
45

ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 – 1215 2008. No. 7(87)
ELEKTRONIKA IR ELEKTROTECHNIKA

MIKROELEKTRONIKA
T 171

MICROELECTRONICS

LSFR and BIST based Delay Test for ASIC and FPGA

V. Abraitis, Ž. Tamoševičius
The Department of Software Engineering, Kaunas University of Technology,
Studentų str. 50, LT-51368 Kaunas, Lithuania, phone: +370 37 300361; e-mail: abravida@elen.ktu.lt

Introduction

The complexity of present-day electronic devices has
risen to millions of gates, and the chips are therefore
becoming untestable by standard manufacture external
Automated Test Equipment (ATE) testers. The test lengths
for Very Large Scale Integration (VLSI) ASIC are rapidly
increasing, as are the testing times and the ATE memory
requirements. Other hardly testable range of integrated
circuits is Programmable Logic Devices (PLD). FPGA and
Complex Programmable Logic Devices (CPLD) represent
a class of them. User can program the final function for
such device. The reconfigurability of such circuits is taking
more significance for System-On Chip (SOC) designers.
For such kind of reasons PLDs are very popular. At this
time PLDs are used in civil industry, medicine, military
area and space technologies. The testability and high
reliability questions are very important for such reasons.
But internal PLD architecture is very specific and already
known methods for ASIC can’t fully check them. So why
we need new methods or we have to modify the old and
adopt them for PLD testing. Problems related with PLD
testing are discussed in proceeding articles [1 – 3].

Hence the built-in self-test (BIST) can resolve some
testability problems. The circuit is able to test itself by
BIST without using any ATE equipment, or when used
together with an ATE, BIST significantly reduces the test
time and tester memory demands. Moreover the user of
PLD can complement the own function with BIST ant
program all it in to same PLD.

Many BIST techniques have been developed [4, 5].
The vast majority of them use a pseudo-random pattern
generator (PRPG) to produce test vectors that detect the
easy-to-detect faults, which mostly represent more than
90% of the total faults. For the remaining faults, test
vectors are either applied externally, or they are generated
by the BIST structure itself.

In this paper we use linear feedback shift registers
(LFSR) and cellular automata (CA), due to their simplicity
and good properties concerning implementation space
demands and the good transition fault coverage for circuits
implemented in to ASIC and FPGA.

A general BIST structure is shown in Fig. 1. The
patterns are generated by a test pattern generator (TPG),

then they are fed to the circuit-under-test (CUT) and the
circuit’s responses are evaluated by test response evaluator
(TRE) which gives test result or signature of the test result.
All this structure is controlled by the BIST controller.

Test result/signature

BIST
controller

Circuit Under
Test (CUT)

Test Pattern Generation

Test Response Evaluation

SA registers

TPG registers

Fig. 1. BIST structure

The design of the TPG is of key importance for the
whole BIST, since it determines the fault coverage
achieved. A simple LFSR often cannot ensure satisfactory
fault coverage, thus it has to be augmented in some way.
The LFSR code word sequence is modified in some
approaches to produce patterns that detect more faults.
These methods imply reseeding the LFSR during the test,
or possibly the generating polynomial is also modified, or
the LFSR patterns are modified by an additional logic [5].

The proper choice of a PRPG is very important. It is
desirable to detect as many faults as possible by the PRPG,
so that the additional logic is maximally reduced. We
introduce statistics on the transition fault coverage for the
ITC’99 B benchmarks, using different PRPGs for
transition faults in the FPGA environment.

Architecture of FPGA

Manufacturers are selling already checked chips, but
user tests are important too, because a set of different
reasons, like: devices are stored for a time, can be damaged
by transportation or damaged by some harmful emission.
So PLDs must be checked before using them in responsible
applications. But test for PLD is reasonable only after they
are programmed. For this we can’t use traditional
automatic test patterns generators (ATPG) directly. Such
generators are used for traditional ASICs and test made by
them can’t fully check PLDs. It is because of different
realizations and it was proved by experiments [2]. Such
tests are not estimating internal PLD physical structure [6].
ATPGs are not estimating possible failures in the memory



46

cells of PLD, so why we need to modify original circuit
and change it into model with the same functionality. And
if we want to make a model of the real circuit with the
same functionality, at first we have to analyze the internal
structure and architecture of PLDs.

Fig. 2. Simplified architecture of PLD

Fig. 3. Simplified architecture of CLB

Usually each PLD’s family separates from others by
some features, but almost all of them consist of a matrix of
configurable logic blocks (CLB) and configurable blocks
of inputs and outputs (CIOB). All CLB and CIOB are
connected to each other by configurable blocks of
interconnections (CBI) and a lot of conductors (Fig.2.). If
we’ll discus only about FPGA, then all configurations are
realized by loading the SRAMs with logic zero or logic
one. And almost all SRAM based PLDs have most same
internal structure of CLB (Fig.3.). CLB has three main
components: a look-up tables (LUT), multiplexers and D
flip-flops. The difference is only that each manufacturer
uses different sizes and quantities of LUTs, multiplexers
and D flip-flops in one CLB. And sometime they use some
simple combinational logic, like OR, AND, XOR and
others.

Fig. 4. Common structure of LUT

Grey boxes in Fig.3 represent configuration memory
cells (SRAM in the FPGA). A LUT can be programmed to
implement any k-input combinational function or to work
as a 2k bit’s of RAM. The function of LUTs depends on
Truth table, with is saved in SRAM cells. The CLB
internal interconnections are configurable by

corresponding SRAM cells too. CBI consists of
commutating transistors and each of them is controllable
by appropriate SRAM cell. All FPGAs are programmable
by writing appropriate value to due SRAM cell. Such set of
values is named configuration.

Analyzing FPGA devices and possible their faults we
have to analyze the internal structure of LUTs. The
common structure is showed in Fig.4. R0 – R2k-1 are
SRAM cells used to save the Truth table of the function of
LUT. AD controls multiplexers and so at the same time
only one Ri can be connected to the output L.

Almost all SRAM based FPGAs have most same
architecture and internal CLB and LUT structure, like it is
showed in figures 2,3 and 4.

The transition fault model of FPGA

It is usual to model the functionality of electronic
devices, but it is possible to model faults too. To do it we
need special models of real devices. Most popular are
stuck-at, path delay (transition) and element delay fault
models. The fault models describe what must be checked,
what faults are possible in the concrete node.

Realistically, defects can be divided by derivation to
processing defects, defects of silicon, time depending
faults, packaging. Almost all these faults can be modeled
by one wire fixation, open and shortly connected transistor,
transition and delay models.

Making transition and delay faults models there can
be mentioned two kinds of faults: STF – slow to fall; STR
– slow to rise. STR, wherever it is in the circuit, can be
took when transition from 0 to 1 (from 1 to 0, in transition
to 0 case) does not effects any output or trigger of the
circuit in particular set time period. There is only one
difference between transition and delay faults: particular
set time range for delay fault for transition. In case of
transition fault it is took that time for transition is infinite.

There are couple of vectors (V1, V2) used for
transition faults test. They can’t be equal. Also all R
meanings (Fig.4) can’t be same; at least one of them must
be equal to 0 and at least one to 1. These are the main
requirements for testing LUT component [7]. V1 is a
vector for initiation, and V2 is the transition vector, which
not only initiate transition from one meaning to another,
but also generates wave of transitions in all net to the
output of circuit or to scan trigger, where this transition can
be seen and tested. Based on this we can state that device
will be fully tested if rising and falling fronts will be
formed on all possible nets. Then rising front could check
transition to logical 1 on the concrete path, and falling
front could check transition to logical 0 faults on the
specific path. Some faults can’t be checked for circuit’s
function, because there originate some limitations and it is
impossible to set one or other meaning in some node. So
the transition can’t be observable.

The hardest thing in programmable logical devices is
to check LUTs. Because of these blocks inner structures
and originate main differences between traditional ASIC
circuits and PLDs. Generally the test quality can be
represented by quantity of checked paths in whole circuit.
In FPGA case it will be the total number of inputs on the
firs stage of multiplexers (Fig.4). But to check multiplexer



47

it is necessary to use all possible combination on the inputs
and it is hard to do. There will be impossible to save such
amount of test vectors and reactions into them. To resolve
this problem we will use BIST and analyze how many
possible faults can be checked in this way.

The PRPG Structure in FPGA implementation

Generally, PRPGs are simple sequential circuits
generating code words, according to the generating
polynomial. These code words are then either fed directly
to the CUT inputs, or they are modified by some circuitry.

Fig. 5. LFSR implementation

The most common PRPG structures are linear
feedback shift registers or cellular automata. An n-bit
LFSR is a sequential circuit consisting of D flip-flops and
XOR gates generating code words of a cyclic code. The
structure of an n-bit LFSR-I (with internal XORs) is shown
in Fig. 5. The register has n parallel outputs corresponding
to the outputs of the D flip-flops, and one flip-flop output
can be used as a serial output of a register.

Fig. 6. Four linear feedback shift registers for every primitive
polynomial

The coefficients c1 till cn-1 express whether there
exists (1) a connection from the feedback to the
corresponding XOR gate or no connection (0).

The initial state of the register is called the seed. The
sequence of code words produced by an LFSR can be
described by a generating polynomial g(x) in GF.

The second LFSR type, the LFSR-II is implemented
with XORs in the feedback. Its generating polynomial is
dual to the LFSR-I polynomial, so only LFSR-I will be
considered in this paper.

For every primitive polynomial there are four linear
feedback shift registers (LFSRs) (Fig.6). There are two
types of LFSR; one type uses external XOR gates (type 1)
and the other type uses internal XOR gates (type 2). For
each type the feedback taps can be constructed either from
the polynomial g(x) or from its reciprocal, g*(x). The
LFSRs in this figure correspond to g(x) = 1 + x + x3 and
g*(x) = 1 + x2 + x3. The sequences shown in Fig.6 are for
each register initialized to binary '111': (a) Type 1, g*(x),
(b) Type 1, g(x), (c) Type 2, g*(x), (d) Type 2, g(x).

Cellular automata are sequential structures similar to
LFSRs. Their periods are often shorter, but code words
generated by CA are sometimes more suitable for test
patterns with preferred numbers of ones or zeros at the
outputs. An example of a CA performing multiplication of
the polynomials corresponding to code words by the
polynomial x+1 is shown in Fig. 7.

Fig. 7. CA implementation

In general, pseudo-random patterns generated by a
CA have a more random nature than those generated by an
LFSR. The weights of the particular PRPG outputs (i.e.,
the ratios of zeroes and ones) are balanced in LFSRs
approaching the value 0.5. Cellular automata often have
the weights misbalanced, according to the seed.

Experiments

We have performed experiments on the ITC’99
benchmarks, to determine fault coverage achieved by a
pseudo-random test sequence generated by a two PRPG’s
– LFSR and CA. The experiments were made in this way:
(1) test vector pairs for transition faults were generated by
our made software. The software simulates the LFSR and
CA and calculates test vector pairs; (2) fault coverage of
the generated test vector pairs for benchmark circuits
implemented in the FPGA we checked with industrial
software “Tetra Max”. Obtained results are presented in
table 1.

Short description of the table 1: a 1st column is a
name of the benchmark circuits. Second column gives a
number of transition faults in the corresponding benchmark
circuit. Third column represents number of test patterns for
circuit synthesized for FPGA, for original circuit,
generated by LFSR and CA respectively. Fourth column
represents fault coverage for mentioned test pattern
generators. Sixth column shows how much test vectors in
the generated set of vectors from ATPG are equal to
generated set from LFSR and CA (seventh column).

Table 1. Experimental results.

Number of test patters Coverage [%] LFSR rep. pat. CA rep. pat.Cir-
cuit

Total
Faults Mux Orig. LFSR CA Mux Orig. LFSR CA Mux Orig. Mux Orig.

B01 260 59 35 13 13 63.46 48.84 20 20 11 3 11 3
B03 660 120 71 46 46 76.67 63.33 5.60 5.60 0 0 0 0
B04 2632 245 120 13372 13372 67.29 58.02 5.78 5.78 0 0 0 0
B06 308 57 40 6 6 65.58 55.19 13.31 13.31 0 0 0 0
B13 1644 237 109 43735 43735 74.51 61.55 16.46 16.46 8 2 8 2



48

Summary

When we look in table 1 prima facie is that our
proposed methods are very slow when we compare to Mux
and Plain tests. Do not forget please the environment in
what we are using generated tests – a BIST for FPGA. This
means we have a very limited space in the chip and we
should pay a big attention to the physical size to store the
test vectors in the chip. To store the test vectors, generated
by ATPG, we need to synthesize a logical structure which
will take a lot of space in the chip. When we use our
proposed method to implement test pattern generator in to
the chip, an area overhead in the chip is very low – a
couple of filp-flops and a couple of XOR elements. In the
other hand, we used a very simple test vector generators
and we didn’t use a reseeding, but we get a very promising
results: (1) patterns generated by ATPG is not very useful
to use in the BIST while we get a very high area overhead;
(2) area overhead is very low when we use a LFSR or CA
as in-circuit test patterns generators.

A low area overhead and good speed of the designed
BIST strictly depend on the nature of the circuit. Pseudo-
random testability of a particular circuit strictly depends on
the number of hard-to-detect faults. It is possible to apply
an unmodified sequence of LFSR code words to fully test
some circuits in a reasonable number of cycles, while some
other circuits are particularly untestable by this way.

It is not possible to compute a proper LFSR seed
and/or generating polynomial analytically for practical
examples, due to the complexity of this problem. Thus, in

practice we repeatedly reseed the polynomial and conduct
the fault simulation several times, while we pick out the
best seed for further processing.

Our future work will involve reseeding. We will try
to implement the reseeding to make fault coverage more
attractive.

References

1. Abraitis V., Bareiša E. The Fault Model of Programmable
Logic Block // Electronics and Electrical Engineering. – 2005.
– No. 6(62). – P. 52–56.

2. Abraitis V., Bareiša E., Benisevičiūtė R. The Testing
Methods of Programmable Integrated Circuits // Electronics
and Electrical Engineering. – 2003. – No. 5(47). – P. 43–47.

3. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R. Testing
of FPGA Logic Cells // Electronics and Electrical Engine-
ering. – 2004. – No. 7(56). – P. 37–42.

4. Bareiša E., Jusas V., Motiejūnas K., Šeinauskas R.
Functional Digital Systems Testing. ISBN 9955-25-008-9. –
Kaunas: Technologija, 2006. – P. 281.

5. Jha N. K., Gupta S. Testing of Digital Systems // ISBN 0 521
77356 3. – Cambridge University Press, 2003. – P. 1016.

6. Renovell M., Figueras J., Zorian Y. Test of RAM-Based
FPGA: Methodology and Application to the Interconnect //
IEEE VLSI Test Symposium. – 1997. – P. 230–237.

7. Girard P., H´eron O., Pravossoudovitch S., Renovell M.
Requirements for Delay Testing of Look-Up Tables in
SRAM-Based FPGAs // Eighth IEEE European Test Work-
shop. – 2003. – P. 147–152.

Received 2008 02 02

V. Abraitis, Ž. Tamoševičius. LSFR and BIST based Delay Test for ASIC and FPGA // Electronics and Electrical Engineering. –
Kaunas: Technologija, 2008. – No. 7(87). – P. 45–48.

Transition delay testing of sequential circuits in a clocked environment is analyzed. There are presented two test pattern generator
methods for built in self testing of the circuit implemented as Application Specific Integrated Circuit (ASIC) and Field Programmable
Gate Array (FPGA). Cellular automaton and Linear Feedback Shift Register (LFSR) structures are used for test sequence generation.
The circuits are tested as the black boxes under Transition fault model. Experimental results of the test pattern generation methods are
presented and analyzed. Results compared with exhaustive test of transition faults for ASICs and programmable integrated circuits with
given configuration. IIl. 7, bibl. 7 (in English; summaries in English, Russian, Lithuanian).

В. Абрайтис, Щ. Тамошявичюс. Генерирование тестовых последовательностей для заказных и программируемых 
интегральных схем со встроенными схемами самотестирования, используя структуры линейного регистра сдвига с 
обратными связями // Электроника и электротехника. – Каунас: Технология, 2008. – № 7(87). – C. 45–48.

Рассматриваются модели неисправностей переключения последовательных интегральных схем (ИС). Представлены два 
метода генерирования тестовых последовательностей для заказных (ASIC) и программируемых интегральных схем со
встроенными схемами самотестирования. Для генерирования тестовых последовательностей использованы структуры 
клеточного автомата и регистра сдвига с обратными связями. Схемы тестированы как чёрные ящики используя модели 
неисправностей переключения. Представлены результаты экспериментов с тестирования методов генерирования тестовых 
последовательностей. Результаты сравнены с тестами неисправностей переключения, тестируя заказные и программируемые 
интегральные схемы. Ил. 7, библ. 7 (на английском языке; рефераты на английском, русском и литовском яз.).

V. Abraitis, Ž. Tamoševičius. Testinių rinkinių sudarymas vėlinimo gedimams tikrinti save testuojančiose integrinėse schemose,
realizuotose ASIC ir FPGA, naudojant postūmio registro su tiesiniu grįžtamuoju ryšiu struktūras // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2008. – Nr. 7(87). – P. 45–48.

Analizuojamas nuosekliųjų schemų perjungimo gedimų testavimas. Pristatomi du testinių rinkinių sudarymo metodai save
testuojančioms schemoms realizuotoms užsakomuosiuose integrinių schemų lustuose (ASIC) ir programuojamuosiuose lustuose.
Testinėms sekoms generuoti naudojamos ląstelinio automato ir postūmio registro su grįžtamuoju ryšiu struktūros. Testinės schemos
buvo testuojamos kaip juodos dėžės naudojant perjungimo gedimų modelį. Pristatyti ir išanalizuoti testinių rinkinių generavimo metodų
eksperimentinių tyrimų rezultatai. Rezultatai palyginti su perjungimo gedimų testais, skirtais ASIC ir programuojamiesiems lustams,
užprogramuotiems vykdyti reikiamą funkciją. Il. 7, bibl. 7 (anglų kalba; santraukos anglų rusų ir lietuvių k.).


