
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

1Abstract—The paper suggests a technique for extracting

and filtering sorted subsets in a three-level computing system

with such sub-systems as general-purpose computer (level 1),

ARM Cortex-A9 (level 2), and reconfigurable logic (level 3).

The last two levels are implemented in Zynq-7000 device

available on the prototyping board ZC706. Communications

between the levels 1 and 2-3 are organized through PCI express

bus and interactions between components of levels 2 and 3 -

through on-chip AXI interfaces. We studied two levels of

software programs (running in PC and ARM), high-

performance hardware accelerators implemented in Zynq-7000

programmable logic, and architecture enabling interactions

and exchange of data between different levels. The selected for

analysis sorting problem has high computational complexity

and is widely required in data processing (data mining and

statistical data manipulation, in particular). The results of

experiments demonstrate that the elaborated architecture is

efficient and permits fast solutions to be found. Proposals for

potential further improvements are also given.

 Index Terms—Computing sorted subsets, communicating

software/hardware systems, sorting networks, filtering,

programmable systems-on-chip.

I. INTRODUCTION

Many practical applications require acquisition, analysis,

and filtering of large data sets. Let us consider some

examples. In [1] a data mining problem is explained with

analogy to a shopping card. A basket is the set of items

purchased at one time. A frequent item is an item that often

occurs in a database. A frequent set of items often occur

together in the same basket. A researcher can request a

particular support value and find the items which appear

together in a basket either a maximum or a minimum

number of times within the database [1]. Similar problems

appear to determine frequent queries at the Internet,

customer transactions, credit card purchases, etc. requiring

processing very large volumes of data in the span of a day

[1]. Fast extraction of the most frequent or the less frequent

items from large sets permits data mining algorithms to be

Manuscript received November 22, 2014; accepted January 16, 2015.

This research was supported by the European Union through the
European Regional Development Fund, the institutional research funding

IUT 19-1 of the Estonian Ministry of Education and Research, the Estonian

Science Foundation Grant No. 9251, and Portuguese National Funds
through FCT - Foundation for Science and Technology, in the context of

the project PEst-OE/EEI/UI0127/2014.

accelerated and may be used in many known methods from

this scope, e.g. [2]–[4]. Another example can be taken from

the area of control. Applying the technique [5] in real-time

applications requires knowledge acquisition from the

controlled systems. For example, signals from sensors may

be filtered and analysed to prevent error conditions [5]. To

provide more exact and reliable conclusion, combination of

different values need to be extracted, ordered, and analysed.

Similar tasks appear in monitoring thermal radiation from

volcanic products [6], filtering and integrating information

from a variety of different sources in medical applications

[7] and so on.

Since many systems have hard real-time constraints,

performance is important and hardware accelerators may

provide significant assistance for software products (such as

[5]). Similar problems appear in so-called straight selection

sorting (in such applications where we need to find the task

with the shortest deadline in scheduling algorithms [8]).

The paper suggests a new method to design high-

performance accelerators based on all programmable

systems-on-chip (APSoC) from the Xilinx Zynq-7000

family [9] communicating with a general-purpose computer

through PCI express bus. APSoCs are recently developed

field-configurable devices integrating the most advanced

programmable logic (PL) and a widely used processing

system (PS): the dual-core ARM CortexTM MPCoreTM.

The available interfaces between the PS and PL are

supported by ready-to-use intellectual property (IP) cores.

These, combined with numerous architectural and

technological advances, have enabled APSoCs to open a

new era in the development of highly optimized

computational systems [10].

The remainder of the paper is organized in four sections.

Section II describes the problem and suggests an

architecture of a 3-level system. Section III considers

different modes of functionality of hardware accelerators.

Section IV reports the results of experiments and compares

them with alternative computations in general-purpose

software. The conclusion is given in Section V.

II. PROBLEM DEFINITION AND SYSTEM ARCHITECTURE

Let A be a set of data items that can be of any predefined

type common for general-purpose languages (e.g. integer).

We consider here such computations that permit:

Processing Sorted Subsets in a Multi-level

Reconfigurable Computing System

Artjom Rjabov1, Valery Sklyarov2, Iouliia Skliarova2, Alexander Sudnitson1
1Department of Computer Engineering, Tallinn University of Technology,

Tallinn, Estonia
2Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro,

Aveiro, Portugal

artjom.rjabov@gmail.com

http://dx.doi.org/10.5755/j01.eee.21.2.11509

30

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

 Extract subsets of A containing Lmax (Lmin) items with

the maximum (the minimum) values;

 Extract subsets containing filtered values of A that fall

within the given upper (u) and lower (l) bounds.

The set A can be very large and we would like to execute

the computations indicated above as fast as possible.

The proposed system architecture combines the following

three levels (Fig. 1):

1. Software of a host computer (such as PC) developed in

a general-purpose programming language (e.g. C/C++ or

Java). Since such software has a number of known

constraints (such as the maximum number of parallel

threads, and architecture-specific limitations) we would

like to develop a more flexible and parallel acceleration

system taking advantages of field-programmable

technology.

2. APSoC PL enabling broad parallelism to be provided

and eliminating architectural constraints (i.e. the most

appropriate accelerator architecture can be proposed and

realized).

3. APSoC software that permits interactions between

different levels to be simplified and optimized with the

aid of available efficient IP cores.

Fig. 1. Elaborated architecture.

In the proposed designs software (in the host PC and in

the PS of APSoC) is running under Linux operating system.

The following functionality (Fig. 1) is provided:

 As soon as some acceleration is needed, the program (in

the host PC, see block 1) copies data from the set A

through PCI express bus to DDR memory (see block 2)

communicating with the APSoC (see blocks 3, 4) and

controlled by the APSoC (ZC706 prototyping system [11]

of Xilinx will be used in further experiments).

 As soon as data are transferred to the DDR, an interrupt

(see block 1) is generated and handled in the APSoC PS

(block 3). C/C++ function, that handles the interrupt in

the PS, requests the acceleration operation in the PL and

supplies necessary data (such as the number and the size

of items in the received set A: see blocks 3 and 4) through

AXI (Advanced eXtensible Interface [9]) GP (general-

purpose [9]) port. Basic functionality of the function that

handles interrupts is similar to [12].

 The PL accelerator (see block 4) executes highly

parallel operations over the set A and copies the extracted

subset to the same DDR memory.

 As soon as all items that form the result are transferred

to the DDR, the PL generates an interrupt to the PS (see

blocks 3 and 4) which is handled in the PS software.

 Interrupt handler in software of the PS sets a special

flag indicating that the requested acceleration operation

has been completed (see blocks 1 and 3). The flag is

tested in the PC software and as soon as it is set, the

resulting data are copied to the PC (see blocks 1 and 2).

Configuration of the APSoC, specifying the requested

acceleration operation such as finding the

minimum/maximum subsets or filtering using bounds (and

consequently enabling the required operation to be chosen),

is done before the execution time. It is also possible to

choose operations during run-time providing necessary

details from the PC to the PS and further to the PL. Data

exchange between different sub-systems (PC, DDR

memory, PS and PL) is initiated as follows (Fig. 2):

1. PC/PS (memory): a) software of the host PC executes

C library function memcpy which copies data from the set

A (kept in the host PC memory) to the DDR memory

through the following blocks: Xilinx IP core for working

with PCI express [13] (see the block AXI memory

mapped to PCI express), AXI interconnect and PS

memory controller (Fig. 2); b) software of the host PC

generates an interrupt (through additional memcpy

function) indicating completion of data transfer and

handled in the PS (see PCI Control Unit and interrupt

IRQ in Fig. 2).

2. Memory, PS/PL: a) software of the APSoC PS

transfers control signals to the PL through an AXI GP

master port using Xil_Out32 function of Xilinx [14] (see

GP Control Unit in Fig. 2); b) software of the APSoC PS

sends a request to the PL (once again through an AXI GP

master port) to execute the chosen operation.

3. The PL carries out the indicated operation getting

blocks of data from the DDR memory and transferring the

results to the DDR memory through AXI high-

performance (HP) ports (see HP Control Unit and

interrupt IRQ in Fig. 2).

4. When the results are ready and copied by the PL to the

DDR, the PL generates an interrupt handled by the PS.

5. Interrupt handler in the PS sets the flag for the host PC

(see PCI Control Unit in Fig. 2).

6. The PC transfers the resulting subset using memcpy

function and the Xilinx IP core for working with PCI

express.

Fig. 2. Interactions between different system components.

III. FUNCTIONALITY OF THE HARDWARE ACCELERATOR

Let N be the number of elements in the given set A. We

consider such tasks for which Lmax << N and Lmin << N

which are more common for practical applications.

Accelerating circuits implement partial sort that is done in

highly parallel networks [15]. Since N may be large, it

 PC software executing
higher level computations
(developed in C/C++/Java)

APSoC AXI memory
mapped to PCI Express

APSoC PS software
executing control functions

(developed in C/C++)

APSoC PL hardware
accelerator

(developed in VHDL)

Control signals

Control
signals

Streams
of data

Streams
of data1 2

3 4

HP0

HP1

HP2

GP

IRQ

A
xi

 in
te

rc
on

ne
ct

A
xi

 in
te

rc
on

ne
ct

A
xi

 in
te

rc
on

ne
ct

HP
Control

Unit

GP
Control

Unit

PCI
Control

Unit

Min/Max
Sorter

AXI memory
mapped to
PCI express

Pr
o

ce
ss

in
g

Sy
st

em

Memory
controller

D
D

R
m

em
o

ry
Programmable

Logic
Ex

te
rn

al
 b

lo
ck

APSoC

PCI express bus

PC

31

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

cannot be processed completely in hardware due to the lack

of sufficient resources.

We suggest solving the problem iteratively using

hardware architecture shown in Fig. 3. Data are

incrementally received in blocks containing up to K items

and then processed by the sorting circuits [15] which

iteratively execute many parallel operations and can be

applied for significantly larger number of data items within

the same hardware than other known sorting networks. The

proposed method enables sorted subsets to be incrementally

constructed as follows:

1. At initialization step (preceding the execution step) the

maximum and the minimum subsets are filled in with the

minimum and the maximum values as it is shown in

Fig. 3.

2. Blocks with data items are sequentially supplied to the

inputs of the sorting circuits located between the circuits

which compute the maximum and the minimum subsets.

All data items from one block are supplied in parallel. A

new block arrives only when all data items from the

previous block are processed (i.e. items, which satisfy

criteria of the bottom block go down and items, which

satisfy criteria of the upper block go up as it is shown in

Fig. 3).

3. As soon as all the blocks (in which the set A is

decomposed) are processed, the maximum and the

minimum subsets are ready and they are transferred to the

DDR memory.

Fig. 3. Basic structure of the hardware accelerator.

It is easy to show that the circuit in Fig. 3 permits very

large sets A to be processed. The sizes of the

minimum/maximum subsets and the size of the blocks may

vary (the details are given in the next section).

If data items need to be filtered then the circuit shown in

Fig. 4 is invoked. Now we would like to use the circuit in

Fig. 3 only for such data items that are within the bounds l

and u. The circuit in Fig. 4 enables data items to be filtered

in real-time (i.e. during data exchange between the PL and

the DDR memory). The block "l and/or u" admits only those

data items from AXI HP port that fall within the given

bounds l/u. If and only if the item Ik is admitted, the address

counter is incremented and the write enable (WE) signal is

asserted allowing the value Ik to be written to the input

register with the number chosen by the address counter.

Data items from the input registers are inputs of the circuit

shown in Fig. 3.

The filtered values may be: a) sent back to the DDR

memory; b) sorted using the projects from [12]; c) used to

extract the minimum/maximum subsets (Fig. 3).

Fig. 4. Filtering circuit.

Note that additional circuits (such as problem-targeted

control finite state machines) are needed for executing

operations in Fig. 3 and Fig. 4. They are implemented

similarly to [12], [15], [16].

IV. EXPERIMENTS AND COMPARISONS

Experiments were done with the Xilinx ZC706

prototyping system [11] containing the Zynq-7000

XC7Z045 APSoC device with PCI express endpoint

connectivity "Gen1 4-lane (x4)". The PS is the dual-core

ARM Cortex-A9 and the PL is Kintex-7 FPGA from the

Xilinx 7th series. In all the experiments data from the set A

are generated in the host PC randomly and the results are

analyzed and verified also in the host PC. The size of data

was chosen to be 256 KB. In the experiments the host PC

generates 32-bit integer values and 64K (65,536) of 32-bit

words are processed. The values of Lmin/Lmax varied from

128 to 1024 bytes (i.e. from 32 to 256 32-bit words).

A similar task was also solved in software only of the host

PC where data from the set A were preliminary sorted and

then the maximum and minimum subsets for different

values of Lmin/Lmax were extracted. The bound values

(Lmin/Lmax) in the host PC almost do not influence the results

because the time is mainly consumed by the sort function.

The following simple Java code was used:

long time=System.nanoTime();

 Arrays.sort(A);

long time_end=System.nanoTime();

where A is an array representing the set A. The array is

generated randomly as:

for(int i = 0; i < A.length; i++)

 A[i] = rand.nextInt(Integer.MAX_VALUE);

The time is measured as (double) (time_end -

time)/1000000. s. Sorting 64 K of 32-bit data in PC with

i7-4770 CPU 3.4 GHz and 8 GB of RAM requires

approximately 18,000 s. Similar results were also obtained

for C/C++ programs running in the same PC. Transferring

256 KB from PC to DDR memory requires approximately

1,800 s. Table I indicates the time consumed in the APSoC

for extracting subsets with different number of data items

and the resulting acceleration (taking into account the

indicated above communication overhead of 1,800 s).

Sorting
circuit from

[15]

The maximum
subset

The minimum
subset

In
p

u
t

d
at

a
it

em
s

fr
o

m
 o

n
e

b
lo

ck

Items with minimum

values from each

block are moved down

Items with maximum

values from each

block are moved up Lo
ad

in
g

 th
e

su
bs

et

w
ith

 t
he

 m
in

im
um

po
ss

ib
le

 v
al

ue
s

at

in
iti

al
iz

at
io

n
st

ep

Lo
ad

in
g

 t
he

 s
ub

se
t

w
ith

 t
he

 m
ax

im
um

po
ss

ib
le

 v
al

ue
s

at

in
iti

al
iz

at
io

n
st

ep

Address
counter
(count)

increment

Register address

In
p

u
t

re
gi

st
er

s

R0

In
p

u
t

d
at

a
it

em
s

fo
r

th
e

ci
rc

u
it

 in
 F

ig
. 3

D
is

tr
ib

u
to

rl
and/or

u

Ik

WE

R1

From
memory

The distributor converts
sequentially received data
items to a parallel set of

data items in the registers

32

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

TABLE I. THE CONSUMED TIME BY THE DEVELOPED HARDWARE

ACCELERATOR AND ACCELERATION ACHIEVED COMPARED TO

GENERAL-PURPOSE SOFTWARE RUNNING IN PC WITH

MULTICORE I7 PROCESSOR AND 8 GB OF RAM.

Lmin and Lmax The consumed time in s Acceleration

128 and 128 2,908 3.8 (6.2)

256 and 256 4,041 3.1 (4.5)

384 and 384 5,090 2.6 (3.5)

512 and 512 6,201 2.2 (2.9)

640 and 640 7,284 2.0 (2.5)

768 and 768 8,348 1.8 (2.2)

896 and 896 9,477 1.6 (1.9)

1024 and 1024 10,544 1.5 (1.7)

The column “Lmin and Lmax” includes two values because

the analysed circuit permits the maximum subset with Lmax

elements and the minimum subset with Lmin elements to be

extracted at the same time.

The second column indicates the consumed time for all

necessary operations in the PS and PL of the APSoC.

The column “Acceleration” also shows (see the values in

parentheses) acceleration without taking into account

communication overheads (i.e. without the mentioned above

value 1,800 s). Analysis of this case permits to estimate

potential acceleration when data are transferred only once

and then used for different computations in the APSoC.

We also evaluated potentialities for further accelerations

and came to the following conclusions.

Software in the host PC is running in a high-performance

multicore processor operating at significantly higher clock

frequency than APSoC. To achieve additional acceleration

in generally slower reconfigurable logic: a) high-level

parallelism has to be used enabling hundreds of operations

needed in software programs to be executed at the same

time; b) the depth of combinational circuits implemented in

the PL cannot be large because deep circuits involve

extensive combinational path delays. The chosen sorted

network [15] is not deep and operates at significantly higher

clock frequency than alternative known circuits (see

experiments in [15]). Higher-level parallelism can be

achieved by joining data exchange and data processing

operations. Let us look at Fig. 3, Fig. 4. Data are received

from AXI HP ports sequentially and the maximum size of

data items from one port is 64 bit. Such data need to be

unrolled with the aid of the distributor circuit shown in

Fig. 4. Thus, while a current block of data is being

processed in the circuit in Fig. 3, the next block can be

received and unrolled.

From Table I we can see that the larger are the values

Lmin/Lmax, the smaller is the achieved acceleration. However,

for the majority of practical applications very large values of

Lmin/Lmax are not needed. Additional experiments

demonstrated that the larger are the blocks of data handled

in the PL the higher is the acceleration. We found that the

size of such blocks for the ZC706 system could be increased

from the considered 256 32-bit words to 2,048 32-bit words.

Thus, the results may be additionally improved.

There are 4 AXI HP and one AXI accelerator coherency

ports in Zynq devices [9]. Using many ports in parallel can

be seen as another opportunity to increase throughput of

hardware accelerators in the PL.

V. CONCLUSIONS

The paper suggests novel solutions for extracting subsets

with the desired properties from large data sets and

evaluates capabilities of a 3-level computing system that

combines general-purpose software, application-specific

software and reconfigurable hardware. We elaborated

architecture of such a system and evaluated different

implementations of the proposed solutions making a number

of experiments with the Xilinx ZC706 prototyping system

which interacts with a general-purpose computer through

PCI express bus. We found that the considered PC-PS-PL

computing system is faster by a factor ranging from 1.5 to

3.8 comparing to general-purpose software running in i7-

based multicore PC.

REFERENCES

[1] Z. K. Baker, V. K. Prasanna, “An architecture for efficient hardware

data mining using reconfigurable computing systems”, Proc. 14th

Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, Napa, USA, 2006, pp. 67–75. [Online]. Available:

http://dx.doi.org/10.1109/FCCM.2006.22

[2] S. Sun, “Analysis and acceleration of data mining algorithms on high
performance reconfigurable computing platforms”, Ph.D.

Dissertation, Iowa State University, 2011. [Online]. Available:

http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1421&context=etd
[3] X. Wu, V. Kumar, J. R. Quinlan, et al., “Top 10 algorithms in data

mining”, Knowledge and Information Systems, vol. 14, no. 1, pp. 1–

37, 2014. [Online]. Available: http://dx.doi.org/10.1007/s10115-007-
0114-2

[4] M. F. M. Firdhous, “Automating legal research through data mining”,

Int. Journal of Advanced Computer Science and Applications, vol. 1,

no. 6, pp. 9–16, 2010.

[5] D. Zmaranda, H. Silaghi, G. Gabor, C. Vancea, “Issues on applying

knowledge-based techniques in real-time control systems”, Int.
Journal of Computers, Communications and Control, vol. 8, no. 1,

pp. 166–175, 2013. [Online]. Available: http://dx.doi.org/10.15837/

ijccc.2013.1.181
[6] L. Field, T. Barnie, J. Blundy, R. A. Brooker, D. Keir, E. Lewi,

K. Saunders, “Integrated field, satellite and petrological observations

of the November 2010 eruption of Erta Ale”, Bulletin of Volcanology,
vol. 74, no. 10, pp. 2251–2271, 2012. [Online]. Available:

http://dx.doi.org/10.1007/s00445-012-0660-7

[7] W. Zhang, K. Thurow, R. Stoll, “A knowledge-based telemonitoring
platform for application in remote healthcare”, Int. Journal of

Computers, Communications and Control, vol. 9, no. 5, pp. 644–654,

2014. [Online]. Available: http://dx.doi.org/10.15837/ijccc.2014.5.661
[8] D. Verber, “Hardware implementation of an earliest deadline first task

scheduling algorithm”, Informacije MIDEM, vol. 41, no. 4, pp. 257–

263, 2011.
[9] Xilinx, Inc., “Zynq-7000 All Programmable SoC Technical Reference

Manual”, 2014. [Online]. Available: http://www.xilinx.com/support/

documentation/user_guides/ug585-Zynq-7000-TRM.pdf
[10] Xilinx, Inc., XCell Journal, vol. 83, second quarter, 2013.

[11] Xilinx, Inc., “ZC706 evaluation board for the Zynq-7000 XC7Z045
all programmable SoC. user guide”, 2013. [Online]. Available:

http://www.xilinx.com/support/documentation/boards_and_kits/zc706

/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
[12] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson,

C. Cardoso, Hardware/Software Co-Design for Programmable

Systems-on-Chip, Tallinn: TUT Press, 306 p., 2014.
[13] Xilinx, Inc., “AXI Bridge for PCI Express v2.5”, 2014. [Online].

Available: http://www.xilinx.com/support/documentation/

ip_documentation/axi_pcie/v2_5/pg055-axi-bridge-pcie.pdf
[14] Xilinx, Inc., “OS and Libraries Document Collection”, 2014.

[Online]. Available: http://www.xilinx.com/support/documentation/

sw_manuals/xilinx2014_4/oslib_rm.pdf
[15] V. Sklyarov, I. Skliarova, “High-performance implementation of

regular and easily scalable sorting networks on an FPGA”,

Microprocessors and Microsystems, vol. 38, no. 5, pp. 470–484,
2014. [Online]. Available: http://dx.doi.org/10.1016/j.micpro.2014.

03.003

[16] V. Sklyarov, I. Skliarova, A. Rjabov, A. Sudnitson, “Fast matrix
covering in all programmable systems-on-chip”, Elektronika ir

Elektrotechnika, vol. 20, no. 5, pp. 150–153, 2014. [Online].

Available: http://dx.doi.org/10.5755/j01.eee.20.5.7116

33

http://dx.doi.org/10.1109/FCCM.2006.22
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.15837/ijccc.2013.1.181
http://dx.doi.org/10.15837/ijccc.2013.1.181
http://dx.doi.org/10.1007/s00445-012-0660-7
http://www.sciencedirect.com/science/article/pii/S0141933114000301
http://www.sciencedirect.com/science/article/pii/S0141933114000301
http://dx.doi.org/10.1016/j.micpro.2014.03.003
http://dx.doi.org/10.1016/j.micpro.2014.03.003
http://dx.doi.org/10.5755/j01.eee.20.5.7116

