
37

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2008. No. 8(88)

ELEKTRONIKA IR ELEKTROTECHNIKA

ELECTRONICS

T170
ELEKTRONIKA

Theoretical Evaluation of Space Constants of Electrotronic Decay in
Resistive Anisotropic Media: Common Equation

R. Veteikis
Institute for Biomedical Research, Kaunas University of Medicine
Eivenių str. 4, LT-50009 Kaunas, Lithuania, phone: +370 37 302966, e-mail: biof@kmu.lt

Introduction

Various physiological and pathological effects may
evoke changes in the electric excitation wave of the heart
that can lead to disorders in the mechanical activities of the
heart. It is known that the intercellular electrical
communication in the working myocardium deteriorates
under some pathological conditions or factors. However,
due to complexity of the myocardium structure, direct
measurement of the degree of deterioration of intercellular
electrical coupling is not possible.

Lately, intensive works have been pursued in modeling
ECG [1], cardiac pacing [2-5], excitation wave spread in
the myocardium tissue under normal and pathological
conditions [6-8], repolarization processes [9]. In these
tasks myocardium is treated as two-dimensional or three-
dimensional resistive-capacitive medium [10-11],
electrotonic anisotropy being characteristic of the
intracellular and intercellular areas. To solve the tasks,
different experimentally obtained values of the parameters
of the passive electric properties of myocardium are used
(such as specific resistances of the intracellular medium,
plasmic (electrogenic) membrane, membrane of
intercellular contacts, space constants of electrotonic
decay, time constants of the plasmic membrane). However,
modeling makes sense only provided the used values of
parameters are most precise. One of possibilities to find the
parameters is by measuring experimental space constants

of electrotonic decay ( xe , ye , e ,) (i.e. the distance at

which the amplitude of potential decreases by 2.71 times)
and the distribution of electrotonic potential in the cardiac
tissue close to the current delivering electrode, with further
analysis of data by mathematical models of resistive (R)
and resistive-capacitive (RC) media. Such media are
described by differential equations of second order with
partial derivatives, and the analytical solutions may only be
obtained in the presence of either spherical or cylindrical
symmetry (for a point-shaped source of current) [12-15].
As myocardium is a complex anisotropic structure and the
current is delivered to the intracellular medium by circle-

shaped suction-electrodes (i.e. there is no spherical or
cylindrical symmetry in a normalized system of
coordinates), it is impossible to obtain analytical
expressions that would describe the distribution of
electrotonic potential in the anisotropic medium.
Therefore, the analysis of experimental data is made basing
on models of isotropic medium and theoretical conclusions
derived on such basis [16-18].

In the present study common equations describing
distribution of electrotonic potential in three-dimensional
anisotropic bidomain RC medium are derived and the
solutions for two-dimensional and three-dimensional
resistive media are obtained, when a current electrode
shape do not satisfy cylindrical or spherical symmetry case.

Common equations for electrotonic potential
distribution in the three-dimensional anisotropic
bidomain RC medium

The derivation of common equations for electrotonic
potential distribution in isotropic three-dimensional
bidomain RC medium was presented in earlier article [19].
There the theory for anisotropic case will be developed.

The cardiac tissue consists of two conductive areas -
intracellular and extracellular, that occupies the same
space, are separated from each other by plasmic
(electrogenic) membrane, and both areas have properties of
electrotonic anisotropy. The intracellular area is formed of
cells connected by low-resistance cell-to-cell junctions.
Assume that the resistance of intracellular area consists of
the myoplasm resistance and the resistance of junctions
evenly distributed over the whole volume of cells, and that
the resistance of extracellular area consists of the resistance
of intercellular gaps evenly distributed over the whole
tissue volume. Each point of the bidomain medium
( zyx ,, ) at time moment t is characterized by intracellular

potential iV and intracellular current density ij as well as

by extracellular potential eV and extracellular current

density ej .
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Consider a continuous anisotropic three-dimensional
bidomain medium in which the tensor of specific resistance
of the intracellular area is i , and the tensor of specific

resistance of extracellular area is e .

The equation of electrical field is valid both for the
intracellular and extracellular areas:

ii Vij , (1a)

ee Vej . (1b)

The charge conservation law is applicable, too:

t
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 ij , (2a)

t

qe
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 ej , (2b)

where iq , eq - charge density of intracellular and

extracellular area,  - Hamilton operator (in Cartesian

coordinates system kji
zyx 
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is a source of current in the medium. As with increase of

iq , eq decreases by the same extent ( ei qq   ) and
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q
 [19] (  - ratio between the area of plasmic

membrane and the medium volume):

mj ij , (3a)

mj ej , (3b)

where mj – transmembrane current density, and the

direction is from the intracellular to the extracellular area
(the hyperpolarizing current is positive). When the
electrogenic membrane is electrically passive, mj is

described by the equation:
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where mR – specific resistance of the electrogenic/plasmic

membrane, and mC - specific capacitance. Assume that

mR does not depend on time and potential. We introduce

equations 3a, 3b and 4 into 1a, 1b and obtain:
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By subtracting equation (6) from equation (5), we obtain:
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where m - time constant of plasmic membrane. By

designating

mei VVV  , (8)

mtT / , (9)

where mV is transmembrane potential and T -normalized

time, we obtain:
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The analytical solution of equation (10) may only be
obtained in the presence of spherical or cylindrical
symmetry. Assume that the major axes of tensors i and

e coincide and are zyx ,, . We designate the specific

resistances of intracellular and extracellular media along

the major tensor axes as ix , iy , iz , ex , ey , ez .

With regard to the magnitude of resistances, their
interrelations and the values of normalized time T ,
equation (10) can be simplified. Below the analysis of
some simplified cases is presented.

Distribution of electrotonic potential in a two-
dimensional anisotropic resistive medium when the
source of current is point-shaped

When ex = ey = ez =0, iz and T the

three-dimensional medium turns into a flat cell in which the
distribution of electrotonic potential is expressed by the
equation:

m
m

y
m

x V
y

V

x

V


2

2
2

2

2
2









 , (11)

where 2/1)2/( ixcmx hR   , 2/1)2/( iycmy hR   ( x ,

y – space constants of electrotonic decay, ch – the cell

thickness of the flat cell).
Assume that in point ( 0 yx ) there is a point-

shaped rectangular current source of amplitude oI .

According to [14] in the normalized system of coordinates

X, Y )/,/( yx yYxX   the solution of equation (11)

is as follows:

)(
2

~
)( 2

2
2 RK

h

I
RV o

c

o
m




 , (12)

where )( 2RKo - McDonald's function, iyix  2
~ ,

and 22
2 YXR  .

Distribution of electrotonic potential in the three-
dimensional anisotropic RC medium for a point-shaped
source of current

As the electrotonic potential is measured on the surface
of myocardium tissue, when a piece of tissue is perfused by
low-resistance Tyrode solution, it may be assumed that

0e . When T, the equation (10) becomes:
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where x , y , z - space constants of electrotonic decay

along axes x, y, z; ( ixmx R  / , iymy R  / ,

izmz R  / ). The solution of equation (13) for a

rectangular jump of current oI is:
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where 222222
3 /// zyx zyxR   - is a normalized

distance between the point-shaped current source and the
recording point.

Mathematical modeling of electrotonic potential
distribution in an anisotropic resistive medium when
the source of current is disc-shaped or cylinder-shaped

In the two-dimensional anisotropic medium the
expression of electrotonic potential derived for a
point-shaped current source (12) can also be applied in the
case of an elliptic source of current the half-axes of which

ox and oy are respectively proportional to x and y

(i.e. yxoo yx  ):
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where  om RV – a potential of elliptic electrode with half-

axes xoo Rx  , yoo Ry  , and

   22
2 yx yxR   ,    2yoxoo yxR   2 .

In the three-dimensional anisotropic medium the
expression of electrotonic potential derived for a point
shaped current source case (14) is applicable for an
ellipsoid-shaped current source, the half-axes of which

( ooo zyx ,, ) are proportional to x , y and z (i.e.

ozoyoxo Rzyx   ). In this case the

electrotonic potential expression is:
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In fact, the correct choice of the elliptic- or
ellipsoid-shaped electrodes for experimental use in a
two-dimensional or a three-dimensional cardiac tissue with
initially unknown properties is impossible in practice,
because its dimensions must fulfill these conditions: for

two-dimensional case yoxo yx   , for

three-dimensional case zoyoxo zyx   , and the

direction of largest half-axis of current electrode ( ox ) must

coincide with direction of the major axis x of tensor i .

When microelectrode as the current electrode is applied,
the amplitude of the electrotonic potential with increasing
of distance abruptly decreases, and in such experimental
conditions it is impossible to measure precisely the
electrotonic potential amplitude.

Therefore during the electrophysiological experiments
the current is delivered to the intracellular medium of the
cardiac tissue by circle-shaped suction electrode. Assume
that in the metric system of coordinates ( yx, ) the radius of

the current source is or and its center is at the origin of

coordinates. In two-dimensional normalized system of
coordinates ( YX , ) the current electrode is ellipse-shaped,

the shortest half-axis oX is equal to xor  and the longest

half-axis oY is equal to yor  . In three-dimensional

system of coordinates ( ZYX ,, ) the ellipse-shaped

electrode coincide with XY plane and is perpendicular to
Z axis.

In experimental conditions, the internal electric
structure of stimulating suction-electrode is very complex:
a part of current from the suction-electrode flows into
intracellular medium, the rest part flows into intercellular
clefts. For increasing of intracellular current portion, the
suction-electrodes with internal perfusion of isotonic KCl
solution are used [20]. According to [21] an equivalent
current source is cylinder-shaped, and its altitude h

depends on internal radius of suction electrode ( or ) and

negative pressure applied for suction. According to these
authors the value of h could be in range 0  2ro.

In two-dimensional medium case on basis of some
theoretical assumptions [22] by using the principle of
superposition accepted in electrostatics, we divide the
source of current into elementary point-shaped sources by
modes:

Mode 1: a) in the metric system of coordinates ( yx, )

we evenly position the point-shaped sources on the circle
of radius or (Fig.1a); b) in the normalized system of

coordinates ( YX , ) the circle transforms into an ellipse, the

half-axes of which are equal to xor / and yor / ; and the

point-shaped sources are more dense in the direction of y

axis (Fig. 1b).

Mode 2: a) we pass from the ( yx, ) system of

coordinates to ( YX , ) coordinates system, and the circle

becomes an ellipse with half-axes equal to xor / and

yor / ; b) we evenly position the point-shaped sources on

the perimeter of the ellipse (Fig. 1c); the point-shaped
sources are more dense in the direction of x axis (in metric

yx, coordinate system).

Mode 3: the current electrode (circular disk) is divided
into point-shaped sources symmetrically to x and y -axis

by square lattice mean (Fig 1d).



40

ro

x

y

X

Y
ro/y

ro/x

Xoi

Yoi

X

Y

R2i

(X1, Y1)

ro

x

y
(Xoi, Yoi)

Y

(X, 0)
X

a b c

d e

R2i

Fig. 1. Modes of division of intracellular current electrodes into point-shaped sources. a: even division of circle electrode perimeter into
point-shaped sources (in metric coordinate system x,y); b: a view of division (a) in a normalized coordinate system (X,Y); c: even
division of circle perimeter into point-shaped sources in normalized coordinate system; d: division of circular disk electrode into point-
shaped sources in metric coordinate system; e: division of circular disk electrode into point-shaped sources in normalized coordinate
system

In the two-dimensional medium in accordance with the
principle of superposition, potential mV in point 11,YX is

equal to

),(),( 2
1

11 io

M

i
im RKBYXV 



 (17)

where M - number of point-shaped sources, iB -

coefficient proportional to the intracellular current
generated by the point source ( coii hIB  2/~

2 , where

oiI - current of the i-th point-shaped source), and

22
2 )()( oiioiii YYXXR  . As in the electrically

passive resistive medium the values of parameters xe ,

ye , x , y do not depend on the amplitude of current

delivered through the electrode, for convenience we
assume that 11 B , i.e. all point-shaped sources are equal.

In three-dimensional anisotropic medium of finite
thickness d the suction electrode will be described as
disk/cylinder-shaped current electrode which radius in
( zyx ,, ) coordinate system is or and altitude – h ( dh  ).

In a normalized system of coordinates ( ZYX ,, ) a current

electrode will transform to elliptic cylinder which altitude

zhH  and half-axes xoo rX  , yoo rY 

(Fig.2).
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Fig. 2. Arrangement of cylinder-shaped current electrodes in the
model of three-dimensional resistive medium of finite thickness,
restricted by parallel planes Z=0 and Z= –D. Y-axis is
perpendicular to plane XZ

Let’s extend the medium by its mirror reflection (for
details see [23]) in direction of axis Z . We obtain a
number of virtual sources on Z -axis (see Fig.2). The
altitude of these virtual sources is equal to H2 , and the
distance between centers of cylinders – D2 (the twofold
altitude of a virtual cylinder-shaped current electrode is
obtained in cause of mirror reflection of real current source
in plane 0Z ). Let’s divide uniformly the surface of the
virtual current source into M point-shaped sources with
coordinates of i-th source oioioi ZYX ,, . After extending a

medium by its mirror reflection the coordinates oiX and

oiY will not change but the coordinate with respect to Z -

axis will be DjZoi 2 , where j is the number of

reflection. Applying the superposition principle and
expression of electrotonic potential for point-shaped
current source (14) will obtain that

 
 

 


 




j

M

i ij

ij

zyx

iziyixoi
m

R

RI
YXV

1 3

3

3

3 exp

4
0,,




,(18)

where  23 2DjZ)Y(Y)X(XR oi
2

oi
2

oiij  ,

D – a normalized thickness of medium ( zdD  ), M –

a number of point-shaped current sources, oiI - a current

generated by i-th point-shaped source.

Discussion

It should be noted that this model is only applicable to
myocardial tissue on condition that electrogenic (plasmic)
membrane resistance mR is independent of the electrotonic

potential. In the experiment, this condition is observed
through stimulating the myocardial intracellular medium
with subthreshold negative pulses of small amplitude.
Violation of this condition may cause mR to change and

lead to the propagation of nonlinear subthreshold pulses in
myocardium, when application of this model is erroneous.
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Pateiktas elektrotoninio potencialo pasiskirstymo trimatėje dvisritėje anizotropinėje RC terpėje (miokarde) matematinis modelis, kai
srovės šaltinis yra taško, apskritimo, disko ir cilindro formos. Naudojant superpozicijos principą srovės elektrodas yra aproksimuotas
taškiniais šaltiniais, išdėstytais ant apskritimo formos elektrodo perimetro dviem būdais, taip, kad a) atstumai tarp taškinių šaltinių yra
vienodi metrinėje koordinačių sistemoje; b) atstumai tarp taškinių šaltinių yra vienodi normalizuotoje koordinačių sistemoje. Disko ir
cilindro formos srovės elektrodai yra aproksimuoti taškiniais šaltiniais, tolygiai išdėstytais jų paviršiuje. Il. 2, bibl. 23 (anglų kalba;
santraukos anglų, rusų ir lietuvių k.).


