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Introduction

Thermo-electrical investigations of electrical wires,
cable harness and electrical fuses are very important topics
for present car design. Related questions have gained
increasing attention by a number of researches [1,2,3].
Normally, heat transfer questions in electrical conductors
are solved by different numeric methods if non-linear
boundary conditions, arising from convection and
radiation, have to be considered. However, non-linear
phenomena require iterative calculation processes, which
consume large computer time resources. Therefore, having
numerical calculation results approximated by simplified
mathematic expressions helps to speed up the analysis of
thermo — electrical characteristics. In this paper, a single
round wire with convection and radiation at the boundaries
is treated to illustrate this procedure

The equation for heat dissipation is applied for round
insulated wires, which are placed in the air. It is a second
order partial derivative equation (PDE). Since, length of
the wire is much bigger than the diameter; the matter can
be treated as one-dimensional problem. The energy
balance equation is solved numerically. Analytical solution
of the PDE is not discussed in the paper.

In order to deal with non-linear boundary condition
and other non-linearities numerical methods have to be
applied. Several methods to construct finite differences of
PDE can be used, like direct approximation by finite
differences, Taylor Series or Finite Volume (control
volume) approach. The FV method has been chosen,
because of its flexibility in case the shape and location of
control volumes has to be modified. In addition this
method has advantage, that by direct discretization of the
integral form of the conservation law, the basic quantities
mass, momentum and energy will also remain conserved at
the discrete level.

The differential equations are solved by using a semi-
implicit scheme. Semi-implicit schemes have the
advantage over the explicit schemes, because of not being
restricted to the size of the time steps. Since calculation has
to be performed over a large number of time steps, the
calculation time may become prohibitively large. The
semi-implicit schemes help to avoid these shortcomings.

Thermo-electrical characteristics of insulated round
wire are approximated by using polynomial fitting
algorithm based on the least-square method. This method
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enables to calculate polynomial coefficients of second
order polynomial equation. Second-order polynomial
equations  approximates  reasonably  precise  the
characteristics of isolated electrical wire.

All results obtained from numerical calculation have
been validated by physical models. Experimental data
obtained from measurements of different types and sizes of
wires are used to validate thermal model of the electrical
wire.

Limitations of the analytical calculation

General equation of thermal conduction. For the
derivation of the thermal conduction equation a solid body
with volume distributed heat sources is considered. In our
case the heat source is a direct current. The equation of
thermal conduction (1) is written in conservative form,
which is required by the FV method. The conservative
form means, that the derivative of variable coefficient A
does not appear in the equation. The physical model and
temperature profile in the metallic wire and its isolation is
shown in the figures no. 1 and 2 respectively.

Fig. 1. Axial heat conduction of round isolated wire. Here: P, —
electrical power applied to the wire; P, — dissipated electrical
power in radial direction; r — radius of finite element of insulation
r; — radius of metallic conductor, r, — radius of insulation; dr —
dimension of finite element of insulation; dQ — heat energy

The general form of heat transfer equation energy
conservation form:

div(ﬂ.gradT)+p—7g—T=0; (1
T

here p=EJ [W/m’] - specific heat flux; A - heat

conductivity of conductor or insulation in W/mK; y -
specific heat capacity of conductor or insulation in J/m’K.
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Fig. 2. Temperature profile in the metallic wire and its isolation.
The following notations are used: T, — temperature in the axis of
the wire, T, — temperature at the interface between wire and
insulation (an assumption was made, that the temperature at the
surface of the wire is equal to the temperature at the inner side of
the insulation), T;, — temperature on the outer side if the
insulation, T, — temperature of environment

Taking in to account heat flux only in radial direction, the
equation (1) takes the following form:

J+

here AT(r,t)=T(r,t)-Tm, T, — temperature of environment; £
- electrical field [V/m]; J — electrical current density
[A/m?].

Transient regime of heat transfer equation. The
temperature distribution in transient state in the metallic
wire and its insulation is given by the equations (2), where
heat conductivity and heat capacity coefficients A and y
respectively, have to be considered for conductor and
insulation differently.

AT
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oAT
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The following initial and boundary conditions apply:
- initial condition

AT(r,0)=T,(r); 3)
- boundary conditions
0AT,
[ < J =0; C))
or ren
(no heat flux in the axis of the conductor)
oAT (r, ¢t
- /1in [%j = a(d, AT)(Tin - Te )
r rn
4 4.
+50—(Tin _Te )9 (%)

here a - convection heat transfer coefficient of wire
insulation surface in W/m’K. The equation of a can be
found in [4]; d — diameter of conductor in m; T}, — absolute
temperature of insulation in K; ¢ - emissivity coefficient ;
o - Stefan-Boltzmann constant, 6 = 5,67 10 W/m?K®,

The two conditions of the continuity equation for heat
transfer at the point » = ; have to be stated:
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- continuity equation for the heat flux (heat flux,
which goes out of the surface of the metallic conductor
enters the inner side of insulation)

[ j ; (6)
r=n

0AT (r, ¢

_4, (AT)[—(V’ )J _
or r=n

- continuity equation for the temperature of conductor

AT, and insulation AT},

AT (r,1)
or

)

m

(ATC )r:rl = (ATln )”:”2 . @)
Steady state regime of heat transfer equation
10 AT
——|A-r +p=0 8
r 6r ( ar j p ( )

Initial and boundary conditions for steady state regime are
the same as for transient regime.

Existing problems of solving heat transfer
equation. The main problem of solving the equation is the
variable coefficients, which lead to the difficulties of
solving the heat conduction equation. The main difficulties
arise from:

a) non-linear behaviour of electrical resistance of
conductor material. In the heat equation (3) the electrical
field strength coefficient E is influenced by electrical
resistance and is therefore a function of temperature:

E= E0[1+ap(T(rsf)—To)Jrﬂp(T(rsf)—To)z] ©)
here E - electrical field strength at reference temperature
To; o, - linear temperature coefficient of copper specific
resistance at Ty. o, =3.83x107 in 1/K at T¢=20°C; By -
square temperature coefficient of copper specific
resistance at To. B, = 6x10° in 1/K* T, - reference
temperature in K.

b) non-linear behaviour of  heat conductivity
coefficient A. of conductor material. This coefficient is a
non-linear function of temperature [4].

¢) non-linear dependence of specific heat capacity
coefficient of conductor and insulation materials y. and
%ns. These coefficients are also non-linear functions of
temperatures and can be found in the literature [4].

d) non-linear boundary condition of wire insulation
Eq. (10). The non-linearity is caused by convection and
radiation to environment. Heat convection also depends on
extremely non-linear heat transfer coefficient of wire
insulation surfacea, which is a non-linear function of
conductor diameter and temperature.

All these non-linear phenomena, mentioned above
can not be considered when solving the heat equation in
analytical way. Therefore, it is inevitable to apply some
numeric technique in order to scope with above declared
problems.

Numerical
equation

approach of solving heat conduction

Since it is not possible to have analytical solution of
the heat transfer equation if non-linear boundary conditions
as well as non-linear physical constants of the materials



have to be considered, a numerical way had to be used to
solve the heat transfer problem in insulated round wires.

As already mentioned earlier, the FV method is used
to construct finite difference approximations of PDE. This
method is based on the conservation of a specific physical
quantity as thermal energy. The approach employs
numerical balances of a conserved variable over small
control volumes.

The first step in the FV method is to state the
governing Eq. (2) in its integral form [5]. The region of
application for the conservation principle must be also
given. After the control volumes are defined, the Eq. (2)
has to be applied to this volume (see Fig. 3) and the
conservation statement becomes

i+1/2 i+1/2
9 I Ar oar dr + _[rpl»dr
o i 4 i-1/2
o i+1/2
—y— [rTydr=0. (10)
Ti12
Various finite difference approximations for

O*AT /or®, OAT/orand OAT /07 are used for the
surface integrals. Approximating the derivatives by the
central differences we get

2
I AT - AT

12 AT/ — AT
i+1/2 2 AI"Z

+ A" > =L (11)

i-1/2 7 A
The initial condition in numerical terms for the Eq.

(11) is given by:
AT} = AT(ry), ¥V =1,m, -1

2 -1
p 17 An - Ao
2

rl'z
+7Pi Vi

- (12)
T
The boundary condition, which is convective and

radiative, has to be also written considering FV method:

i+1/2
A | AT 4 a(d,AT)(Ti” - Te)
i1 o
n 4 4
+eo|\l;" )] =T, |=0. (13)
Using central differences to approximate the
derivatives, we can write:
AT/}, — AT
A =Ty o(d, AT)(T,-" - Te)
Ar
n 4 4
+go{(Tl~ ) —Te):(). (14)

The equations (11,14) are solved implicitly, where at
one time level the equation for all space nodes have to be
solved simultaneously. This method has advantage of
being typically unconditionally stable and the schemes are
not restrictive to the size of the time step. The price, which
has to be paid, is the need to solve either linear or non-
linear systems of equations.

When defining the numeric scheme of temperature
profile in the wire (Fig. 3) it was made an assumption, that
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in the metallic conductor there is no temperature
distribution because of copper heat conductivity, which is
about 10° times higher then polyvinylchloride (PVC) heat
conductivity. Therefore, overall computation time is
reduced.
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Fig. 3. Numerical scheme of temperature profile in insulated
round wire

When equation (11) is solved numerically, for
different layers; conductor, insulation and environment,
different material coefficients have to be applied.

For conductor the following coefficients apply: A. -
heat conductivity of conductor; 7, - specific heat capacity
of conductor; p - specific heat flux.

For insulation the following coefficients apply: Ai -
heat conductivity of conductor; y;, - specific heat capacity
of conductor.

In the following three pictures (Fig.4, 5, 6) are shown
the results obtained from numerical calculation. For the
investigation round insulated wire of 16 mm? cross-section
has been chosen. The environment temperature is 65°C,
maximal nominal temperature of the wire insulation is
90°C.
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Fig. 4. Thermo-electrical characteristic of round insulated wire

Fig. 4 shows temperature increase in the conductor of
electrical wire when the power source is direct current. The
picture represents temperature difference between
conductor and environment temperature. Fig. 5 depicts
electrical field strength in dependence on electrical current.
It can be seen from the chart, that first part of the curve



does not have linear behaviour, which is caused by specific
resistance of copper, which is not linear in the respect to
the temperature. The second part of curve is linear, because
the numerical algorithm stopped temperature increase in
the conductor at 90°C. This part of the curve depicts the
electrical field strength for the maximum wire temperature.
Fig. 6 gives the so called heating-up time as function of the
current, which is the time until the maximal permissible
temperature of the wire is reached. It is a logarithmic
function, where time approaches zero if current goes to
infinite.
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Fig. 5. The characteristic of electrical field strength versus
current of round insulated wire
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Fig. 6. Heating up time characteristic of round insulated wire

This characteristic is very important when designing
electrical fuses, because fuse has the same characteristic
and both curves have to mach in order to protect the cable
against short circuit currents.

Experimental verification of heat transfer model

The numerical model of the electrical wire was
validated by experimental results. Different sizes of
electrical wires were loaded with direct current and the
voltage drop across the wire measured. Simultaneously the
temperature on the surface of the metallic conductor was
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read by thermocouples. On the basis of this experimental
result it was possible to validate the heat conductivity
value 4, of the insulation material and the temperature
coefficient a,, of metallic conductor.

of wire

Fitting  algorithm thermo-electrical

characteristics

The next is to simplify the thermal model of the
isolated wire by applying so-called “simplified equations”
with only two coefficients for each equation, which
describes wire characteristics (Fig. 4, 5 ,6) with a
reasonable precision within the relevant range. The fitting
algorithm is employed in order calculate these
characteristic coefficients. The simplified equations are
given bellow:

- thermo-electrical behaviour of the wire (here
1>20):

AT(I1<1y)=al+bI?; (15)

- electrical field strength of the wire (non-linear and
linear of the characteristic, here />0

E(I<Iy)=cl+dI* or E(I>1y)=(c+d 1)l ; (16)

- heating-up time of the wire:
12
17 -1
All 6 coefficients of equations (18, 19, 20) I, a, b, c,
d, 7, are valid only for one wire type. The Least-Square
Method is used in order to obtain these coefficients. The
following equations are applied:
- Final Temperature per Current coefficient a:
n 4 n n 3 n 2
zln ' ZIn 'ATn - Zln ' Zln 'ATn
a= n=1 n=1 n=1 n=1 .

2
n n n
zzs-zzs—[zzsj
n=1

n=l1 n=l
- Final Temperature per Current square coefficient b:

(18)

noa N, noaon
zjn'zln'ATn_zln'zjn'ATn

n=1 n=1 n=1

b=22 5 ;o (19)
n n n
B2 $]
n=1 n=l1 n=1
- Field Strength per Current coefficient c:
n 4 n n 3 n 2
zln ! zln 'En - Zln ! Zln 'En
c= n=1 n=1 n=1 n=1 . 20
e T @
zln : zln - Zln
n=l1 n=1 n=1

- Field Strength per Current square coefficient d



noa N noon Conclusions
zln : zln 'En - zln : zln 'En
d=nL_ n=l n=l  n=l . @21 The proposed methodology to treat thermal analysis

>

n n n 2 problems in electrical conductors has proven to provide

WD IE et solutions, wh ~

n n n fast and efficient solutions, which completely satisfy
n=l o on=l n=l experimental results.

In this paper the algorithm is presented to calculate

thermo-electrical characteristics of round insulated wires.

- Time Constant 7

n 72 The method is also valid for other wire geometries and
n . qe . . . .
2ty p 0 2.7 multidimensional temperature distribution.
=1 -
r=t——2 1, (22)
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Aprasytas apvaliy izoliuoty elektros laidininky termoelektriniy charakteristiky apskai¢iavimo algoritmas, jvertinant $ilumos srauty
pasiskirstyma radialine laidininko kryptimi. Kadangi Silumos pernesimo lygties koeficientai yra netiesiniai, uzdaviniui sprgsti turi biiti
taikomi iteraciniai metodai. Kai reikia apskai¢iuoti didelio skai¢iaus laidy charakteristikas, kompiuterio skai¢iavimo trukmeé neleistinai
padidéja. Todél yra pritaikytas termoelektriniy charakteristiky aproksimacijos antrojo laipsnio polinomais algoritmas. Gautos aproksi-
macijos i8raiSkos yra antrojo laipsnio polinomo lygtys, kurios labai paspartina skai¢iavima. Nagrinéjamas atskiras izoliuotas elektros
laidininkas laikomas ore, jvertinant $iluming krasty konvekcija bei spinduliavima. Matematinis modelis yra sudarytas remiantis energi-
jos konservavimo désniu, kuris yra pritaikytas elektros laidininkui. Energijos balansy lygtis, kuri apraso Silumos perdavima laidininke
yra homogeniné daliniy i$vestiniy lygtis su nepastoviais netiesiniais koeficientais. NetiesiSkumai yra jvertinti apskaiciuojant laidininko
elektring varza, specifing §iluming talpa bei krasting lygties salyga: konvekcijg ir isspinduliavima. Silumos perdavimo lygéiai spresti
skaitiniu buidu buvo taikomas baigtiniy tiiriy metodas. Remiantis $iuo metodu, buvo sudarytos lygties daliniy i§vestiniy baigtiniy skirtu-
my aproksimacijos. Maziausiy kvadraty metodu apskaiéiuoti polinominiy lyg¢iy koeficientai 7, a, b, ¢, d, = 1. 6, bibl. 5 (lietuviy kalba;
santraukos lietuviy, angly ir rusy k.).
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A. Ilgevitius, H. D. Liess. Thermal Analysis of Electrical Wires by Finite Volume Method // Electronics and Electrical Enginee-
ring. — Kaunas: Technology, 2003. — No. 4(46). — P. 87-92.

In this paper is proposed the algorithm to calculate thermo-electrical characteristics of round insulated wire, considering temperature
distribution in radial direction. However, non-linear phenomena require iterative calculation processes, which consume large computer
time resources. Therefore, having numerical calculation results approximated by simplified mathematic expressions helps to speed up
the analysis of thermo — electrical characteristics. The procedure of obtaining polynomial coefficients from thermo-electrical
characteristics is the major emphasis of this paper. In order to illustrate the procedure for implementation, only a single round wire with
convection and radiation at the boundaries is treated. The mathematical model is obtained from energy conservation law and is applied
to the round wire. The energy balance equation, which describes heat transfer in a round wire, is a homogenous partial derivatives
equation (PDE), where non-linear electrical resistance and specific heat capacity are considered. Finite Volume Method (FVM) is
applied for the development of finite-difference equations, thus to solve iterative problem, which is caused by non-linear phenomena in
electrical resistance, convection and radiation. The PDE is solved by semi-implicit method. Finally, least-square algorithm is used to
obtain polynomial coefficients Iy, a, b, ¢, d, z. 1ll. 6, bibl. 5 (in Lithuanian; summaries in Lithuanian, English, Russian).

A. Harsasuuioc, [I. Jlecc. Tepmoananau3 3JIeKTPHYECKHX MNPOBOAOB MeETOOM KOHEYHBIX 00HeMOB // JJIeKTPOHHKA W
jekTporexHuka. — Kaynac: Texnosorus, 2003. - Ne 4(46). — C. 87-92.

Ipennaraercs aaropuT™ Uisi BBIYUCICHUS TEPMOIEKTPUUECKUX CBOMCTB KPYIJION W30JMPOBAHHIINA MPOBOJIOKH, YUHTHIBAs pai-
aJIbHOE HAalpaBJICHHE pacrpeneleHus: TemrepaTypbl. OJHaKO HEJIMHEHHOE sBJIICHHE TPeOyeT MTEpaTHBHOIO BBIYMTHIBAHMS, KOTOPOE
MPUBOJUT K MCHOJIb30BaHHIO OrpoMHbIX pecypcoB ITK u Bpemenu. CrnenoBaTesibHO MMes IPOYMTAHbBIE JaHHBIE, ATIPOKCHMHPYEMbIE
YIPOIIEHHBIMH MaTEMaTHYECKHUMH BBIPAKCHUSMH, MOKHO YCKOPUTH aHAJIN3 TEPMOIJICKTPUUECKUX XapaKTepUCTHK. OJHUM M3 CaMbIX
IJIABHBIX 3JIEMEHTOB JIAHHOTO JIOKJIA/A SIBIISIETCS MPOLECC MONYYEHHS! MOJINHOMHUAIBHBIX KOA(QOHUIMEHTOB U3 TEPMOIIECKTPUIECKUX
cBoiicTB. s TOro, 4YTOObI MPOMILTIOCTPUPOBATH OCYIIECTBICHHE JAHHOTO MPOLecca, UCCIAESAYeTCs TONBKO OJJHA KpyTJias MPOBOJIOKA C
KOHBEKIMEH 1 paauanueil mo koHaM. Maremarinueckast MOJIENb JOCTUIAEeTCsl HA OCHOBE 3aKOHA COXPAHCHNUS SHEPTUH U IPUMEHSETCS K
KpYTJIOi NMPOBOJIOKE. YpaBHEHHE IHEPreTHUEcKoro OanaHca, KOTOPOE XapaKTepu3yeT TeIulonepeaady B KpyIjiod NpOBOJIOKE SBISETCS
TFOMOTCHHBIM YpaBHEHHEM YacTHOM mpou3BoaHoi (partial derivatives equation PDE), rae HenuHeiHOE 3J1eKTpHYEcKOe CONPOTHUBIICHUE
¥ ONPEIE/ICHHOE TEIUIOEMKOCTh JIOJDKHO OBITh B3ATO BO BHMMaHHe. Meton koHeuHbix 00beMoB (FVM) mcrnoms3yercs asst BeIBOOA
KOHEYHO-Pa3HOCTHOTO YPAaBHEHUS, YTOOBI PELIMTh UTEPATHBHYIO MPOOJIEMY, BBI3BAHHYIO HEJIMHCHHBIMH SIBICHUSIMU 3JICKTPHYECKOTO
CONPOTHUBIICHNUS, KOHBeKIMU ¥ paauanuu. PDE pemraercs momy-HepaspenieHHBIM METOJOM. B 3axirtoueHne HCIosb3yeTcs allrOpUTM C
HaMMEHBIINMH KBaZpaTaMH JUIsl BBIYMCIICHHUS TIOJIMHOMUANIBHBIX Koa(duiuentos 10, a, b, ¢, d, t. M. 6, 6uba. 5 (Ha TUTOBCKOM SI3BIKE;
pedepaTsl Ha TMTOBCKOM, aHTIIMHCKOM U PYCCKOM $3.).
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