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Introduction

It is an easy task to calculate the resistance of a
conductor carrying steady state current. In order to find the
current density in the same conductor, the task becomes
harder for especially complicated geometries which may

require a solution of the Laplace's equation [1], VA/ =0
then the gradient of the potential function, J=-oVV,

where J — current density, V — electric potential. The
application of this method which is widely in use is easy
for some geometries like CaCS (Cartesian coordinate
system) and CyCS (Cylindrical coordinate system) but
requires specia attention when other geometries like the
SpCS (Spherical coordinate system), OSCS (Oblate
spheroidal coordinate system), PSCS (Prolate spheroidal
coordinate system), TOCS (Toroidal coordinate system),
BSCS (Bispherical coordinate system), etc. [2,3] are in
consideration. In this study, a straightforward calculation
of the current density in the conductor for the CyCS and

the OSCS is performed by using the equation, J = -l VR.
The calculations also revealed the source of the surface
charge density on the surface of the conductor carrying
steady state current. The caculations are given in the
following sections.

Properties of the CyCS and the OSCS
Properties of the CyCS, p,¢,z:

Limits of the variables:
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Differential length elements:
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Gradient operator in the CyCS:
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Properties of the OSCS, A, u,¢:
Limits of the variables:
—0<A<w, 1< u<1, 0<¢9p<2n
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Differential length elements:
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where y— permeability.
Gradient operator in the OSCS:
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Ohm's Law and the gradient of the scalar function-
resistance

The well known Ohm’slaw is described as
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where R — electric resistance, ¢ — electric conductivity.



When a medium described by the differential volume
element, dv=d¢-ds isfilled with an isotropic conducting

material (o), in the direction of d’ , the exact parametric
resistances in the orthogonal directions can easily be found
as below:

resistancein p direction:
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resistancein ¢ direction:
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for the CyCS since the current may be confined to aregion
by insulating boundaries, without causing fringing fields
[4]. In eq. (7-12) p,>p,, $,>¢, and z,>z. The
electric field intensity in any direction (eg. p, ¢ and 2) may
not easily be calculated since it may require the solution of
the Laplace's equation, V2V =0 then the gradient of the

potential function, E=-VV, where E — electric field
intensity. The calculations become harder for other
complicated geometries (e.g. the OSCS, PSCS, ToCS,
BSCS, etc.).

A novel and easy method of calculating the
electric field intensity without involving complicated
calculations and any assumptions is presented. The

suggested approach only uses E=-IVR, where | —

electric current. An application of E =—IVR (eg.1) in the
orthogonal directions for the CyCS is shown below:
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The gradient operation is performed over the second
variables, p,,$,,z, while the first variables, p;,¢,,7 are

kept fixed. In eq.(13-15), there are 3 components of E in
any orthogonal directions which represent the current
densities in the orthogonal directions to be obtained by

using J =oE and the surface charge densities [5-9] to be
obtained by using D=¢E, where D — electric flux
density, ¢ — permittivity. For example, in eq.(9), the z
component of EZ represents the electric field in the
conductor in the direction of current flow, while p and ¢
components of EZ represent the source of surface charge
densities on the conductor due to current in the conductor
of finite size limited by 0< p; < p, <0, 0< ¢ <@, <27
and 0<z <2z,<o.

The calculations for the OSCS are given as below as

the further examples. The gradient operation (6) is again
performed over the second variables, A,,u,,¢, while the

first variables, 4, 1,4, arekept fixed.

Resistance in A direction:
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Resistancein u direction:
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Resistancein ¢ direction:
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Electric field intensities in the orthogonal directions:
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In(16-27), A, > A1, po > 1y and ¢, > ¢y .

In A direction, the resistance and the current density
represent the spreading/congtriction resistance and current
density respectively. The mentioned quantities were
obtained by the transformation from the capacity solutions
and the charge density analogy (projection principle)
previously [10-11].

Unit vector transformations between the OSCS and
the CaCs,
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gives a further insight into the vector properties of the
current density for the OSCS. The radial (p) and axia (2)
components of the fields, J and E can easily be obtained
and from which radial and axial components of the
resistance can be calculated by using the equation below.
P=|2R=jpdv=jj-édv, (29)
\' \%

where P — power, p — power density.



Conclusions 3. Moon P., Spencer D. E. Field Theory for Engineers. — Van
Nostrand, Princeton, NJ, 1961.
The gradient of the scalar function-resistance is 4. SmytheW. R. Static and Dynamic Electricity. — Hemisphere
used to find the electric field intensity and current density Pub. —3rd ed. —1989. ,
in the conductor carrying steady state current where - Maizek M. A, Russdl B. R. On the Transverse Electric
traditionally the Laplace's equation is employed. The Field within a Conductor Carrying a Steady Current // Am. J.

. . Phys. —. —1968. — Vol. 36. — P. 905.
components of the gradient also give the source of the ¢ AS);SS AK T Ro?jrigues I W. A. Mania A. J. The

surface charge density due to current carrying conductor. Electric Field Outside a Stationary Resistive Wire Carrying a
The similar comments may be developed for electric and Constant Current // Foundations of Physics. — 1999. — Vol.29,
magnetic fields described by No. 5. —P. 729-753.
7. Jackson J. D. Surface charges on circuit wires and resistors
E= Qv i and H = —-®VR (30) play threeroles// Am. J. Phys. — 1996. — Vol. 64/7. — P. 855—
C 870.
. . 8. Preyer N. W. Transient behavior of simple RC circuits //
respectively; here C — capacitance, ¥ — reluctance, ® — Am. J. Phys. — 2002. — Vol. 70. — P. 1187.
magnetic flux, Q — electric charge, H — magnetic flux 9. Parker S. Electrostatic and current flow // Am. J. Phys. —
intensity. Here, the fringing fields must be taken into 1970. - Vol. 38/6. —P. 720.

10. Holm R. Electric Contacts, Theory and Applications. —
Berlin, Springer-Verlag, 1976.

11. Lindell I. V. Charge density on a conducting ellipsoid and an
dliptic disk // Am. J. Phys. —1997. —Vol. 65. — P. 1113.

consideration due to the finite size effects.
Refer ences

1. Hayt W. H. Engineering Electromagnetics. — 5th ed. — .
MacGraw-Hill, NY, 1989. Received 2008 03 22
2. Moon P., Spencer D. E. Field Theory Handbook. — 2nd ed. —
Springer-Verlag, Berlin, 1988.

O. Gurdal. A new Approach to Calculate the Current Density and the Surface Charge Density in the Conductor Carrying
Steady State Current, employing the Gradient of the Scalar Function-resistance // Electronics and Electrical Engineering. —
Kaunas: Technologija, 2008. — No. 8(88). — P. 33-36.

It is shown that the gradient of the scalar function-resistance can be used to determine the electric field intensity, E =-IVR and the

current density, J = —o1 VR in the conductor carrying steady state current. Application of the suggested method is straightforward and
does not require heavy calculations such as the Laplace's equation which requires assumptions especialy in the case of complicated
geometries. The calculations also revealed the source of the surface charge density — obtained from the transversal component of the
electric field intensity — on the surface of the conductor formed by the steady state current. Bibl. 11 (in English; summaries in English,
Russian and Lithuanian).

O. T'ypaai. HoBblil MeTOX BHIYHCIEHHS IUIOTHOCTH 3JeKTPHYECKOr0 TOKA M MOBEPXHOCTHOI IJIOTHOCTH 3apsiia B IPOBOIHHUKE,
HCIO0JIB3YH I'PAJHEHT QYHKIUH CKAISPHOrO CONPOTUBJICHUS // DJIEKTPOHUKA U djeKTpoTexHnka. — Kaynac: Texnosorus, 2008.
— Ne 8(88). — C. 33-36.

IMoka3ano, 4TO rpajueHT (GYHKIUU CKAISPHOTO COINPOTUBICHUS MOMKET HCIOJIB30BATHCS U ONPENEICHHUS HHTEHCUBHOCTH
snekrpuueckoro nonst E =—-IVR u mwiotHoctu snekrpuueckoro toka B nposogunke J =—ol VR. Tlpemnoxkenusii meron
OTJIMYAETCS TPOCTBIM TNPUMEHEHHEM M He TPeOyeT WHTEHCUBHBIX BBHIYHCICHWH. BBIUMCIEHHS TaKKe IOKA3aM, YTO HMCTOYHHK
MOBEPXHOCTHOM [UIOTHOCTH 3apsi/ia —TPAHCBEPCATIBHBIA KOMIIOHEHT MHTEHCHBHOCTH JJIEKTPHUECKOro moust. bubi. 11 ( ua anrmuiickom
A3bIKE; pedepaTbl HA aHITMHCKOM, PYCCKOM U JIATOBCKOM 53.).

O. Girdal. Naujas skaliarine varzos funkcija pagristas metodas srovés ir pavir§inio krivio tankiui nuolatinés srovés
laidininkuose apskaiéiuoti // Elektronikair elektrotechnika. — Kaunas: Technologija, 2008. — Nr. 8(88). — P. 33-36.

Parodyta, jog skaliarinés varzos funkcijos gradientas gali bati naudojamas nuolatinés srovés laidininky kuriamo elektrinio lauko
intensyvumui E = —IVR ir srovés tankiui J = —cl VR apskaiciuoti. Sialoma metoda taikyti gana nesudétinga, nereikia didelés
apimties skaiciavimy. Skaic¢iavimai taip pat rodo, jog pavirsinio kravio saltinis yra skersinio elektrinio lauko stiprio komponentas. Bibl.
11 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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