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Introduction

Various physiological and pathological effects may
evoke changes in the electric excitation wave of the heart
that can lead to disorders in the mechanical activities of the
heart. It is known that the intercellular electrical
communication in the working myocardium deteriorates
under some pathological conditions or factors. However,
due to complexity of the myocardium structure, direct
measurement of the degree of deterioration of intercellular
electrical coupling is not possible.

Lately, intensive works have been pursued in modeling
ECG [1], cardiac pacing [2-5], excitation wave spread in
the myocardium tissue under normal and pathological
conditions [6-8], repolarization processes [9]. In these
tasks myocardium is treated as two-dimensional or three-
dimensional  resistive-capacitive  medium  [10-11],
electrotonic  anisotropy being characteristic of the
intracellular and intercellular areas. To solve the tasks,
different experimentally obtained values of the parameters
of the passive electric properties of myocardium are used
(such as specific resistances of the intracellular medium,
plasmic  (electrogenic) membrane, membrane of
intercellular contacts, space constants of electrotonic
decay, time constants of the plasmic membrane). However,
modeling makes sense only provided the used values of
parameters are most precise. One of possibilities to find the
parameters is by measuring experimental space constants
of electrotonic decay (Aye,Aye:Ze) (i.€. the distance at

which the amplitude of potential decreases by 2.71 times)
and the distribution of electrotonic potential in the cardiac
tissue close to the current delivering electrode, with further
analysis of data by mathematical models of resistive (R)
and resistive-capacitive (RC) media. Such media are
described by differential eguations of second order with
partial derivatives, and the analytical solutions may only be
obtained in the presence of either spherical or cylindrical
symmetry (for a point-shaped source of current) [12-15].
As myocardium is a complex anisotropic structure and the
current is delivered to the intracellular medium by circle-
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shaped suction-electrodes (i.e. there is no spherical or
cylindrica symmetry in a normaized system of
coordinates), it is impossible to obtain analytical
expressions that would describe the distribution of
electrotonic  potential in the anisotropic medium.
Therefore, the analysis of experimental datais made basing
on models of isotropic medium and theoretical conclusions
derived on such basis [16-18].

In the present study common equations describing
distribution of electrotonic potential in three-dimensional
anisotropic bidomain RC medium are derived and the
solutions for two-dimensional and three-dimensional
resistive media are obtained, when a current electrode
shape do not satisfy cylindrical or spherical symmetry case.

Common equations for  electrotonic
distribution in the three-dimensional
bidomain RC medium

potential
anisotropic

The derivation of common equations for electrotonic
potential  distribution in isotropic three-dimensional
bidomain RC medium was presented in earlier article [19].
There the theory for anisotropic case will be developed.

The cardiac tissue consists of two conductive aress -
intracellular and extracellular, that occupies the same
space, are separated from each other by plasmic
(electrogenic) membrane, and both areas have properties of
electrotonic anisotropy. The intracellular areais formed of
cells connected by low-resistance cell-to-cell junctions.
Assume that the resistance of intracellular area consists of
the myoplasm resistance and the resistance of junctions
evenly distributed over the whole volume of cells, and that
the resistance of extracellular area consists of the resistance
of intercellular gaps evenly distributed over the whole
tissue volume. Each point of the bidomain medium
(%,y,2) at time moment t is characterized by intracellular

potential V; and intracellular current density j; as well as
by extracellular potential V. and extracellular current
density je.



Consider a continuous anisotropic three-dimensional
bidomain medium in which the tensor of specific resistance
of the intracellular area is p;, and the tensor of specific

resistance of extracellular areais pg.

The equation of electrical field is valid both for the
intracellular and extracellular areas:

pili =-VVi, (1a)
Pele =—VVe. (1b)
The charge conservation law is applicable, too:
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le=——, (2b)

where ¢j, Qe - charge density of intracellular and
extracellular area, V- Hamilton operator (in Cartesian

coordinates system V = %i +£j +%k ). Assume there

¥

is a source of current in the medium. As with increase of
0j, fe decreases by the same extent (Aqg; =-4qe) and

%: imB [19] (B - ratio between the area of plasmic
membrane and the medium volume):
Veji==imB, (39)
Veje=imB, (3b)

where j,, — transmembrane current density, and the

direction is from the intracellular to the extracellular area
(the hyperpolarizing current is positive). When the

electrogenic membrane is electrically passive, j,, is
described by the equation:

. 1 0

Im= _(Vi _Ve)+ CmE(Vi _Ve)v (4)

where R, — specific resistance of the electrogenic/plasmic
membrane, and C,, - specific capacitance. Assume that
R, does not depend on time and potential. We introduce
equations 3a, 3b and 4 into 1a, 1b and obtain:

2y _PPig, v—c g5 S (v V)
A R (VI Ve) CmﬁP|0.t(V| Ve) 0, (9

m

Ve 2Ve n Bpe
R

( ~Ve)+ CrfPe =0 ~Ve) =0. (8

m
By subtracting equation (6) from equation (5), we obtain:

Rm
B(pi + pe)

0

V2(\/i _Ve)_(vi _Ve)_TmE(Vi —Ve)=0,(7)

where 7,,- time constant of plasmic membrane. By
designating
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Vi =Ve =Vp, (8)
9

where V,,, is transmembrane potential and T -normalized
time, we obtain:

T=t/ty,

_Rm
Bpi + Pe)
The analytical solution of equation (10) may only be

obtained in the presence of spherical or cylindrical
symmetry. Assume that the major axes of tensors p; and

pPe coincide and are x,y,z. We designate the specific
resistances of intracellular and extracellular media along
the major tensor axes as pix. Piys Piz: Pex+ Pey: Pez-

With regard to the magnitude of resistances, their
interrelations and the values of normalized time T,
equation (10) can be simplified. Below the analysis of
some simplified casesis presented.

Nm

2
VA =V - =0. (10)

Digtribution of electrotonic potential in a two-
dimensional anisotropic resistive medium when the
sour ce of current is point-shaped

When pe=pey = pez =0, pj; > © and T the
three-dimensional medium turnsinto aflat cell in which the
distribution of electrotonic potential is expressed by the
equation:

22 o,
X2
X

o,
2

+ 2y 2m =
%Y
where Ay = (Ruhe /2pix)" 2, 2y = (Ruhe / 2piy)"'? (2.
Ay — space constants of electrotonic decay, h, — the cell

thickness of the flat cell).

Assume that in point (x=y=0) there is a point-
shaped rectangular current source of amplitude |I,.
According to [14] in the normalized system of coordinates
X, Y (X =x/2y,Y =yl Ay) the solution of equation (11)

is asfollows:

Vin. (12)

52'0
27,

Vm(Rp) = Ko(Rz) (12)

where K, (Ry) - McDonald's function, p, =./pix - piy »

and Ry =V X2+Y?.

Distribution of electrotonic potential in the three-
dimensional anisotropic RC medium for a point-shaped
sour ce of current

As the electrotonic potential is measured on the surface
of myocardium tissue, when a piece of tissue is perfused by
low-resistance Tyrode solution, it may be assumed that
Pe = 0. When T—ow, the equation (10) becomes:



o2,
+ lf, 5
oy
where Ay, Ay, 4, - space constants of electrotonic decay

along axes X, Y, z, (Ax =+/Rm/ Bpix » Ay =4 Rm/ Bpiy
Az =+/Rm/ Bpi; )- The solution of eguation (13) for a

rectangular jump of current | is:

lo3 PixPiyPiz exp(- Rg)

4R Axryr,  Re

Nm
072

2
LY
J22 m

+A
X2 z

=V, (13)

Vim(Rs) = ; (14)

where R3:\/x2/2)2(+y2/2§,+22/i§ - is a normalized

distance between the point-shaped current source and the
recording point.

Mathematical modeling of electrotonic potential
distribution in an anisotropic resistive medium when
the sour ce of current isdisc-shaped or cylinder-shaped

In the two-dimensional anisotropic medium the
expresson of electrotonic potential derived for a
point-shaped current source (12) can also be applied in the
case of an elliptic source of current the half-axes of which
Xo and Yy, are respectively proportional to 1, and 4y

(i.e Xo/Yo =Ax/Ay):

Ko(Rz)
V. (R,)=V o\ 2. 15
m( 2) m(Ro)KO(RO) ( )
where Vi,(R,) — apotential of elliptic electrode with half-
axes Xo = RoAx s Yo = Roly, and

Ry :\/(X/lx)2+(y/’1y)2 » Ro :\/(Xo/lx)z+(y0/ly)2 '

In the three-dimensional anisotropic medium the
expression of electrotonic potential derived for a point
shaped current source case (14) is applicable for an
ellipsoid-shaped current source, the half-axes of which
(X0, Y0:20) are proportional to Ay, 4, and 4, (i.e.
Xo/2x = Yo/Ay = 25/A7 =Ry ). this the
electrotonic potential expressioniis:

o3 Pixpiypiz PRy —Ra) 1

413 7xyAz (L4 Ro) Rs

In case

Vm(R3) =

In fact, the correct choice of the elliptic- or
ellipsoid-shaped electrodes for experimental use in a
two-dimensional or a three-dimensional cardiac tissue with
initially unknown properties is impossible in practice,
because its dimensions must fulfill these conditions: for
two-dimensional case Xo/Ax = Yo /2y for
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three-dimensional case X, /Ax = Yo /Ay =2Z/2, , and the
direction of largest half-axis of current electrode ( x, ) must

coincide with direction of the mgjor axis x of tensor p; .

When microelectrode as the current electrode is applied,
the amplitude of the electrotonic potential with increasing
of distance abruptly decreases, and in such experimental
conditions it is impossible to measure precisely the
electrotonic potential amplitude.

Therefore during the electrophysiological experiments
the current is delivered to the intracellular medium of the
cardiac tissue by circle-shaped suction electrode. Assume
that in the metric system of coordinates ( x, y) the radius of
the current source is ry and its center is at the origin of
coordinates. In two-dimensiona normalized system of
coordinates ( X,Y ) the current electrode is ellipse-shaped,
the shortest half-axis X, isequal to ry /1, and the longest
half-axis Y, is equal to ry/Ay . In three-dimensiona

system of coordinates (X,Y,Z) the elipse-shaped
electrode coincide with XY plane and is perpendicular to
Z axis.

In experimental conditions, the interna electric
structure of stimulating suction-electrode is very complex:
a part of current from the suction-electrode flows into
intracellular medium, the rest part flows into intercellular
clefts. For increasing of intracellular current portion, the
suction-electrodes with internal perfusion of isotonic KCl
solution are used [20]. According to [21] an equivalent
current source is cylinder-shaped, and its altitude h
depends on internal radius of suction electrode (r,) and
negative pressure applied for suction. According to these
authors the value of h could beinrange 0 + 2r,,.

In two-dimensional medium case on basis of some
theoretical assumptions [22] by using the principle of
superposition accepted in electrostatics, we divide the
source of current into elementary point-shaped sources by
modes:

Mode 1: &) in the metric system of coordinates ( x,y)
we evenly position the point-shaped sources on the circle
of radius r, (Fig.1a); b) in the normalized system of
coordinates ( X,Y ) the circle transformsinto an ellipse, the
half-axes of which are equal to r, /4, and ry/ Ay ; and the

point-shaped sources are more dense in the direction of y
axis (Fig. 1b).

Mode 2: @ we pass from the (x,y) system of
coordinates to ( X,Y) coordinates system, and the circle
becomes an ellipse with half-axes equal to ry /A, and
ro/ Ay b) we evenly position the point-shaped sources on
the perimeter of the ellipse (Fig. 1c); the point-shaped
sources are more dense in the direction of x axis (in metric
X,y coordinate system).

Mode 3: the current electrode (circular disk) is divided
into point-shaped sources symmetrically to x and vy -axis
by sguare lattice mean (Fig 1d).
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Fig. 1. Modes of division of intracellular current electrodes into point-shaped sources. a: even division of circle electrode perimeter into
point-shaped sources (in metric coordinate system x,y); b: a view of division (a) in a normalized coordinate system (X,Y); c: even
division of circle perimeter into point-shaped sources in normalized coordinate system; d: division of circular disk electrode into point-
shaped sources in metric coordinate system; e: division of circular disk electrode into point-shaped sources in normalized coordinate

system

In the two-dimensional medium in accordance with the
principle of superposition, potential V,,, in point X4,Y; is
equal to

M
Vin(X1, YD) = D" BiKo(Rai), (17)

i=1
where M - number of point-shaped sources, B; -
coefficient proportional to the intracellular current

generated by the point source (B; = ply; / 27h;, where
lsi- current of the i-th point-shaped source), and

Roi =+/(Xi — Xg1)2 + (¥ —Ys)2 . As in the electrically
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passive resistive medium the values of parameters A,q,
Aye, Ax, Ay do not depend on the amplitude of current
delivered through the electrode, for convenience we
assumethat B; =1, i.e. al point-shaped sources are equal.

In three-dimensional anisotropic medium of finite
thickness d the suction electrode will be described as
disk/cylinder-shaped current electrode which radius in
(%,¥,2) coordinate system is r, and dtitude— h (h<d).
In a normalized system of coordinates ( X,Y,Z) a current
electrode will transform to eliptic cylinder which atitude
H=h2, and hdf-axes Xo=r5/4c, Yo=ro/ly

(Fig.2).
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Fig. 2. Arrangement of cylinder-shaped current electrodes in the
mode of three-dimensiona resistive medium of finite thickness,
restricted by paralel planes Z=0 and Z=-D. Y-axis is
perpendicular to plane XZ

Let's extend the medium by its mirror reflection (for
details see [23]) in direction of axis Z. We obtain a
number of virtual sources on Z -axis (see Fig.2). The
dtitude of these virtual sources is equal to 2H , and the
distance between centers of cylinders — 2D (the twofold
dtitude of a virtual cylinder-shaped current electrode is
obtained in cause of mirror reflection of real current source
in plane Z =0). Let's divide uniformly the surface of the
virtual current source into M point-shaped sources with
coordinates of i-th source X;,Yqi,Zo; - After extending a

medium by its mirror reflection the coordinates X, and
Yoi Will not change but the coordinate with respect to Z -
axis will be Zg +2Dj, where | is the number of
reflection. Applying the superposition principle and
expression of electrotonic potential for point-shaped
current source (14) will obtain that

% l i 3\/ PixPiyPiz . exp(— Raij ) (18)

] 4n3¢,lx,1y,12 Ry

2

Vin(X,Y,0)=
j=—0

0

where Ry = /(X = Xoi )2 +(Y =Yg )2 +(Z; +2Dj) ,
D —anormalized thickness of medium (D =d/4,), M —
a number of point-shaped current sources, |4 - a current
generated by i-th point-shaped source.

Discussion

It should be noted that this model is only applicable to
myocardia tissue on condition that electrogenic (plasmic)
membrane resistance R, isindependent of the electrotonic
potential. In the experiment, this condition is observed
through stimulating the myocardia intracellular medium
with subthreshold negative pulses of small amplitude.
Violation of this condition may cause R, to change and
lead to the propagation of nonlinear subthreshold pulsesin
myocardium, when application of this model is erroneous.
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A mathematical model of the electrotonic potential distribution in a three-dimensional bidomain anisotropic resistive-capacitive
medium (myocardium) is devised for the case when the source of current is point-, circle- disc- or cylinder-shaped. Using the
superposition principle, the current electrode is approximated by point sources, arranging them on the perimeter of the circle-shaped
electrode in two ways such that: a) the distances between them are identical in the metric system of coordinates; b) the distances
between the point sources are identical in a normalized system of coordinates. The disk-shaped and cylinder-shaped current sources are
approximated by point sources, evenly arranging them on the surface. Ill. 2, bibl. 23 (in English; summaries in English, Russian and
Lithuanian).

P. Bereiikuc. Teopernueckasi OeHKAa NMOCTOSIHHBIX [JIMHBI 3JIEKTPOTOHHYECKOr0 3aTYyXaHHS B OMHYECKHX AHH3OTPOINHBIX
cpenax: obiee ypaBHeHuHe // DJIeKTPOHHKA U d1eKkTpoTexHuka. — Kaynac: Texnosorus, 2008. — Ne 8(88). — C. 37-42.

Pa3paGorana maremaTuueckas MOJENb PACIPENEICHUS 3JIEKTPOTOHMYECKOrO IOTCHIMAIa B TPEXMEPHOH JBYXKOMIIOHEHTHOI1
AQHM30TPOIHON MPOBOJSIILICH Cpele C pacHpeeieHHOW eMKOCThIO (MHOKapIHalbHOM TKaHM), KOTJa HUCTOYHHK TOKa mMmeeT (opmy
TOYKH, OKDPY)XKHOCTH, AWCKa WM LiuHApa. C KMCIOJb30BaHMEM INPUHLMIIA CYNEPHO3HLMH HCTOYHHUK TOKa alNpOKCHMHPOBAIN
TOYEYHBIMHM MCTOYHMKAMH, pacroJyiaras UX Ha HEepUMETPe OKPYXKHOCTH IByMs criocoGamu: 1) Tak, 4TOOBI PAacCTOSHMS MEXKLY HUMHU
ObUIM OJMHAKOBBIMM B METPHYECKOH CHCTeMEe KOOPIMHAT; 2) TaK, 4TOOBI PACCTOSHHUS MEXIy TOUYEYHBIMH HCTOYHMKAMH ObLIH
O/IMHAKOBBIMH B HOPMaJIM30BaHHOW CHUCTEME KOOpAMHAT. J[MCKOOOpa3HbI M LMIMHIPUYECKUH MCTOYHUK TOKA arlpOKCHMHPOBAIH
TOYCYHBIMH HCTOYHHKAMH, PABHOMEPHO pacrojiaras uX Ha noBepxHocTtd. M. 2. 6ubn. 23 (Ha aHrIMiCKOM s3bIke; pedeparhl Ha
AHTJIMICKOM, PYCCKOM M JIATOBCKOM $3.).

R. Veteikis. Elektrotoninio gesimo konstanty teorinis jvertinimas ominése-talpinése anizotropinése terpése: bendroji lygtis //
Elektronikair elektrotechnika. — Kaunas: Technologija, 2008. — Nr. 8(88). — P. 37-42.

Pateiktas elektrotoninio potencialo pasiskirstymo trimatéje dvisritéje anizotropingje RC terpéje (miokarde) matematinis modelis, kai
srovés satinis yra tasko, apskritimo, disko ir cilindro formos. Naudojant superpozicijos principa srovés elektrodas yra aproksimuotas
taskiniais sdtiniais, isdéstytais ant apskritimo formos elektrodo perimetro dviem bidais, taip, kad a) atstumai tarp taskiniy satiniy yra
vienodi metrinéje koordinaiy sistemoje; b) atstumai tarp taskiniy saltiniuy yra vienodi normalizuotoje koordinatiy sistemoje. Disko ir
cilindro formos srovés elektrodai yra aproksimuoti taskiniais saltiniais, tolygiai isdéstytais ju pavirsivje. Il. 2, bibl. 23 (anglu kalba;
santraukos angly, rusy ir lietuviy k.).
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