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1Abstract—The paper suggests a technique for extracting 

and filtering sorted subsets in a three-level computing system 

with such sub-systems as general-purpose computer (level 1), 

ARM Cortex-A9 (level 2), and reconfigurable logic (level 3). 

The last two levels are implemented in Zynq-7000 device 

available on the prototyping board ZC706. Communications 

between the levels 1 and 2-3 are organized through PCI express 

bus and interactions between components of levels 2 and 3 - 

through on-chip AXI interfaces. We studied two levels of 

software programs (running in PC and ARM), high-

performance hardware accelerators implemented in Zynq-7000 

programmable logic, and architecture enabling interactions 

and exchange of data between different levels. The selected for 

analysis sorting problem has high computational complexity 

and is widely required in data processing (data mining and 

statistical data manipulation, in particular). The results of 

experiments demonstrate that the elaborated architecture is 

efficient and permits fast solutions to be found. Proposals for 

potential further improvements are also given.  

 
 Index Terms—Computing sorted subsets, communicating 

software/hardware systems, sorting networks, filtering, 

programmable systems-on-chip. 

I. INTRODUCTION 

Many practical applications require acquisition, analysis, 

and filtering of large data sets. Let us consider some 

examples. In [1] a data mining problem is explained with 

analogy to a shopping card. A basket is the set of items 

purchased at one time. A frequent item is an item that often 

occurs in a database. A frequent set of items often occur 

together in the same basket. A researcher can request a 

particular support value and find the items which appear 

together in a basket either a maximum or a minimum 

number of times within the database [1]. Similar problems 

appear to determine frequent queries at the Internet, 

customer transactions, credit card purchases, etc. requiring 

processing very large volumes of data in the span of a day 

[1]. Fast extraction of the most frequent or the less frequent 

items from large sets permits data mining algorithms to be 

 
Manuscript received November 22, 2014; accepted January 16, 2015.  

This research was supported by the European Union through the 
European Regional Development Fund, the institutional research funding 

IUT 19-1 of the Estonian Ministry of Education and Research, the Estonian 

Science Foundation Grant No. 9251, and Portuguese National Funds 
through FCT - Foundation for Science and Technology, in the context of 

the project PEst-OE/EEI/UI0127/2014. 

accelerated and may be used in many known methods from 

this scope, e.g. [2]–[4]. Another example can be taken from 

the area of control. Applying the technique [5] in real-time 

applications requires knowledge acquisition from the 

controlled systems. For example, signals from sensors may 

be filtered and analysed to prevent error conditions [5]. To 

provide more exact and reliable conclusion, combination of 

different values need to be extracted, ordered, and analysed. 

Similar tasks appear in monitoring thermal radiation from 

volcanic products [6], filtering and integrating information 

from a variety of different sources in medical applications 

[7] and so on. 

Since many systems have hard real-time constraints, 

performance is important and hardware accelerators may 

provide significant assistance for software products (such as 

[5]). Similar problems appear in so-called straight selection 

sorting (in such applications where we need to find the task 

with the shortest deadline in scheduling algorithms [8]). 

The paper suggests a new method to design high-

performance accelerators based on all programmable 

systems-on-chip (APSoC) from the Xilinx Zynq-7000 

family [9] communicating with a general-purpose computer 

through PCI express bus. APSoCs are recently developed 

field-configurable devices integrating the most advanced 

programmable logic (PL) and a widely used processing 

system (PS): the dual-core ARM CortexTM MPCoreTM. 

The available interfaces between the PS and PL are 

supported by ready-to-use intellectual property (IP) cores. 

These, combined with numerous architectural and 

technological advances, have enabled APSoCs to open a 

new era in the development of highly optimized 

computational systems [10]. 

The remainder of the paper is organized in four sections. 

Section II describes the problem and suggests an 

architecture of a 3-level system. Section III considers 

different modes of functionality of hardware accelerators. 

Section IV reports the results of experiments and compares 

them with alternative computations in general-purpose 

software. The conclusion is given in Section V. 

II. PROBLEM DEFINITION AND SYSTEM ARCHITECTURE 

Let A be a set of data items that can be of any predefined 

type common for general-purpose languages (e.g. integer). 

We consider here such computations that permit:  
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 Extract subsets of A containing Lmax (Lmin) items with 

the maximum (the minimum) values; 

 Extract subsets containing filtered values of A that fall 

within the given upper (u) and lower (l) bounds.  

The set A can be very large and we would like to execute 

the computations indicated above as fast as possible. 

The proposed system architecture combines the following 

three levels (Fig. 1): 

1. Software of a host computer (such as PC) developed in 

a general-purpose programming language (e.g. C/C++ or 

Java). Since such software has a number of known 

constraints (such as the maximum number of parallel 

threads, and architecture-specific limitations) we would 

like to develop a more flexible and parallel acceleration 

system taking advantages of field-programmable 

technology. 

2. APSoC PL enabling broad parallelism to be provided 

and eliminating architectural constraints (i.e. the most 

appropriate accelerator architecture can be proposed and 

realized). 

3. APSoC software that permits interactions between 

different levels to be simplified and optimized with the 

aid of available efficient IP cores. 

 
Fig. 1.  Elaborated architecture. 

In the proposed designs software (in the host PC and in 

the PS of APSoC) is running under Linux operating system. 

The following functionality (Fig. 1) is provided: 

 As soon as some acceleration is needed, the program (in 

the host PC, see block 1) copies data from the set A 

through PCI express bus to DDR memory (see block 2) 

communicating with the APSoC (see blocks 3, 4) and 

controlled by the APSoC (ZC706 prototyping system [11] 

of Xilinx will be used in further experiments).  

 As soon as data are transferred to the DDR, an interrupt 

(see block 1) is generated and handled in the APSoC PS 

(block 3). C/C++ function, that handles the interrupt in 

the PS, requests the acceleration operation in the PL and 

supplies necessary data (such as the number and the size 

of items in the received set A: see blocks 3 and 4) through 

AXI (Advanced eXtensible Interface [9]) GP (general-

purpose [9]) port. Basic functionality of the function that 

handles interrupts is similar to [12]. 

 The PL accelerator (see block 4) executes highly 

parallel operations over the set A and copies the extracted 

subset to the same DDR memory. 

 As soon as all items that form the result are transferred 

to the DDR, the PL generates an interrupt to the PS (see 

blocks 3 and 4) which is handled in the PS software. 

 Interrupt handler in software of the PS sets a special 

flag indicating that the requested acceleration operation 

has been completed (see blocks 1 and 3). The flag is 

tested in the PC software and as soon as it is set, the 

resulting data are copied to the PC (see blocks 1 and 2).  

Configuration of the APSoC, specifying the requested 

acceleration operation such as finding the 

minimum/maximum subsets or filtering using bounds (and 

consequently enabling the required operation to be chosen), 

is done before the execution time. It is also possible to 

choose operations during run-time providing necessary 

details from the PC to the PS and further to the PL. Data 

exchange between different sub-systems (PC, DDR 

memory, PS and PL) is initiated as follows (Fig. 2): 

1. PC/PS (memory): a) software of the host PC executes 

C library function memcpy which copies data from the set 

A (kept in the host PC memory) to the DDR memory 

through the following blocks: Xilinx IP core for working 

with PCI express [13] (see the block AXI memory 

mapped to PCI express), AXI interconnect and PS 

memory controller (Fig. 2); b) software of the host PC 

generates an interrupt (through additional memcpy 

function) indicating completion of data transfer and 

handled in the PS (see PCI Control Unit and interrupt 

IRQ in Fig. 2). 

2. Memory, PS/PL: a) software of the APSoC PS 

transfers control signals to the PL through an AXI GP 

master port using Xil_Out32 function of Xilinx [14] (see 

GP Control Unit in Fig. 2); b) software of the APSoC PS 

sends a request to the PL (once again through an AXI GP 

master port) to execute the chosen operation. 

3. The PL carries out the indicated operation getting 

blocks of data from the DDR memory and transferring the 

results to the DDR memory through AXI high-

performance (HP) ports (see HP Control Unit and 

interrupt IRQ in Fig. 2).  

4. When the results are ready and copied by the PL to the 

DDR, the PL generates an interrupt handled by the PS. 

5. Interrupt handler in the PS sets the flag for the host PC 

(see PCI Control Unit in Fig. 2). 

6. The PC transfers the resulting subset using memcpy 

function and the Xilinx IP core for working with PCI 

express. 

 
Fig. 2.  Interactions between different system components. 

III. FUNCTIONALITY OF THE HARDWARE ACCELERATOR 

Let N be the number of elements in the given set A. We 

consider such tasks for which Lmax << N and Lmin << N 

which are more common for practical applications. 

Accelerating circuits implement partial sort that is done in 

highly parallel networks [15]. Since N may be large, it 
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cannot be processed completely in hardware due to the lack 

of sufficient resources. 

We suggest solving the problem iteratively using 

hardware architecture shown in Fig. 3. Data are 

incrementally received in blocks containing up to K items 

and then processed by the sorting circuits [15] which 

iteratively execute many parallel operations and can be 

applied for significantly larger number of data items within 

the same hardware than other known sorting networks. The 

proposed method enables sorted subsets to be incrementally 

constructed as follows: 

1. At initialization step (preceding the execution step) the 

maximum and the minimum subsets are filled in with the 

minimum and the maximum values as it is shown in 

Fig. 3. 

2. Blocks with data items are sequentially supplied to the 

inputs of the sorting circuits located between the circuits 

which compute the maximum and the minimum subsets. 

All data items from one block are supplied in parallel. A 

new block arrives only when all data items from the 

previous block are processed (i.e. items, which satisfy 

criteria of the bottom block go down and items, which 

satisfy criteria of the upper block go up as it is shown in 

Fig. 3). 

3. As soon as all the blocks (in which the set A is 

decomposed) are processed, the maximum and the 

minimum subsets are ready and they are transferred to the 

DDR memory. 

 
Fig. 3.  Basic structure of the hardware accelerator. 

It is easy to show that the circuit in Fig. 3 permits very 

large sets A to be processed. The sizes of the 

minimum/maximum subsets and the size of the blocks may 

vary (the details are given in the next section).  

If data items need to be filtered then the circuit shown in 

Fig. 4 is invoked. Now we would like to use the circuit in 

Fig. 3 only for such data items that are within the bounds l 

and u. The circuit in Fig. 4 enables data items to be filtered 

in real-time (i.e. during data exchange between the PL and 

the DDR memory). The block "l and/or u" admits only those 

data items from AXI HP port that fall within the given 

bounds l/u. If and only if the item Ik is admitted, the address 

counter is incremented and the write enable (WE) signal is 

asserted allowing the value Ik to be written to the input 

register with the number chosen by the address counter. 

Data items from the input registers are inputs of the circuit 

shown in Fig. 3. 

The filtered values may be: a) sent back to the DDR 

memory; b) sorted using the projects from [12]; c) used to 

extract the minimum/maximum subsets (Fig. 3). 

 
Fig. 4.  Filtering circuit. 

Note that additional circuits (such as problem-targeted 

control finite state machines) are needed for executing 

operations in Fig. 3 and Fig. 4. They are implemented 

similarly to [12], [15], [16]. 

IV. EXPERIMENTS AND COMPARISONS 

Experiments were done with the Xilinx ZC706 

prototyping system [11] containing the Zynq-7000 

XC7Z045 APSoC device with PCI express endpoint 

connectivity "Gen1 4-lane (x4)". The PS is the dual-core 

ARM Cortex-A9 and the PL is Kintex-7 FPGA from the 

Xilinx 7th series. In all the experiments data from the set A 

are generated in the host PC randomly and the results are 

analyzed and verified also in the host PC. The size of data 

was chosen to be 256 KB. In the experiments the host PC 

generates 32-bit integer values and 64K (65,536) of 32-bit 

words are processed. The values of Lmin/Lmax varied from 

128 to 1024 bytes (i.e. from 32 to 256 32-bit words). 

A similar task was also solved in software only of the host 

PC where data from the set A were preliminary sorted and 

then the maximum and minimum subsets for different 

values of Lmin/Lmax were extracted. The bound values 

(Lmin/Lmax) in the host PC almost do not influence the results 

because the time is mainly consumed by the sort function. 

The following simple Java code was used: 

long time=System.nanoTime(); 

    Arrays.sort(A); 

long time_end=System.nanoTime(); 

where A is an array representing the set A. The array is 

generated randomly as: 

for(int i = 0; i < A.length; i++)  

          A[i] = rand.nextInt(Integer.MAX_VALUE); 

The time is measured as (double) (time_end - 

time)/1000000. s. Sorting 64 K of 32-bit data in PC with 

i7-4770 CPU 3.4 GHz and 8 GB of RAM requires 

approximately 18,000 s. Similar results were also obtained 

for C/C++ programs running in the same PC. Transferring 

256 KB from PC to DDR memory requires approximately 

1,800 s. Table I indicates the time consumed in the APSoC 

for extracting subsets with different number of data items 

and the resulting acceleration (taking into account the 

indicated above communication overhead of 1,800 s). 
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TABLE I. THE CONSUMED TIME BY THE DEVELOPED HARDWARE 

ACCELERATOR AND ACCELERATION ACHIEVED COMPARED TO 

GENERAL-PURPOSE SOFTWARE RUNNING IN PC WITH 

MULTICORE I7 PROCESSOR AND 8 GB OF RAM. 

Lmin and Lmax The consumed time in s Acceleration 

128 and 128 2,908 3.8 (6.2) 

256 and 256 4,041 3.1 (4.5) 

384 and 384 5,090 2.6 (3.5) 

512 and 512 6,201 2.2 (2.9) 

640 and 640 7,284 2.0 (2.5) 

768 and 768 8,348 1.8 (2.2) 

896 and 896 9,477 1.6 (1.9) 

1024 and 1024 10,544 1.5 (1.7) 

 

The column “Lmin and Lmax” includes two values because 

the analysed circuit permits the maximum subset with Lmax 

elements and the minimum subset with Lmin elements to be 

extracted at the same time. 

The second column indicates the consumed time for all 

necessary operations in the PS and PL of the APSoC. 

The column “Acceleration” also shows (see the values in 

parentheses) acceleration without taking into account 

communication overheads (i.e. without the mentioned above 

value 1,800 s). Analysis of this case permits to estimate 

potential acceleration when data are transferred only once 

and then used for different computations in the APSoC. 

We also evaluated potentialities for further accelerations 

and came to the following conclusions. 

Software in the host PC is running in a high-performance 

multicore processor operating at significantly higher clock 

frequency than APSoC. To achieve additional acceleration 

in generally slower reconfigurable logic: a) high-level 

parallelism has to be used enabling hundreds of operations 

needed in software programs to be executed at the same 

time; b) the depth of combinational circuits implemented in 

the PL cannot be large because deep circuits involve 

extensive combinational path delays. The chosen sorted 

network [15] is not deep and operates at significantly higher 

clock frequency than alternative known circuits (see 

experiments in [15]). Higher-level parallelism can be 

achieved by joining data exchange and data processing 

operations. Let us look at Fig. 3, Fig. 4. Data are received 

from AXI HP ports sequentially and the maximum size of 

data items from one port is 64 bit. Such data need to be 

unrolled with the aid of the distributor circuit shown in 

Fig. 4. Thus, while a current block of data is being 

processed in the circuit in Fig. 3, the next block can be 

received and unrolled. 

From Table I we can see that the larger are the values 

Lmin/Lmax, the smaller is the achieved acceleration. However, 

for the majority of practical applications very large values of 

Lmin/Lmax are not needed. Additional experiments 

demonstrated that the larger are the blocks of data handled 

in the PL the higher is the acceleration. We found that the 

size of such blocks for the ZC706 system could be increased 

from the considered 256 32-bit words to 2,048 32-bit words. 

Thus, the results may be additionally improved. 

There are 4 AXI HP and one AXI accelerator coherency 

ports in Zynq devices [9]. Using many ports in parallel can 

be seen as another opportunity to increase throughput of 

hardware accelerators in the PL.  

V. CONCLUSIONS 

The paper suggests novel solutions for extracting subsets 

with the desired properties from large data sets and 

evaluates capabilities of a 3-level computing system that 

combines general-purpose software, application-specific 

software and reconfigurable hardware. We elaborated 

architecture of such a system and evaluated different 

implementations of the proposed solutions making a number 

of experiments with the Xilinx ZC706 prototyping system 

which interacts with a general-purpose computer through 

PCI express bus. We found that the considered PC-PS-PL 

computing system is faster by a factor ranging from 1.5 to 

3.8 comparing to general-purpose software running in i7-

based multicore PC. 
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