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1Abstract—Periodical slow-wave systems, for example helical
or meander delay lines are dispersive. I. e. velocity of
propagation of electromagnetic wave in such systems, or delay
time of a signal in the correspondent line, depends on wave
frequency. This fact reduces the bandwidth of such systems or
lines, even if losses are totally absent in it. Delay dispersion of
such systems at high frequencies can be explained by coupling
of adjacent conductive strips and the frequency properties of
the dielectric materials. However, the dispersion at low
frequencies, hardly investigated until now. The sources of phase
delay dispersion of the meander microstrip delay lines and
some other slow-wave systems at low frequency range are
investigated in this paper. To study the dispersion of delay
systems mathematical and computer modelling, and
experimental measurements were used.

Index Terms—Microwave circuits, delay effects, dispersion,
time measurement.

I. INTRODUCTION

Slow-wave systems are widely used in RF and microwave
electronics. Examples include, but are not limited to:
travelling-wave tubes for velocity matching of flight of the
electron beam and electromagnetic waves [1], in analog
signal processing systems to separate certain components of
the frequency spectrum [2], in antenna arrays to form a
predetermined pattern and control it [3] as well as delay
lines (DL) for signals phase matching [4].

The phase nominal delay tph d is one of the most important
parameters in designing the DL, moreover, the nominal
characteristic impedance Z0 and bandwidth F, which for
electrodynamic lines starting at zero, are specified also.

Fig. 1. Phase-frequency response of the non-dispersive delay line.

Mathematically, the frequency response of the phase delay
of the DL is determined from its phase-frequency response
(Fig. 1) according to the well-known formula [5]
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where  is the phase difference between the input and the
output waveforms of the DL at frequency f.

Fig. 2. The direct phase delay measurement technique: (a) scheme; (b) the
voltage waveforms at the input and output of the delay line under test.

Practically the frequency response of the phase delay can
be measured in different ways e.g.: directly, by measuring
the phase time delay between the input and output wave-
forms by 2-channel oscilloscope (Fig. 2), by other direct
technique using a vector network analyser (VNA) [5], or
indirectly by using a scalar vector network analyser (SVA),
also called a resonance measurement technique (Fig. 3).

Fig. 3. The resonance phase delay measurement technique: (a) scheme; (b)
the voltage waveform at the input of the delay line under test.

Using the resonance technique, when the end of the line is
opened (load resistance is infinite), the phase delay is
calculated according to this formula
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where nmax/min is the number of n-th maximum/minimum of
the frequency response of the input voltage of the open-end
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DL waveform; fn max/min is the corresponding frequency of n-
th maximum/minimum. In the case of a short-circuited line
(load resistance is zero) the phase delay is calculated by the
slightly modified equation
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Delay dispersion of periodic slow-wave systems at high
frequencies has long been known and can be explained by
coupling of adjacent conductive strips and the frequency
properties of the dielectric materials. This kind dispersion is
often used for practical purposes [6], [7]. It was observed
however that measuring the phase delay tph d(f) of the
meander DL [8] in the given frequency band F by the
resonance technique, the delay at low frequencies often
significantly higher than the values in the midrange [9]. This
phenomenon, when increasing the wave frequency slow rate
decreases, called anomalous dispersion. It is known that the
phase delay of the line depends on the dielectric constant of
the medium in which the wave propagates. However, at
lower frequencies, the dielectric constant changes in a very
small range and can not cause such a large increase in phase
delay. Initially, it has been suggested that such deviations
caused by the specifics of the resonance technique and the
periodic nature of the meander line structure, however,
similar deviations were found in other works, where other
methods of measurement and over slow-wave structure were
used [10]–[13].

The deviations of the phase delay of the DL from the
nominal value are investigated in this paper; various
methods of modelling and measurements are used; the
causes of the deviation at low frequencies are established.
The paper is organized as follows. In Section II methods of
calculating the phase frequency response of the DL (model
based on the concept of an ideal transmission line, model
based on the theory of two-port network, and the model,
which combined S-matrix technique and the method of
moments) will be pointed out. Several interesting calculation
and simulation cases with experimental results are presented
in Section III with a conclusion given in Section IV.

II. MATHEMATICAL MODELS OF DELAY LINES

Four models of the delay lines, allowing to calculate the
frequency response of the phase delay, described in this
section.

A. Model Based on the Concept of an Ideal Transmission
Line

The ideal transmission line length of l has no losses, and
can be regarded as DL with a linear phase-frequency
response that defines this expression

  ph d2π ,f ft   (4)

where tph d is the nominal delay of the line. The input
impedance ZIN of such line loaded on resistance ZL is
calculated according to the formula [14]
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where  = 2f/vph is the phase coefficient of the wave
propagated in the line with phase velocity vph, Z0 is
characteristic impedance of the line, j = –11/2 is the
imaginary unit.

The complex frequency response of such ideal line
connected between the source of oscillations with internal
impedance ZS = ZL is calculated by the formula
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where VOUT and VIN are the phasors of the output and the
input voltage of the line respectively. A phase-frequency
response of this line is determined by this equation
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B. Model Based on the Theory of Two-Port Network
The ideal DL can also be seen as two-port network, which

complex frequency response is determined by this equation
[15]
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where ZS is the internal impedance of the source of
oscillations connected to the input of the two-port network,
A, B, C and D are complex matrix elements
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The phase-frequency response of such two-port network is
determined by the equation
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C. Model Based on the S-Matrix Technique
The meander DL (Fig. 4) is calculated using S-matrix

technique [15]. The matter of the technique is based on the
calculation of final meander DL S-matrix, conversion it to
A, B, C, D matrix and finding of phase delay frequency
response according to formulas (8)–(10). Final meander DL
S-matrix is determining from detailed meander DL S-matrix
which is build filling the main and two adjacent diagonals by
primitive four elements S-sub matrices. The main diagonal
sub-matrices corresponds to wave travelling along meander
strips, while upper and lower diagonals matrices corresponds
to coupling properties between neighbour meander strips.
Elements of the main S-matrix are calculated from
parameters of the matrix b
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  1
d , b Γ Γ S c (11)

where  is reflection coefficient matrix, c is excitation
matrix and Sd is meander DL detailed S-matrix. Primitive
sub-matrix elements in the main and adjacent diagonals of
detailed meander DL S-matrix is determined according to
empirical formulas [15].

D. Hybrid Model of the Meander Delay Line
Hybrid model of meander microstrip DL is based on the

same S-matrix technique. The difference is only in
determining of primitive S-sub matrices in the main and
adjacent diagonals [16]. In this case method of moments
(MoM) for calculation of the wave impedance and effective
permittivity in case of odd- and even- excitation Ze, Zo, e

and o is used. The benefit of this model is that the MoM
estimates meander microstrip DL heterogeneity along the
meander line (L in Fig. 4). It should also be noted that this
model allows to imitate both the direct measurement of the
phase delay (using a phase-frequency response and (1)), and
an indirect (resonance) measurement using (2) and (3).

III. INVESTIGATION OF PHASE DELAY DISPERSION

To determine the causes of phase delay deviation from its
nominal, models of an ideal DL, models of the microstrip
meander DL (see Section II) and the real prototype of the
microstrip meander DL were investigated.

Ideal DL parameters were chosen as follows: nominal
phase delay tph d = 5 ns, three values of characteristic
impedance: 1) Z0 = 50 , 2) Z0 = 75  and 3) Z0 = 37.5 .
Such selected impedance values correspond to ±33 %
deviation of the investigated line characteristic impedance
from 50  impedance of the signal path, which includes the
studied line.

The design of the prototype of the microstrip meander DL
and the design parameters are shown in Fig. 4.

Fig. 4. The prototype of the microstrip meander delay line, where 1 is the
dielectric substrate, 2 is a reference conductor, 3 is the meander-shaped
microstrip, h = 0.5 mm, r = 5.0, W = 0.64 mm, S = 0.35 mm, 2A =
18.36 mm, N = 55, L = 54.1 mm.

Magnitude of the deviation of the phase delay will assess
the relative value
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impedance Z0 ≠ 50 ,  50
ph dt is the phase delay of line of

impedance Z0 = 50 
Magnitude of the deviation of line characteristic

impedance will assess the relative value
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where Z0 is the characteristic impedance of DL under test

A. Phase Delay of the Ideal Delay Lines
The phase delay frequency response of the ideal line,

calculated in accordance with the mathematical models
described in Section II A, B and C, are shown in Fig. 5.
Deviations of phase delay at low frequencies of the DL
mathematical models are presented in Table I.

(a)

(b)

(c)
Fig. 5. Calculated phase delay frequency response of the ideal
transmission line having various characteristic impedance Z0 and
integrated in 50  signal path. Mathematical models: (a) “S-matrices”; (b)
“transmission line”; (c) “two-port network”.

It can be seen in Fig. 5 that the deviation of the phase
delay of lines, which correspond to models of “S-matrices”
(Fig. 5(a)) and “transmission line” (Fig. 5(b)), at a frequency
close to zero, from the delay of the matched line, depends on
the deviation of line characteristic impedance on the
impedance of the signal path. Moreover, in the case of “S-
matrices” model, delay variation tph d is directly
proportional to the deviation of the impedance Z0 and is
equal to ±33 %. And in the case of the “transmission line”
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model, this proportion is not met and similar deviations are
tph d = +84 % and tph d = –40 % respectively.

Despite such large deviations of the phase delay at low
frequencies in reality it is a very small part of the period of
the transmitted signal, and it does not matter phase
distortions. For example, when delay deviation is 84 % at a
frequency of 1 MHz (in our case 9.2 ns and 5.0 ns
respectively, see Fig. 5(b)), a phase deviation is only equal
to 2··4.2·10–9/10–6 = 8.4·10–3 rad  0.026 rad  1.512.

TABLE I. DEVIATION OF PHASE DELAY AT LOW FREQUENCIES
OF THE DELAY LINE MATHEMATICAL MODELS.

Characteristic
impedance
deviation

Phase delay deviation calculated according to (11)
Mathematical models

“S-
matrices”

“Transmission
line”

“Two-port
network”

Z0 = +33% +33 % +84 % +8.4 %
Z0 =–33 % –33 % –40 % +4 %

It should be noted that the deviation of the phase delay of
the “two-port network” model is positive even when the
deviation of characteristic impedance is negative (Fig. 5(c)).
Deviations of the phase delay here is nearly 10 times less
than in the case of the “transmission line” model.

Frequency responses of the ideal lines phase delay were
also simulated using SONNET® and CST Microwave
Studio® software (Fig. 6). This can be seen here that the
responses obtained using SONNET® simulator (Fig. 6(a))
are almost identical to the responses of the model “two-port
network” (Fig. 5(c)), and in the case of the CST Microwave
Studio® simulator (Fig. 6(b)) received several large
deviations of the phase delay at low frequencies – 13 % and
8 % respectively.

(a)

(b)
Fig. 6. Simulated phase delay frequency response of ideal transmission
line having various characteristic impedance Z0 and integrated in 50 
signal path. Simulation software: (a) SONNET®; (b) CST Microwave
Studio Suit®.

It should be noted that in all the frequency responses of
the phase delay (Fig. 5 and Fig. 6) of mismatched lines
(Z0 ≠ 50 ) curves oscillations whose period corresponds to

the nominal delay tph d = 5 ns (i.e. 1/(tph d) = 1/(5·10–9) =
0.1 GHz) are visible.

B. Phase Delay of the Meander Delay Line Prototype
Experimental prototype of the microstrip meander DL

(Fig. 4) was manufactured and measured (Fig. 7) to check
the adequacy of the mathematical model of the DL based on
the hybrid method (Section II, D).

The measurements of the prototype were carried out in
three stages:

1. Using the VNA HP8753E the phase-frequency
response of the prototype was directly measured and
according to (1) its phase delay was calculated (Fig. 8(a));

Fig. 7. Photo of the experimental setup for the time domain measurement.

2. Using the SVA measurement systems, which consists of
HP182T, HP8350A, HP11666A, HP83592A devices, and
(2) and (3), the phase delay was measured indirectly by
the resonance method (Fig. 8(b));
3. Using sampling oscilloscope PicoScope 9300 time
delay between the leading edges of the rectangular pulse
at the input and output lines was measured (Fig. 9).

(a)

(b)
Fig. 8. Comparison of measured, simulated and calculated phase delay
frequency response of the meander delay line: (a) direct measurement using
VNA, calculation using the hybrid method and simulation; (b) indirect
measurement using SVA (resonance technique), calculation using a hybrid
method that simulates resonance measurement technique.

Direct measurements (Fig. 8(a)) showed that the phase
delay of the meander DL calculated using the proposed
hybrid technique differs from the measured values no more
than 3 % at all frequencies above 30 MHz. For comparison,
the curves obtained by simulation are shown in Fig. 8(a) as
well. It also can be seen that the hybrid technique detects
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anomalous dispersion at low frequencies.
Indirect measurement using the resonance technique

yields only the individual values of the frequency response
of the phase delay (Fig. 8(b)). Also this technique is very
sensitive to mismatched signal path and to losses in the line
under test. As a result, the measurement of the phase delay
gives a very sloping curve. Despite this, the difference
between the values of phase delay calculated using the
hybrid technique, and the averaged values of the resonance
measurement does not exceed 18 % at a frequency of
0.2 GHz, and at 0.5 GHz it is reduced even up to 9 %.

Fig. 9. Measured transients on the input (top) and output (bottom) of the
microstrip meander delay line. Measured delay parameters, shown on the
bottom are: time marker “XM1” – 9.93 ns, time marker “XM2” – 14.905
ns and time marker difference “dXM” – 4.975 ns.

The measurements in the time domain are sufficient to
objectively assess the investigated DL. In this case, the delay
time between the leading edges of square pulses at the input
and output of the meander DL (Fig. 9) is equal to 4.975 ns
and only 7 % higher than the value obtained by direct
measurement using the VNA (Fig. 8(b)).

IV. CONCLUSIONS

Almost all delay systems with periodical structure
inherent dependence of the phase delay of the frequency,
especially at high frequencies, where the slowdown factor is
increasing. This phenomenon is known as the normal
dispersion.

Some delay systems at lower frequencies also shown
anomalous dispersion, i.e. in this case retardation decreases
with increasing frequency.

In this work it was established that the cause of dispersion
at low frequencies is the mismatch of the characteristic
impedance of delay system under test.

It was found that despite significant absolute values of
dispersion at low frequencies, this corresponds to
vanishingly small values of the period of the signal being
slowed down and, in fact, not a phase distortion.

Hybrid technique of analysis of meander delay lines based
on a combination of the MoM and S-matrices technique is a
very effective tool for studying periodic delay systems.
Frequency responses (several hundred points) computation
time using the hybrid technique is measured by few tens of
seconds, and the difference between the calculated and
measured values often does not exceed 5 %.

Some our offered mathematical models of the delay line
demonstrated at low frequencies not only abnormal but
normal dispersion also. Experimental research of such

systems prototypes is our task for the near future.
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