Failure and repair rates which 

are significantly correlated to the system availability (with 

significance level 0.05) are presented in Table VII: 

TABLE VII. CORRELATION BETWEEN SYSTEM AVAILABILITY 

AND UNIFORMLY DITRIBUTED MODEL PARAMETERS. 

Parameter r ρ τ 

tλ  -0.8179 -0.8401 -0.6394 

lλ  -0.1644 -0.1540 -0.1036 

tµ  0.4040 0.3614 0.2490 

cµ  0.1363 0.1450 0.0957 

lµ  0.1940 0.1918 0.1274 

 

The results of correlation sensitivity analysis confirm the 

intuitive assumptions about the reliability model. The 

explanation of the negative correlation between system 

availability and failure rates (or its negative correlation 

between repair rates) is straightforward.  The transformer 

has the most significant effect, since it has the highest failure 

rate and the lowest repair rate (which leads to longer average 

repair time). The fact that the number of line segments in 

reliability model exceeds the number of any other items 

could explain its significance.  

Correlation sensitivity analysis of normally distributed 

model parameters and system availability showed similar 

results (Table VIII). 

TABLE VIII. CORRELATION BETWEEN SYSTEM AVAILABILITY 

AND UNIFORMLY DITRIBUTED MODEL PARAMETERS  

Parameter r ρ τ 

tλ
 

-0.7991 -0.8100 -0.6176 

lλ
 

-0.1605 -0.1608 -0.1080 

tµ
 

0.3813 0.3713 0.2544 

cµ
 

0.1175 0.1161 0.0777 

lµ
 

0.1815 0.1535 0.1038 

  

The same failure and repair rates are statistically 

significant in both sets of experiments. In both cases 

Pearson’s and Spearman’s correlation coefficients have 

higher values than Kendall’s τ. 

V. CONCLUSIONS 

A Markov chain reliability model of a cogeneration power 

plant substation was presented. Stochastic automata 

networks formalism with functional transition rates is 

suitable to specify the reliability behaviour of a system. The 

size of state space can be lowered significantly if suitable 

SAN descriptor is chosen.  

The Markov chain reliability model and the iterative 

algorithms allow estimating rare failure scenarios with high 

precision. Repetitive model solution with different sets of 

model parameters can be performed efficiently by the use of 

iterative methods and Markov chain models. This property 

was used to perform uncertainty and sensitivity analysis of 

system availability of the power plant. 

 The obtained results showed that beta distribution is the 

best fit to model the system availability. Failure and repair 

rates of transformers and line segments have the most 

significant effect on system availability.  
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