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Introduction

In companies which utilize modern technologies
databases of manufactured production and technological
processes are constantly maintained and complemented.
Data is often read and input automatically. By using
computer networks and database control and analysis
systems, information can be transmitted in real-time and
can be used in decision making processes at each
intermediate or final stage of manufacture. Thus there is a
possibility to use information not only from the current but
also from the previous stages of manufacture. That can
increase the quality of electronics systems (ES) [1-6].

Complex ES are defined in technical documentation
as an entire series of parameters, the values of which
determine the level of quality. Parameters can be
differentiated according to their importance regarding the
implementation of purpose functions. International
standard 1SO-2859-0 [2] recommends to divide parameters
into two — A, B — or three — A, B, C — classes (groups).
Here A — most important or significant parameters, and B,
C — secondary or less dignificant parameters. Such
classification of parameters is convenient when analyzing
problems of multiparametric product quality control [2, 5,
6]. When imitational modeling is applied, stochastic
models of quality level are required for separate
parameters, their groups and for entire product.

Stochastic models of control quality of ES

Inter-operational control fragment is presented in Fig.
1, which involves two stages of continuous control K; and

K, (in both stages IS are classified according to
analogical decisionrules) [2, 5].
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Fig. 1. Stochastic models of control quality: a— one; b — two; ¢ —
three; d — S stage

There is a probability o that a defective IS after
manufacture operations G will enter the control stage K,
which is characterized by classification error probabilities
aq and f;; probability o is transformed to parameter 6
after control operations. |S acceptance probability is p; and
rejection probability is q;.

Analogously in the second stage K, with errors o,
and pB, parameter 6 is transformed to t, when

probabilities p,, g, are fixed. IS in such scheme is accepted
with probability q;,. Rejected IS are returned for reparation
to manufacture process G .

According to models created in the work [2, 5], we
receive such direct and reverse dependencies, which are
needed for the further analysis:

By = (@) =1-ay ~(1-a; - frJo = (- ey Jo- - B o}

b, = p2(6)= (-a, o~ - 3, b} @)
P2 = P1P2;
where /?l:L, i=12; )
o,

and 0y =1-py, G =1-P2, Gip =01 + P12 =1- P12

It is obvious, that formulas may be applied for entire
product, if r.q. 6 ~ Be(a,b), or for separate groups A, B,
C, if their defectivity levels 8, Og, O are characterized
by beta-distribution.
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where Elzzﬁlﬁz — generdlized two-stage control
transformation constant;

0=0(r)= ~——Fr—r,
(T) ﬁ2+(1—ﬁ2);
0
=wlf)=—= -, 4
® =w(0) oAb (4)
T
60—60(‘[)— 512+(1_512); .

It is easy to ascertain, that when the third control
stage with errors a3, B3z is introduced, we have

513 =[§1ﬁ~2[§3, and in general case the generaized
transformation constant 518 for control scheme consisting
of Sstagesis

_ s _

Bis=I1Bi, i=1-s (5)
i1

In separate occurrence, when By =pfp =...=Bs=p,

we have ElS =ES.
Beta-distributions

We will provide the main formulas, required for the
further analysis, when r.q. 8; and also n; are distributed

according to the beta-distribution with shape parameters
a, b and marking that: 6, ~ Be(aj,by ), n; ~ Belby,a;)
[6]:
{gi 6)=8"(a,0)8% *a-6)""

1) =B (&, b)m T (L-m)S ,
I'(a)r(br)
I(a +by)
gamma function, T'(z )= (z —(z —1) or T(n)=(n-1),

when nisawhole number (h.n.), i =1...1;

- . b
=1 ll|—ai+q

2 _ ah _ Bt
C (@ rb)’(@+h+D) &b+l

vi= b B g i +D).
Oj b

(6)

here B;(a;,b; )= B — beta function, I'(z ) —

i
Hp=—"—"
g +h @

(8)
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If a =1 and g; is sufficiently small (y; < 0.03),
then b >>1and v; =1,i.e oj = ;.

Density g;(6;) has maximum at the point 6y
(mode)

_ -1
a+h -2
Respectively the maximum of density ¢; (n; ) isat the
point iy =1-06jy -

Oim (9)

Multiparametric ES

Multiparametric case can be described using
biparametric models (1 = 2), consistently joining product
parameters into pairs, and then joining paired models in
groups of two, etc.

For practical applications it is most convenient to
model  beta-densities g;(6) at first using. Then:
0~Be(ab),  6a~Belaaba), 6O ~Belag,bg),
Oc ~ Belac,bc ).

Generally we analyze |-parametric product with
average defectivity level u: there are r different

parameters in group A, s parameters in group B, and
| -r—s parameters remain in group C. Indexing:
Aci=1+r, Bei=j=(r+1)+(r+s),
Cei=k=(r+s+1)+l. If there are no priorities, we
assume the same values of parameter a; for modeling
inside one group, when ; < 0,03:

H250 ki a +b ~a+h
H; (10)
A &

. kai a +h ~a +h

H
In this way, when ay >a; >a;, we have, that
Hi < uj < py, i.e defectivity level of one parameter in

group A is on average less than in group B, and in group B
—lessthan in group C.

Assume that the following condition is given:
p ~3ui and wj ~2p; . We select ay =33, aj =2

and receive

a=[r+2s+3(-r-s)la =@ -2r-sa. (1)

We select @ =1. Then a; =2, ay =3, a=3-2r-s

and b=h :(a—zr—s)(i—lj.
I

By assessing the desired dispersion of r.q. 6; we can
select the needed values of variation coefficient in separate
groups and further to select values of a;, by . Situations
can be easily modeled when one of parameter groups or
one or several parameters are eliminated. Analogoudy
situations can be modeled when additional parameters are
introduced.



General cases

The simplest situation is when the series of |
parameters by >b,...>b is supplemented with

parameters i =0 with by=b +a and i=1+1 with
b=b —a, i.e. a series expanded up to [+2 is
obtained with by >b; > b, ... >y > b,,. Then there are
r +1 parametersin group A and 6, ~ Be(r +1b, ), when
a =1, and there ae (1+2)-s—(r+1)=I-r-s+1
parameters in group C and Oc ~ Be3(l —r —s+1),by,4],
when a, = 3. There are s parameters in the remaining B
group and O ~ Be(2s,by ), aj =2.
For entire product @ ~ Be(a', by, ;) , where
a=(r+)+2s+3(-s-r+1)=3-2r—-s+4=
=a+4, kaig =1 a,=2 3 =3ir
w=al@+h,,)>p=ala+h).

Assume, that with such values of & j number of

(12)

parameters | = const, and two parameters are introduced
into B group from the neighboring groups: the last
parameter i =r from group A and the first parameter
i=k=r+s+1 from group C. Then there are s+2
parameters in group B, r-1 in group A and
| —(r —1)—(s+2)=1-r—s-1 in group C. Beta-densities
are defined by the following distributions:
0,~Be(r-1, b_,),0; ~Be(2s+4, b _,,),
0. ~B3(-r-s-1, b]ir6~Be3 -2r-s), b,] .

If the number of parameters in group B is decreased
down to s—2 when | =const (boundary parameters of

group B are transferred to groups A and C respectively),
then

GA - Be(r +:L br+1)!93 - Be(28+41 br+s—1)!
0. ~Bd3(-r-s+1), b,]ir6 ~Be(3 -2r-s), b.] .

(13)

In other situations, when limitations (6-8) are not met,
it is purposeful to use beta-densities g, ()

In practical applications, when there are no additional
information about separate parameters, it is most likely that
W =Up=...=p =y, i.e. al parameters have equa
average defectivity level. Insuch case: &g =...=a =g,
by=...=b =b,i=1+1.

When & =1, we received genera expression of
9(6) for any value of I. However, when a >1 and
| >4, integration is sufficiently complex. Additionaly,
g(6) expression becomes inconvenient for practical

applications. For example, when |=4, a =2,
b, =b, =bs =b,, we have
(1) =-b{ (b +1)*n " [20(L-1) +10(+7) In7y + 14
+2(-n)In?y +%(1+17)In317].
Assume, that |1=10, u=05, &a=1 and

by =...=b =b, i.e al parameters have equal u; .

Parameters are divided into A, B, C groups with r =2,
s=3,i.e Aci=12, Bei=345, Cei=6+10. We
receive:

—10 1 _
=1y L m=1-p :5'h=[1%r2—1]1=13,93,

__h
b+1
u = 0,067, g(6,)=19,931-6,)**%, i =1-10.
In order to obtain beta-densities in groups and for
entire ES, the condition by, > b, ... > b according to (6-8)

must be satisfied. Since a=1a; =10, when u=pp =05
we have b=b =10 and by =byg+(10-i), i=1+9.
Then by =11, bg=12, b, =13, bg=14, bg =15,
by =16, by =17, b, =18, b; =19.

Densities and main numerical characteristics

according to groups for both cases are dightly different,
but for entire product densities g(6) of defectivity level 6

and numerical characteristics u , c? practically coincides

for both cases. It is obvious, that coincidence of all
characteristics isthe better the smaller u vaueis.

Conclusions

1. For practical applications of stochastic defectivity
modeling of ES products it is advisable to use beta-
densities with offered limitations, since in this case we
avoid integration procedures and therefore do not obtain
complex models of densities.

2. In multiparametric case it is possible to perform the
consistent joining of densities of separate parameters in
pairs, thus narrowing the analysis down to biparametric
models.
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D. Eidukas. Stochastic Models Quality Electronics Systems // Electronics and Electrical Engineering. — Kaunas: Technologija,
2008. —No. 5(85). — P. 41-44.

Method is offered for synthesis of stochastic distributions of defectivity levels of multiparametric ES with interindependent
parameters. This synthesis can be performed in groups of parameters or for entire product according to known distributions of
defectivity levels of separate parameters. For practical applications it is advisable to differentiate average defectivity levels of separate
parameters according to selected defectivity level of entire product, when ratio between defectivity levels in separate groups is selected
or according to needed dispersion of parameters (selected variation coefficient). Ill. 1, bibl. 6 (In English; summariesin English, Russian
and Lithuanian).

J. Diinykac. CToxacTHuecKHe MOJENIH KAayecTBa JJIEKTPOHHBIX cHcTeM // DlIeKTpOHMKA M dJeKTpoTexHmka. — KayHac:
TexnoJorus, 2008. — Ne 5(85). — C. 41-44.

[IpensnoskeHa METOJMKA CHHTE3a BEPOATHOCTHBIX PAcHpeeNeHUi YPOBHS Ne()eKTHOCTU B OTICIBHBIX TPYIIAX MapaMeTpoB U IUIs
MHoronapamerpudeckux IC B I[EJIOM 110 U3BECTHBIM PacHpe/IeICHUsIM BEPOATHOCTEH ypoBHEil 1e()eKTHOCTH OTEIbHBIX HE3aBUCHMbBIX
nmapaMeTpoB. [IpeacTaBieHbl MOJENHM CHHTE3a IIOTHOCTEH BeposiTHOcTed. OmnperneneHsl OrpaHUYSHUs], NPH BBIIOJHEHHH KOTOPBIX
ypoBHH JedeKkTHOCTH B OTAenbHBIX JC B IEJIOM ONUCHIBAIOTCS Oera-pacrpeneneHueM. /[l IMPaKkTHYeCKUX HPHIOKEHHIH
PEKOMEHYeTCsl CpeTHHAC 3HaYCHUsI YPOBHEH Ne()EeKTHOCTH OTHAEIBHBIX MTapaMeTpoB AU GEepeHINPOBATh COTIACHO 3aJaHHOMY YPOBHIO
nedexTHOCTH B 1enioM. M. 1, 6u6i. 6 (Ha aHMIIMICKOM sI3bIKe; pedepaTsl Ha aHTTTMHCKOM, PYCCKOM U JIUTOBCKOM 513.).

D. Eidukas. Stochastiniai elektroniniy sistemy kokybés modeliai // Elektronika ir elektrotechnika. — Kaunas: Technologija,
2008. —Nr. 5(85). — P. 41-44.

Pasitlyti elektroniniy sistemy (ES) su nepriklausomais kokybés parametrais defektingumo stochastiniai modeliai. Sitiloma skirstiniy
sintezel parametry grupése ir visai ES pagal zinomy atskiry parametry defektingumo kokybés lygius vertinti § skirstiniais. Pateikti
funkciju sintezés modeliai, kai atskiry parametry defektingumo lygiai pasiskirstg pagal beta désni, esant minimalioms sveikaskaitinems
vieno i§ formos parametry vertémis. Parodyta, kad tokiu atveju labai supaprastéja modeliavimas, nes nebereikalinga daugkartinio
integravimo procedura, taip pat nebereikia sudétingy modeliy. Praktiniams taikymams rekomenduojama atskiry parametry vidutinius
defektingumo lygius diferencijuoti pagal reikiama parametry sklaida — pasirinkta variacijos koeficienta. 1l. 1, bibl. 6 (angly kaba;
santraukos angly, rusy ir lietuviy k.).



