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Introduction

Blind source separation (BSS) and independent com-
ponent analysis (ICA) are generally based on a wide class
of algorithms [1]-[3] and they found potential applications
in many areas from engineering to neuroscience. BSS me-
thods consider the separation of observed (often called
sensor) signals into their underlying independent source
signals knowing neither the source signals nor the mixing
process. Most of linear BSS models in the simplest forms
can be expressed algebraicaly as some specific problems
of matrix factorization [3]: Given observation matrix

X = [x(@),+-,x(N)]e CM*N' perform the matrix factoriza-
tion

X=AS, Q)
where N is the number of available samples, M is the nu-
mber of observations, K is the number of sources,

AeCMK  represents the unknown mixing matrix,

S=[s1),---,s(N)]e C**N contains the corresponding la-

tent (hidden) components which represent unknown source
signals.
Generally BSS is obtained by finding an KxM

transformation (separating) matrix W =A", where A*
means some well-defined pseudo-inverse of A such that

the output signd matrix S=[81),--,8N)leC*N, by

S=WX , contains components that are as independent as
possible, as measured by an information-theoretic cost
function or other criteria [3]. The most popular approach
exploits as the cost function some measure of signals sta-
tistical independence and non-Gaussianity and involve the
higher-order statistics (HOS) to solving the BSS problem.
If sources have temporal structures, then each source has
non-vanishing temporal correlation, and second-order sta-
tistics (SOS) are often sufficient to estimate the mixing
matrix and sources [1]. Recently BSS has attracted much
attention in chaotic signal field [4], [5], as many complex
signals obtained from high-dimensional nonlinear dynami-
cal systems are not purely simple chaotic signals — they

linear
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may be contaminated by different components of individu-
al chaotic signals or internal noise signals. Due to the some
singularity of the chaotic signals the techniques mentioned
above may not be applicable to chaotic signals implicitly
[4] and must be verified.

In this paper the BSS algorithm based on nonlinear
phase-space reconstruction and nonorthogonal joint
approximate diagonalization (JAD) [6]-[8] of several time-
delayed covariance matrices is investigated. The time-
delayed covariance matrices were estimated with one data
matrix of first embedding dimension and second data
matrix of every another embedding dimension. The case
K =M is considered. It is demonstrated, that algorithm
gives a good performance in the separation of mixed pseu-
doperiodic chaotic or similar to pseudoperiodic signals.
This class of chaotic signals — pseudoperiodic — has arou-
sed great interest due to their close relation to some impor-
tant natural and physiological systems [5], [9]. The pe-
rformance of the algorithm is compared with the widely
known BSS algorithms such as AMUSE [3], dAMUSE
[10], [11] and ICA agorithm Fastlca[12], also algorithm,
described in [4] for an artificial mixture of synthetic si-
gnals.

Description of the algorithm

Given a group of M sensor signals with N samples a
reconstructed phase space matrix X(k), k=1---,M withd
rows and L=N-(d-1r columns (called a trajectory

matrix) for the mixture received by k™ sensor is defined
by [13]

Xf() ng) Xg\ll(z(d—l)f
k k k
x (k) _ XLZ X(f)f X(N_(g_z)f )
X](.l: ()d 1) Xg:-)(d 1) Xg\ll()

where d — the embedding dimension and ¢ — time delay
are chosen according to certain optimization criterion [13].



For M sensors, we obtain M embedding matrices gen-
eraly with the same values for r and d. Using the i,
i=1---,d rows of the embedding matrices x®) we can

form a data matrix for al sensors for every embedding
dimension, i. e.

Xl%il)f X%(il)f XEI\}))(di)r

2 2 2

X, = X1+(§_1)T X2+(j—1)¢ XN—('d—i)r ' 3)
X](.+K(i)—1)r Xgiei_nf X(NK_)(d_i)f

where i=1,---,d.

The time-delayed correlation matrixes R € c MM
has the form

1

Rj =EX1XL17 4)
where j=1---,d-1.
Given a matrix set R:{Rl,Rz,m,Rj}, where

R; e C*  the approximate joint diagonalization pro-
blem seeks a nonsingular diagonalizing matrix
UeCM™M  and  associated  diagonal  matrix
Dy, Dy, -+, D e CM*M (which are usually not of interest

in the context of BBS) such that the following common
structures are best fitted [6]-[8]:

R;=UD;U", (j=1--d-1). )

The “goodness of fit” is evaluated by some criterion
(cost or abjective function). Due to the limitations of or-
thogonal joint diagonalization, the nonorthogona joint
diagonalization, which do not require the problematic
prewhitening, has received increasing attention in recent
years[6]-[8].

The algorithm is defined by the following implementation:

1. Peform JAD: R;=UD;U", (j=1--d-1),

i.e, estimate the orthogonal matrix U using one of the
available numerical algorithm. In this work numerical
algorithm and appropriate software, described in [7], are
used.

2. Estimate unmixing (separating) matrix as
W = U and the source signals matrix as

S=UX, (6)

in which each row represent a separate signal.

Numerical results

The proposed algorithm was applied to artificially mixed
synthetic signals. In the first experiment two mixed x com-
ponents of the Rossler system, defined by
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%=—(y+2),
%:X-i-a'y, (7
% =b+z(x-c),

with parametersa=0,398; b=2;,c=4anda=0,2; b =
0,2; ¢ = 4,6 respectively were considered. The embedding
dimension of the reconstructed phase space d =4 and
time delay =16 for mixed signals were defined and
2000 samples were used in this experiment. In the second
experiment two mixed signals of the Mackey-Glass diffe-
rential-delay equation, defined by

dx  ax(t-d)

dt 14 x(t-d)° ~bd)

®)

were used. The two sequences are generated with the same
parameters (a=0,2; b=0,1; c= 10 and 7d = 30) but with
different integrating conditions. The equation is solved
numerically by using the algorithm described in [14]. The
embedding dimension of the reconstructed phase space
d =4 and time delay r =12 for mixed signals were defi-
ned. The lenght of sequences — 1600 points. As mentioned
above it is assumed that the number of sensors M is equal
to the number of signals K. That is, two sensors are used
and the coupling (mixing) matrix in both casesis given by

1 0,5}

- {1,1 1 ®

In Fig. 1 and Fig. 2, the original signals with their re-
constructed versions are superimposed. As can be seen,
one is amost not able to tell them apart. For clarity the
signals were standardized.
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Fig. 1. Comparison of the original Rossler signals (blue) and the
reconstructed signals (green): @) first source signal, b) second
source signa (the blue signal is covered by the green one)
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Fig. 2. Comparison of the origind Mackey-Glass signas (blue)
and the reconstructed signals (green): a) first source signal, b)
second source signa (the blue signal is covered by the green one)

In a simulation environment (the true matrix A is
known) the performance of blind separation can be charac-
terized by one single performance index defined by [3], [7]

M
2
LM Zpij
IP)== =1+
M 4= max Pij
J
J 2
1§: Zpij
e i = Y (10)
2
M =] max Pi
|
where the permutation  matrix P:WA:[p”J,

PeC™M The performance index is a number that measu-
res the degree of diagondity of the product of the separation
matrix (W) by the mixing matrix (A ).

A comparison of the performance of proposed algo-
rithm with some othersis shown in Table 1.

Table 1. A comparison of the performance of proposed algorithm

Mixed signals
Algorithm Rosger Mackey-
Glass
Proposed 0,00256 0,00589
AMUSE 0,00036 0,02728
dAMUSE 0,65158 0,44253
Fastlca 0,23646 0,00534
Described in [4] 0,00439 0,00511
Conclusions

In this paper the BSS algorithm based on nonlinear
phase-space reconstruction and nonorthogonal joint
approximate diagonalization of several time-delayed cova-
riance matrices corresponding to the data matrix of first
embedding dimension and data matrix of the every another
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embedding dimension are investigated by applying them to
mixed pseudoperiodic chaotic Rossler signals and Mackey-
Glasssignals.

Simulation results show that this algorithm is able to
separate mixed pseudoperiodic chaotic or similar to pseu-
doperiodic signals which have temporal structures and
each source has non-vanishing tempora correlation, i. e.
when analysis based on the second-order statisticsis appli-
cable. These simulation results also show that algorithm
leads to better performances than the AMUSE, dAMUSE,
the very efficient fastlCA-algorithm and algorithm descri-
bed in [4]. It will be observed, that the worst performance
is shown by dAMUSE algorithm, whereby all the spatial
dimensions are stacked into column vectors. However, the
stacking operation does not capture the structure inherent a
sampling the data [15]. The performance of the investiga-
ted algorithm is nearest to the performance of agorithm
based on generalized eigenvalue decomposition [4], but is
better in this instance for separating the mixed Rossler
signals.
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K. Pukenas. Blind Sour ce Separation of a Mixture of Pseudoperiodic Chactic Signals// Electronics and Electrical Engineering. —
Kaunas: Technologija, 2008. — No. 8(88). — P. 77-80.

The straightforward blind source separation (BSS) algorithm based on nonlinear phase-space reconstruction and nonorthogonal
joint approximate diagonalization (JAD) of several time-delayed covariance matrices, estimated with one data matrix of first em-
bedding dimension and second data matrix of every another embedding dimension, is investigated by applying it to mixed
pseudoperiodic chaotic Rossler signals and Mackey-Glass signals. Simulation results show that this algorithm gives a good performance
in the separation of mixed pseudoperiodic chaotic or similar to pseudoperiodic signals when each source has non-zero autocorrelation
function for a non-zero time lag, i. e. when analysis based on the second-order statistics (SOS) is applicable. Algorithm leads to
better performance than many widely known BSS algorithms including the very efficient iterative FastlCA agorithm. 11l 2, bibl. 15 (in
English; summariesin English, Russian and Lithuanian).

K. Ilykenac. Pa3esieHne cMecu MCEBAONEPHOAMYECKHX XA0THUYECKUX CHTHAJOB METOOM CJIENOro pa3jejieHus] MCTOYHUKOB //
JJIeKTPOHHUKA U dJIeKkTpoTexHuka. — Kaynac: Texnosorus, 2008. — Ne 8(88). — C. 77-80.

Hccnenyercs anroputM cienoro paszaenenus ucrounukoB (Blind Source Separation — BSS), ocHoBaHHBINH Ha PEKOHCTPYKIHH
(ha30BOro MPOCTPAHCTBA M COBMECTHOW MPUOIM3UTENIBHON HEOPTOrOHAIBHON JMAroHaIM3allii HECKOJIBKIX KOBAPHALOHHBIX MaTPHI]
CHTHAJIOB PEKOHCTPYHPOBAHHOTO (Ja30BOrO NPOCTPAHCTBA, ONPENCICHHBIX C HCIOJIb30BAHMEM MATPHLbI JAHHBIX NEPBOH Mepbl U
MaTpHIbl JaHHBIX KOKIOH Ipyroi Mepsl (asoBoro npocrpaHcTsa. [Tyrem aHamM3a cMecH XaOTHYECKHMX CUTHanoB Pocciiepa u curasios
Makkeii-I1acc 1moka3bIBacTCsA, YTO AITOPUTM OOECIIEYMBACT XOpOIIEe pa3JeleHUe MCEBIONEPHOJUYECKUX XAOTHUECKHX WIH UM
HOJOOHBIX CHI'HAJIOB, KOTJAd KaX /bl HCTOYHUK 00JIaJiaeT HEHYJIEBOM aBTOKOPPEIAMOHHON (yHKLHMEil X HEHYJIEBOM CABHrE, T. €.
KOTJ]a BO3MOXKHO IPMMEHEHHE CTATUCTHKU BTOPOTrO MOpsaKa. ANroput™ obecriednBaeT 0ojiee BBICOKYIO 3()(EKTHBHOCTb 4eM psif
H3BECTHBIX aJTOPUTMOB, BKIOYast BeICOKOd(dexTnBHbIH anroput™m FastiCA. Un. 2, 6u6n. 15 (na anrimiickoM si3bIke; pedepaTsl Ha
AHTJIUACKOM PYCCKOM U JIUTOBCKOM $13).

K. Pukénas. Pseudoperiodiniy chaotiniy signaly atskyrimas taikant aklo $altiniy atskyrimo metoda // Elektronika ir elektro-
technika. —Kaunas: Technologija, 2008. — Nr. 8(88). — P. 77-80.

Tiriamas aklo saltiniy atskyrimo algoritmas fazinés erdvés rekonstrukcijos ir bendros apytikslés keliy rekonstruotos fazinés erdves
signaly kovariacijos matricy neortogonalios diagonalizacijos pagrindu. Kovariacijos matricos sudaromos pirmo rekonstruotos fazinés
erdvés mato duomeny matricos ir visy kity rekonstruotos fazinés erdves maty duomeny matricy pagrindu. Atlikti tyrimai su sumaisytais
chaotiniais Rosslerio signalais ir Mackey-Glass signalais rodo, kad algoritmas igalina gerai atskirti pseudoperiodinius chaotinius sigha
lus bei i juos panasius, kada kiekvienas atskiriamas saltinis turi nenuline autokoreliacine funkcija esant nenuliniam postamiui, t. y. kada
gadimataikyti antros eilés statistikas. Algoritmo efektyvumas virsija daugelio zinomy algoritmu efektyvuma, iskaitant ir FastlCA ago-
ritma. 11. 2, bibl. 15 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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