
15

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2008. No. 8(88)

ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY

T 120
SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

FPGA based Packet Splitter Implementation Using Mixed Design Flow

S. A. Shinde, V. G. Shelake, R. K. Kamat
VLSI Laboratory, Department of Electronics, Shivaji University, Kolhapur – 416 004, India,
email: rkk_eln@unishivaji.ac.in, website: http://www.rkkamat.in

Introduction

Security is a major issue in today’s communication
networks. The performance pressures on implementing
effective network security monitoring are growing fiercely
due to rising traffic rates, the need to perform much more
sophisticated forms of analysis, the requirement for inline
processing, and the collapse of Moore’s law for sequential
processing. Given these growing pressures, it is time to
fundamentally rethink the nature of using hardware to
support network security analysis [1]. Many researchers
have adopted different strategies for implementing the
network security. The traditional approach for the network
security is installing the intrusion detection software (IDS)
per host. However this leads to many drawbacks. With the
software IDS, it is not only harder to correlate network
traffic patterns that involve multiple computers but also
poses a challenge in coping up with the heterogeneous
environment having mixed machine configurations and
operating systems. It is also not very difficult to disable the
IDS by the attackers. The literature survey reveals that,
there is a growing upcoming trend to use Field
Programmable Gate Arrays (FPGA) based customized
Network On Chip (NoC) and Offload the software
processing to hardware realizations. But it turns out to be a
costlier solution and therefore hardware-software based
hybrid solutions for the security scenario are widely
discussed in literature [2].

However, irrespective of software or hardware
domain implementations, the most important fundamental
building block of the network security/monitoring
appliance is the packet splitter. A successful
implementation of packet splitter empowers the network
administrator to gain valuable insight regarding the
network. It entails the out of order packet flow due to
incompatibility of the speeds and bandwidths. It facilitates
the full analysis of the data harvested from the network for
studying the performance issues. The interaction of the
protocols can be studied with the separation of the packet
headers and port numbers. An IP based smart appliance to
be operated remotely using internet can be easily executed
with the packet splitter as a core. Moreover, the packet
splitter is the core for the firewalls and anti spammers and
its implementation dictates the latency issues of these

devices. This paper presents the design and
implementation of an IP packet splitter for a TCP/IP
protocol. The implementation is based on the Xilinx FPGA
using mixed set of tools such as Handle–C, ModelSim and
Xilinx Webpack.

The rest of the paper is organized as follows. We start
with the basic justification for adoption of the design flow
having mixed tools, and then gradually present the design
from the theoretical framework of finite state machine
(FSM), data path controller design and then actual
implementation in Handle–C. Further the simulation and
debugging issues are taken care by the ModelSim and the
register transfer level model and FPGA usage statistics is
presented using the Xilinx Webpack.

Optimizing the metrics of FPGA based NoCs by
adopting mixed design flow

FPGAs have marked their entry in the network on
chip domain due to various reasons. The main reasons are
their ability to satisfy the real time constraints, increasing
dynamism to cope up with the latency and throughput and
faster design and prototyping cycle that enables robust
design from testability point of view. FPGA based NoCs
have been reported widely in the literature e.g. [4], [5],
[6], [7], are commonly considered as a scalable solution for
on-chip communication. However, it is also understood
that there is no "one size fits all" NoC architecture [8], as
different silicon systems have very different requirements
from their NoCs. This is especially true in an FPGA based
environment where the design metrics such as space, time
are very stringent. In this paper we are proposing a novel
framework for designing of the FPGA based NoC. A
specific case study of the packet splitter is taken up.

The basis of our frame work is analyzing the basic
packet splitting mechanism by using finite state machine
(FSM). We gradually approach the actual implementation
by theoretically transforming the FSM into the data path
controller architecture which is the basis of the register
transfer machine. Since the entire emphasis is on
behavioral architecture, we choose Handle–C for
implementation owing to its built in constructs to express
the design in more abstract, behavioral form at the higher
design abstraction.



16

The Electronic Design Interchange Format (EDIF)
bitstream generated with the Handle–C compilation
implements the design successfully in the Xilinx Virtex II
FPGA. However, prior to the implementation it is of
utmost importance to simulate and debug the design. It is
also required to check the fitting specifications in the
FPGA paradigm for proper selection of the device.
Therefore, the design flow incorporates third party tools
for gaining various advantages of simulation, testing and
debugging. One of the feature of Handle –C design suite to
model the program listing interms of VHDL is exploited
for simulation, debugging and RTL synthesis. The VHDL
model is then simulated and debugged using the ModelSim
from Mentor Graphics. The synthesis view in RTL is also
derived by parsing the VHDL listing through the Xilinx
Webpack. The paper thus illustrates a mixed design flow
that moves from the theoretical frame work i.e. manual
behavioral synthesis to Handle C implementation and then
to the actual RTL synthesis.

Developing the FSM

The FSM model of the packet splitter is shown in
Fig. 1. The key for the implementation is extraction and
storage of the following attributes namely, source IP
address, destination IP address, source port, destination
port, and layer 3 protocol type. The packet count of the
incoming TCP/IP packet is extracted at the outset for
checking its size. The packet size (ranging from 40 to 1500

bytes), is then set as the counter so as to extract the entire
packet till the same is stored in a RAM. The version of the
internet protocol (either IPV6 or IPV4) is checked from the
first byte of the extracted packet data stored in the RAM.
The checksum is done so as to eliminate the corrupted
packets going to the forward mechanism. The various
attributes of the incoming packets are then stored in
temporary memory module for passive monitoring of the
traffic without disrupting the flow to the forward
mechanism.

Data path controller

The FSM model can be manually synthesized
towards its RTL by categorizing the functionalities into
data and control sections as shown Fig. 2. The data section
includes loadable registers and regular arithmetic and
logical functions, while the control sections include
random logic and state machines. The data path
architecture comprises of packet capture module for
inputting the packet, forward-drop mechanism to output
the module and memory module to store the temporary
processed packet. The controller architecture consists of
the checksum calculation and dropping out the corrupted
packets accordingly, version checker and layer 3 protocol
checker. The data path controller architecture provides
insights regarding the further implementation of the
modules in Handle–C.

Fig. 1. FSM model of the Packet Splitter



17

Fig. 2. Data path Controller model of the packet splitter

Handle–C implementation

There are several good reasons for choosing Handle–
C. First and foremost is its ability to express the design at
very high abstract level. Secondly it has built in Platform
Abstraction layer (PAL) that features readymade macros
required for the design of the packet splitter. The headers
such as Ethernet, console, RAM, display are declared and
invoked as and when required in the main program. This
kind of leveraging of predefined functionality to access
peripherals via APIs leads to fast prototyping and early
development time. The concept is illustrated with the
handle C program listing of the main macro for reading the
packet and storing it in a RAM:

macro proc ReadPacket (ConsolePtr, Ethernet)
{

unsigned 1 Error;
unsigned 16 Type;
unsigned 48 Destination, Source;
unsigned 11 Count, Counter;
unsigned 8 Data;

static ram <unsigned 8> Temp[1500];
unsigned index;

/ * Attempt to read ethernet packet */
par
{

PalEthernetReadBegin (Ethernet, &Destination, &Source,
&Type, &Count, &Error);

Counter = 0;
}
/ * If read was successful, display MAC addresses, then packet data. */
if (Error == 0)
{

do
{

PalEthernetRead (Ethernet, &Data, &Error);
index=0;

}
par

{
Temp[index]=Data; //Store packet in RAM
output! Temp[index]; //Channel Interface for output file
index++;

}
Counter++;

while (Counter != Count); //stop when all bytes are stored
PalConsolePutChar (ConsolePtr, '\n');

PalEthernetReadEnd (Ethernet, &Error);
}
else
{

delay;
}

}

Modeling in VHDL, Co-simulation and Synthesis

The Handle–C implementation is modeled interms of
VHDL, which is then simulated using ModelSim Version
6.3. Xilinx Virtex II (device x2v250) FPGA is used for the
implementation owing to its SRAM based LUTs that gives
optimum fitting. The RTL synthesis report reveals the
following information regarding the packet splitter
implementation in Virtex II FPGA:

Logic Utilization:
Number of Slice Flip Flops: 411 out of 3072 (13%);
number of 4 input LUTs: 653 out of 3072 (21%);

Logic Distribution:
Number of occupied Slices: 513 out of 1536 (33%);
number of Slices containing only related logic: 513 out of
513 (100%); number of Slices containing unrelated logic: 0
out of 513 (0%); total Number 4 input LUTs: 675 out of
3072 (21%); number used as logic: 653; number used as a
route-thru: 22; number of bonded IOBs: 35 out of 172
(20%); IOB Flip Flops: 32; number of GCLKs: 1 out of
16 (6%); total equivalent gate count for design: 7867;
additional JTAG gate count for IOBs: 1680; peak memory
usage: 71 MB.

Conclusion

The paper reports successful implementation of
FPGA based packet splitter using design flow that
comprises of mixed tool sets from different vendors. The
FSM lays the sound functional model packet splitter for
manual behavioral synthesis towards the data path



18

controller architecture. The data path controller
architecture breaks the functionality into two
architecturally diverse parts – one that has data intensive
implementation and other with control orientation. The
Handle–C chosen for coding the data path control
architecture poses various advantages such as algorithmic
expressiveness and higher level of abstraction, fast
development cycle and fast prototyping. The simulation
through ModelSim ascertains the timing and debugging at
ease. The VHDL modeling through the Xilinx Webpack
presents the RTL model and gives valuable device
utilization information.

The implementation of reported FPGA based NoC
has number of potential applications. It is a very useful
device for in-depth study of the network behavior. The
device is core for security implementations such as firewall
or anti-spammer. Further it can be used for the effective
billing, AS peer monitoring and network traffic
engineering and analysis.

Acknowledgement

This work is supported in part by the DST-SERC Fast
Track Project for Young Scientist Grant SR/FTP/ETA-
14/2006 entitled “Development of FPGA based open
source soft IP cores for parameterized microcontroller
design” to Dr. R.K. Kamat

References

1. Vern Paxson, Krste Asanovic, Sarang Dharmapurikar,
John Lockwood, Ruoming Pang, Robin Sommer, Nick

Weaver. Rethinking Hardware Support for Network Analysis
and Intrusion Prevention // USENIX First Workshop on Hot
Topics in Security (HotSec). – Vancouver, B.C. – July 31,
2006.

2. Saraswathi Sachidananda, Srividya Gopalan, Sridhar
Varadarajan. Hardware-Software Hybrid Packet Processing
for Intrusion Detection Systems. – Springer. – 2005. – Vol.
3802/2005.

3. David V. Schuehler, John W. Lockwood. TCP Splitter: A
TCP/IP Flow Monitor in Reconfigurable Hardware // IEEE
Micro. – January/February 2003. – Vol. 23, No. 1. – P. 54–
59.

4. Bertozzi D., Jalabert A., Murali S., Tamhankar R.,
Stergiou S., Benini L., de Micheli G. NoC Synthesis Flow
for Customized Domain Specific Multiprocessor Systems-on-
Chip. –2005.

5. Bolotin E., Cidon I., Ginosar R., Kolodny A. QNoC: QoS
Architecture and Design Process for Networks on Chip //
JSA. – Feb 2004.

6. Goossens K., Dielissen J., Radulescu A. A Ethereal
Network on Chip: Concepts, Architectures, and
Implementations // IEEE Design and Test of Computers. –
September/October 2005.

7. Moraes F., Calazans N., Mello A., Möller L., Ost L.
Hermes: an Infrastructure for Low Area Overhead
Packetswitching Networks on Chip, Integration // VLSI
Journal. – Oct. 2004.

8. Roman Gindin, Israel Cidon, Idit Keidar. NoC-Based
FPGA: Architecture and Routing. Accessed at: http://
www.ee.technion.ac.il/matrics/papers/NoC-
Based%20FPGA.pdf. Retrieved on March 1, 2008.

Received 2008 05 20

S. A. Shinde, V. G. Shelake, R. K. Kamat. FPGA based Packet Splitter Implementation Using Mixed Design Flow // Electronics
and Electrical Engineering. – Kaunas: Technologija, 2008. – No. 8(88). – P. 15–18.

Design and development of a FPGA based packet splitter using Handle–C DK4 design suite is reported. A mixed design flow
comprising of the integration of tools from third party has been adopted for the simulation, testing, debugging and generation of the RTL
model. The reported packet splitter core has lot of potential applications in passive monitoring of the networking setup, security
appliances etc. Ill. 2, bibl. 8 (in English; summaries in English, Russian and Lithuanian).

С. А. Шинде, В. Г. Шелаке, Р. К. Камат. Разделитель пакетов данных на основе FPGA // Электроника и электротехника. 
– Каунас: Технология, 2008. – № 8(88). – C. 15–18.

Описывается новый разделитель пакетов данных, для создания которого использован пакет программ «HandleC DK4». В 
проекте были использованы инструменты разных производителей. Этими инструментами проведено моделирование,
испытание, отлаживание и генерирование модели RTL. Представленный разделитель пакетов данных имеет много 
потенциальных возможностей применения в пассивном контролировании сетевой установки, программ безопасности и т. д.
Ил. 2, библ. 8 (на английском языке; рефераты на английском, русском и литовском яз.).

S. A. Shinde, V. G. Shelake, R. K. Kamat. FPGA pagrįstas duomenų paketų skaidytuvas // Elektronika ir elektrotechnika. –
Kaunas: Technologija, 2008. – No. 8(88). – P. 15–18.

Pristatomas FPGA pagrindu sukurtas duomenų paketų skaitytuvas, sukurtas naudojant projektavimo įrankių sistemą „Handle–C
DK4“. Projektuojant tarpusavyje buvo derinami skirtingi įvairių gamintojų įrankiai, skirti RTL modeliui imituoti, testuoti, klaidoms
aptikti ir joms šalinti. Aptartojo paketų skaidytuvo branduolys gali būti naudojamas atliekant pasyviąją informacinio tinklo stebėseną
saugumo sistemų įtaisuose ir t.t. Il. 2, bibl. 8 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


