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Introduction

The task of signal detection and separation is a central
theme in awide variety of fields. Many techniques exist to
improve the capability of detecting or enhancement a weak
target signa corrupted by the additive Gaussian noise or
the background noise generated by an unknown nonlinear
dynamical mechanism. Due to its simplicity in implemen-
tation and efficiency in computation, noise reduction based
on phase-space projection has been widely studied in pre-
vious literature [1]-[3]. Recently, nonlinear dynamical
modeling [1]-[3] has been combined with other techniques
such as artificial neural network [4] and time-frequency
analysis [5], to spawn off a powerful algorithm for signal
detection in rea-life interference environments. In work
[3] a novel strategy named supervised principal compo-
nents analysis (SPCA) for the detection of a target signal
of interest embedded in an unknown noisy environment
has been investigated and a simple detect algorithm based
on nonlinear phase-space reconstructor and a principal
components analyzer has been developed. By measuring
the difference of both eigenvectors of the correlation data
matrices from two channels (background noise and the
testing data consists of both the background noise and the
signal-of-interest) proposed error detector gives a positive
results in the detection of weak electromagnetic high-
frequency signals hidden in the real-life interference at
signal to noise ratio (SNR) up to —15 dB. The main disadvan-
tage of this algorithm — existence of many false frequency
peaks in the regions near to main frequency of the signal-
of-interest. The nature of these ghost signals is explained
in Ref. [3], but redly is no possibility to preclude they
egsistence, as Statistical analysis tools like Principal Com-
ponent Analysis (PCA), Singular Spectral Analysis (SSA),
Independent Component Analysis (ICA) etc. quickly deg-
rade if the signals exhibit alow SNR [6]. Determining the
eigen-structure on the basis of one high-noisy data matrix
leads usually to poor or unsatisfactory results because such
matrices, based usually on an arbitrary choice, may have
some degenerate eigenvalues which leads to loss of infor-
mation. Therefore, from a statistical point of view, in order
to provide robustness and accuracy, it is necessary to con-
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sider the average eigen-structure by taking into account
simultaneously a possibly large set of data matrices [7].
Under the assumption that the signal-of-interest and noise
are stationary and that the noise is additive and uncorrelated
with the clean signal the average eigen-structure can be easi-
ly implemented via linear combination (averaging) of seve-
ral covariance matrices and applying the standard eigenva-
lue decomposition (EVD) or singular value decomposition
(SVD). An dlternative approach to averaged covariance
matrix isto apply the time-delayed covariance matrix. The
latter approach is widely used in signal processing for
Blind Source Separation (BBS) [7], [8].

In this paper the straightforward detect algorithms ba-
sed on nonlinear phase-space reconstruction, a principal
components analysis and frequency analysis are investi-
gated. By performing the standard EVD (or SVD) to the i)
averaged covariance matrix or ii) time-delayed covariance
matrix of the data of reconstructed phase-space (or — tra-
jectory matrix) detector gives a good performance in the
detection of weak pseudoperiodic chaotic signals buried in
a large white Gaussian or colored noise background. This
class of chaotic time series — pseudoperiodic — has aroused
great interest due to their close relation to some important
natural and physiological systems [9], [10]. Naturally, the
results can be applied also for regular sinusoidal signal.
The performances of the algorithms are compared with the
SPCA algorithm.

Throughout the paper, the x component of the well-
known Rossler system, which is chaotic and contains obvi-
ous periodic component, for illustration is used.

Description of the averaged covariance matrix based
and time-delayed covariance matrix based algorithms

Let {Zi }i":l denote time series with L samples. The
testing data consists of both the background noise and the
low dimensional pseudoperiodic deterministic signal-of-
interest. The phase points can be reconstructed by time

delay embedding [11] —i.e. {z, } ™"

Zi = [Z| ’Zi+r ’Zi+2r 11 ’Zi-*—(d—l)ﬂr]T (1)



and areconstructed phase space matrix Z with d rows and
M=L- (d —1)7 columns (called atrajectory matrix) is
defined by

4 Z, ZLf(dfl)r
Z _ Zi.+1 ZZ+1 ZL*(dfz)T , (2)
Z:L+(d 1) ZZ+(d—1)r Z

where d — the embedding dimension, 7 — time delay and
(-)T denotes the transpose of areal matrix.

The set of data matrices X ; (j =l,---,k) with d rows
and N columns are obtained by selecting N consecutive

columnsof Z atlagq = floor(M / k), i.e.

X;=2Z(9*(j-1)+1:9* (j-1)+N) ®)

and centered with Xj =Xj —71, where Xi is the

column matrix of mean over dimension 1,---,d . Under

the assumption that the signal-of-interest and noise are
stationary and that the noise is additive and uncorrelated with
the clean signd we caculate k covariance matrices

1
R =—

CON-1
R:<R.

i
treat as independent and the averaging should be effective,
necessary that > N . Taking the standard eigenvalue
decomposition to the averaged covariance matrix
R=UAU" singular
R =W3XUT), the projected trajectory matrix is compu-
ted viathe equation [12], [13]

2-U,Ul(z-2)+Z,

XjX? and the averaged covariance matrix

> . In order that covariance matrices should be to

(or value  decomposition

4
where the eigenvectors U, associated with the m largest

eigenvalues diag( A ), span the signal subspace and Zis
the mean over dimension 1,---,d . Finaly, a enhanced

one-dimensional signal is created from the new space,
typicaly by time-aligning and averaging the columns of

the trajectory matrix Z (see [12] for more details) and
analyzed using the standard frequency estimation.

The delayed covariance matrix R p Iscomputed with
one matrix R, obtained by eliminating the first p columns
of Z and another matrix, R, obtained by eliminating the
last p columnsof Z :

1
R p =

NN -1

p # O is chosed experimentally, whereas the matrix R b

X X1, where NN =M — p. Timelag

is not always positive definite and this can leads to pure
results. The further calculation is identical to above descri-
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bed, excepting that only singular value decomposition can
be performed in order that avoid complex eigenvectors.

Numerical results

To test the detection performance of both averaged co-
variance matrix based and time-delayed covariance matrix based
algorithms let's consider a high-noisy x component of the
Rossler system contaminated with additive white Gaussian
noise and with additive colored noise. The Rossler system
isgiven by

%=—(y+ ),
%=x+a~y, 5)
%:b+ z(x—c)

with parametersa= 0,398, b=2and c=4.

Additive colored noise are got from the AR process
g =ar,+bn,, where n, is the Gaussian noise term,
a=0,69 and b=0,31. It has been argued that the PCA
method can obtain better results for pseudoperiodic signals
by over-embedding with time delay 7 =1 [3], [12], [13].
In the detection experiment, the time delay 7 =1 and the
data dimension d = 60 were chosen. The vector space of
the noisy signal is composed of a signal -plus-noise subspa-
ce and a complementary noise subspace. For a weak signal
hidden beneath the noise floor the subspace is dominated
by noise and the power distribution among associated ei-
genvalues is generally balanced since the noise variance is
the same in any direction (for Gaussian noise). Averaging
of the covariance matrices allow to suppress the influence
of additive noise and severa first eigenvectors with the
largest eigenvalues can be assigned to the subspace of the
true signal. In experiments the relatively short data length
— 6 000 and 9000 data points of Rosder system — were
used. For algorithm based on averaged covariance matrix
k =4 and for agorithm based on time-delayed covariance
matrix p=10. Two eigenvectors, associated with the

largest eigenvalues were chosen (M= 2). The signa
frequency extracted from additive white Gaussian noise
environment by performing eigenvalue decomposition to
the averaged covariance matrix (algorithm conditionally
named AMPCA) is shown in Fig. 1 and the signa
frequency extracted from additive colored noise environ-
ment is shown in Fig. 2. The signal frequency extracted
from additive white Gaussian noise environment by pe-
rforming eigenvalue decomposition to the time-delayed
covariance matrix  (algorithm conditionally named
DMPCA) is shown in Fig. 3. For comparison the signal
frequency extracted from additive white Gaussian noise
environment by applying SPCA detection algorithm is
shown in Fig. 4. It is found that the AMPCA detection
algorithm and equally the DMPCA detection algorithm can
reliably extract the main signal frequency 1,6 Hz at
NR>-20dB.
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Fig. 1. Frequency spectra of the signal extracted from additive
white Gaussian noise environment using AMPCA algorithm
a SNR = — 20 dB, where the main frequency (1,6 Hz) of the
signal of interest is clearly observable
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Fig. 2. Frequency spectra of the signal extracted from additive
colored noise environment using AMPCA algorithm at SNR
= — 20 dB, where the main frequency (1,6 Hz) of the signal of
interest is clearly observable

While SPCA detection algorithm besides the main si-
gnal frequency also generates many false frequency peaks
(ghost signals) in the regions over 1,6Hz. The amplitude
and frequency of these peaks depend on the series length,
etc. In practical application, these false peaks only may be
identified by performing the calculations with time series
of various lengths — the main frequency peak has the same
amplitude and remains in the same place, whereas false
peaks are shifted.

Conclusions

In this paper the detection algorithms consisting of
nonlinear phase space reconstruction technique, principal
components analysis feature selection and frequency ana-
lysis are investigated by applying them to high-noisy pseu-
doperiodic chaotic Rossler signal.
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Fig. 3. Frequency spectra of the signal extracted from additive
white Gaussian noise environment usind DMPCA algorithm
a SNR = — 20 dB, where the main frequency (1,6 Hz) of the
signal of interest is clearly observable
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Fig. 4. Frequency spectra of the signal extracted from additive
white Gaussian noise environment using SPCA algorithm at
SNR=-20dB

It is demonstrated, that both algorithms — the detec-
tion algorithm based on EVD performing to the averaged
covariance matrix and the detection algorithm based on
SVD performing to the time-delayed covariance matrix —
are able to detect weak pseudoperiodic chaotic (or regular
sinusoidal) signals hidden beneath the additive Gaussian or
colored noise floor at SNR up to —20 dB. The signal‘s
main frequency can be extracted accurately and no false
frequency peaks occur in spectrum of enhanced signal by
the time series with length of over 6000 — 9000 points.
Therefore, it may be concluded, that above-mentioned
algorithms are preferable to the SPCA algorithm by detec-
ting weak pseudoperiodic chaotic or sinusoidal signals
buried in a additive Gaussian noisy background.

It should be noted that applying of Joint Approximate
Diagonalization [7] of a set of time-delayed covariance
matrices in this case (high noise level) gives negative re-
sults. In this experiment the Joint Approximate Diagonali-
zation algorithm, described in [14] has been used.
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K. Pukénas. Nonlinear Detection of Weak Pseudoperiodic Chaotic Signal Frequencies from Noisy Environment // Electronics
and Electrical Engineering. — Kaunas: Technologija, 2008. — No. 7(87). — P. 81-84.

The extraction of weak pseudoperiodic chaotic signa frequencies from white Gaussian and colored additiwe noise isinvestigated by
applying the nonlinear signal detection algorithms, based on phase-space embedding technique, principal component analysis and power
spectral analysis. By analyzing Rossler chaotic time series, it is demonstrated, that the detection algorithm based on standard eigenvalue
decomposition performing to the averaged covariance matrix of the reconstructed phase space matrix and the detection algorithm based
on eigenval ue decomposition performing to the time-delayed covariance matrix are able to detecting of weak pseudoperiodic chaotic (or
regular sinusoidal) signals hidden beneath the additive Gaussian or colored noise floor at SNR up to —20 dB. It is concluded, that these
algorithms are preferable to the SPCA agorithm by detecting weak pseudoperiodic chaotic or sinusoidal signals buried in a additive
Gaussian noisy background. Il 4, bibl. 14 (in English; summariesin English, Russian and Lithuanian).

K. Ilykenac. HemmueiiHoe 1eTeKTHPOBAaHME CJIA0bIX NCEBIONEPHOINYECKMX XA0THYECKUX CHTHAJIOB Ha ()oHe GOJIbIIUX HIyMOB //
JJIeKTPOHHUKA U dIeKTpoTexHuka. — Kaynac: Texnosorus, 2008. — Ne 7(87). — C. 81-84.

Hccnenyercs BbIENEHNE YaCTOT CIA0BIX NCEBJONEPHOMIECKIX XAOTHUECKUX CUTHAJIOB M3 aJUTHBHBIX I'ayCCOBBIX MM IBETHBIX
IIYMOB TIPH UCIOJIb30BAHUH aJTOPUTMOB OOHAPYXKEHUSI CUTHAIOB, OCHOBAHHBIX Ha PEKOHCTPYKLUMH ()a30BOTO NMPOCTPAHCTBA, aHAIN3E
IJIABHBIX KOMIIOHEHT M CIIEKTPAJIbHOrO aHanu3a. IlyTeM aHanm3a XaoTH4ECKOro curHana Pocciepa IMOKa3bIBA€TCs, YTO alrOPUTM,
OCHOBAaHHbIH Ha JGKOMIIO3UINH YCPEIHEHHOH KOBAPUALMOHHOW MaTPULBI JaHHBIX PEKOHCTPYHPOBAHHOTO ()a30BOr0O HMPOCTPAHCTBA U
QITOPUTM, OCHOBAHHBIH Ha JICKOMIIO3MIMY 3a€PXKAHHOM 110 BPEMEHH KOBAPUALMOHHON MaTpPHIbI IIO3BOJISIOT OOHAPYKUTh OCHOBHYIO
4yacToTy curHaima Pocciepa Ha ¢oHe Genoro rayccoBoro mryma MM IIBETHOTO IIyMa IIPH OTHOIICHWH cUTHai-mryM Beime — 20 nb.
Jlemaercst BBIBOA, YTO 3TH aJITOPUTMEI Oojiee IPEIOYTHTENBHBI MPH OOHApYXKEHHU CJA0BIX IICEBJONEPHOIUIECKHX XaOTHUECKUX
CUTHAJIOB Ha (poHE rayccoBbIXx IrymMoB deM airoput™m SPCA. Un. 4, 6ubn. 14 (Ha aHmmiickoM s3bIKe; pedepaTbl Ha aHTIMICKOM,
PYCCKOM H JIATOBCKOM $I3.).

K. Pukénas. Silpny pseudoperiodiniy chaotiniy signaly dazniy isskyrimasi§ triuk§my naudojant netiesinius metodus // Elektro-
nikair elektrotechnika. — Kaunas: Technologija, 2008. — Nr. 7(87). — P. 81-84.

Tiriamas silpny  pseudoperiodiniy chaotiniy signaly dazniy isskyrimas i adityvinio baltojo Gauso triuksmo arba spalvotojo triuks-
mo, signaly detekcijai naudojant algoritmus fazines erdveés rekonstrukcijos, esminiy komponenciy analizes bei spektrinés analizés pa-
grindu. Atlikus tyrimus su chaotiniu Rosslerio signalu, parodoma, kad algoritmas rekonstruotos fazinés erdvés duomenu suvidurkintos
kovariacinés matricos dekompozicijos tikriniais vektoriais pagrindu ir algoritmas suvélintos kovariacinés matricos dekompozicijos
pagrindu jgalinaisskirti pagrindinius Rosslerio signalo dazniusis baltojo Gauso triuksmo ir spalvotojo triuksmo, kai signalo ir triuksmo
santykis didesnis kaip —20 dB. Daroma isvada, kad Sie algoritmai yra pranasesni uz SPCA agoritma isskiriant silpnus pseudoperiodi-
nius chaotinius signalus i§ Gauso triuksmo. 11. 4, bibl. 14 (angly kalba; santraukos angly, rusy ir lietuviy k.).



