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Introduction

An accurate identification of the dynamics underlying
a complex time series, is of crucial importance in unders-
tanding the corresponding physical process, and in turn
affects the subsequent model development. In order to
obtain the inherent properties of a system from the obser-
ved time series, a variety of methods have been proposed
and are widely applied, such as surrogate tests [1],
wavelets [2], Fourier transforms, and approaches based on
time delay embedding [3]. Among these methods, approa-
ches based on time delay embedding may be the most po-
pular framework for analyzing chaotic time series. Based
on Taken’s embedding theory, some measures such as
Lyapunov exponents [4-6] and correlation dimensions [7]
have been proposed to characterize the global features of
dynamical systems. Hovewer, the presence of noise can
greatly affect the analysis of the observed data from chao-
tic systems. Since the analysis of chaotic data in terms of
dimensions, entropies, and Lyapunov exponents requires
access to the small length scales (small-scale fluctuations
of the signal), already a moderate amount of measurement
noise on data is known to be destructive [8]. Recently int-
roduced effective methods for distinguishing chaos from
noise can deal with small or moderate amounts of noise [9,
10].

One class of time series – pseudoperiodic – has arou-
sed great interest due to their close relation to some impor-
tant natural and physiological systems. For high noisy
pseudoperiodic time series (at signal-noise ratio SNR=0
dB) it is desirable to reduce the noise level. However, most
noise reduction methods are designed for signals that can
be treated by a linear model and fail to eliminate noise
from a contaminated chaotic time series because the spect-
ra of the chaotic signal and the noise overlap [3]. Noise
reduction based on time delay embedding, which has been
widely studied, may be the most promising way to filter
the noisy chaotic data [11-13]. Several phase space projec-
tion methods, based on subspace decomposition, were
proposed for application to the problem of additive noise
reduction in the context of phase space analysis – the
global projections method [13] and the local (nearest

neighborhoods) phase spaces method [11-13]. A two step
method is proposed to reduce colored noise [14]. These
methods performed well with moderate amounts of noise.
But I have not found any publication, devoted to detecting
the deterministic structure from a high noisy pseudoperi-
odic time series, when the noise level reducing is desirable
with expected to preserve the exponential divergence of
nearest neighbors. At some level of the noise, due to the
signal low frequency distortion and noise residual when
nonlinear noise reduction is performed, we cannot reliable
distinguish enhanced pseudoperiodic chaotic signal from
enhanced noisy regular sinusoidal signal with Lyapunov
exponent (either scale-dependent Lyapunov exponent [9])
calculated neither by Kantz [5] nor Rosenstein [6] algo-
rithms – the divergence slope is not linear and has a similar
behavior for both cases. The algorithm based on the corre-
lation coefficient as a measure of the distance between
overembedded vectors [15] also misclassifies filtered high
noisy regular sinusoidal signal as deterministic chaos.

In this paper (i) the straightforward algorithm to de-
tect chaos from pseudoperiodic time series is presented,
which is robust for distortion of enhanced signal, (ii) it is

demonstrated that the histograms of white vertical lines in
recurrence plots (RP) are the powerfull tool for distinguish
the filtered high-noisy chaotic pseudoperiodic data from
filtered high-noisy periodic. The essentiality of the algo-
rithm is as follows – the nearest k neighbors for every refe-
rence vector of reconstructed phase space in the primary
neighborhood of radius  are fixed and then the dynamics
of number of nearest neighbors in the neighborhood of

radius   is monitored with time. The slope of dy-
namics averaged over all reference vectors of reconstructed
phase space allows us to distinguish chaos from noisy re-
gular signal.

Throughout the paper, the x component of the well-
known Rossler system and an experimental laser dataset,
both of which are chaotic and contain obvious periodic
component, for illustration are used. The laser dataset is
the record of the output power of the NH3 laser available in
Santa Fe Competition (Data Set A). The signals are con-
taminated by additive white Gaussian noise. Usually, nei-
ghborhoods of reconstructed phase space merges if all data
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are contaminated by large amounts of noise. Thus, it be-
comes a nontrivial problem to identify the correct
neighbors. Therefore, for the noise reduction I have pre-
ferred the global projections method [13] to the local
(nearest neighborhoods) phase spaces method [11]-[13].

The organization of this paper is as follows. In Sec. II,
the algorithm based on divergence of nearby orbits in
phase space for detecting chaos in pseudoperiodic time
series is described. In Sec. III, the histograms of white
vertical lines in RP for enhanced high noisy pseudoperio-
dic chaotic and high noisy regular signals are given. Fi-
nally, some discussions and conclusions are given in Sec.
IV.

Algorithm based on divergence of nearby orbits in
phase space

Let  L

iiz
1

denote a filtered (by applying the global

projections method [13] for noise reduction) time series
with L samples. The phase points can be reconstructed by

time delay embedding [4] – i.e.,    1

1





dL

iiz :

  Tdiiiii z,,z,z,z  12  z , (1)

where d – the embedding dimension and  – time delay
are chosen according to certain optimization criterion [3],

[16] and  T denotes the transpose of a real matrix. The

near neighborhood of the reference point iz is defined as

   11 


dLj,: ijji zzzN , (2)

and arranged in ascending order of Euclidean distance

between iz and jz as  
Njjji ,,, zzzN 

21
 , where

N is the number of neighbors and  is the neighborhood

radius. Then, only the k nearest neighbors for every iz are

picked.
For chaotic systems, the distance between two nearby

vectors will increase exponentially over time due to the
very nature of sensitivity to initial conditions. Therefore,

the number of initially vector pairs kN that satisfy the

condition (2), is also expected to drop with the time. Since

the distance between iz and jz is different, i. e. the dis-

tance of some pairs is near to 0, whereas the distance of
other pairs is near to  , for more exactly estimation of the
divergence between a nearby trajectories (in order to eva-

luate the time, when distance between iz and jz exceeds

the certain threshold) it is reasonable to introduce a shell

(similar as [9])   , where  – the radius of the shell

and  – the width of the shell. It is sufficient to introdu-
ce an additional condition,

 1 dji , (3)

when finding pairs of vectors within shell. This means that,
after taking a time comparable to the embedding window

 1d it would be safe to assume that the initial separa-

tion has evolved to the most unstable direction of the mo-
tion [9]. Then the dynamic of amount of initial vector pa-
irs, that satisfy the condition

  ij zz , (4)

for every iz is monitored with time and the averaged de-

pendence  tN k for all iz (that have no less than k nei-

ghbors) versus time is calculated. The slope of this depen-
dence indicates the average velocity of reduction of vector
pairs that satisfy the condition (4), i. e approximately the

average velocity of crossing the shell of width  . The

larger the t/N k  , the higher the level of chaos. Intui-

tively, this indicates that the slope is actually related to the

largest Lyapunov exponent. So we can use t/N k  as

an indicator of chaos, which in analogous to [10] conditio-
nally called vector divergence rate (VDR).

To evaluate the distinguishing capability of this ap-
proach let‘s consider a high-noisy x component of the
Rossler system and a laser dataset, both contaminated with
additive white Gaussian noise and enhanced by the nonli-
near noise reduction method (global projections, [13]). The
Rossler system is given by
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yax
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dy

zy
dt

dx

(5)

with parameters a = 0,398, b = 2 and c = 4, [10].

Fig. 1 a) shows a plot of kN versus time for x com-

ponent of the Rossler system contaminated with additive
white Gaussian noise of different levels and enhanced by the

global projections method. Fig. 1 b) shows a plot of kN
versus time for regular sinusoidal signal also contaminated
with additive white Gaussian noise of different levels and
enhanced by the global projections method. The computa-
tions were done with 2000 points and 154  ,d ,

10150 ,;,   (data are normalized in range from 0

to 1). Because the data set is relative small (about 30 peri-
ods of the signal), the first 4 nearest neighbors are used for
each reference phase point. Otherwise there are not enough
appropriate neighbors for the reference phase point. In
each figure “Time” is used to denote the discrete evolution
time step.

We observe that for the clean chaotic pseudoperiodic

signal the  tN k curves after a short transition are very

similar (only the slope is negative) to the curves for largest
Lyapunov exponents calculating [6] – there is a long near
to linear region with approximately constant slope. For the
contaminated by additive Gaussian noise with SNR up to 0
dB and filtered chaotic pseudoperiodic signals the curves
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of kN versus time due to the distortion of the signal by

nonlinear noise reduction fall faster and scaling region is
not linear. But the common negative trend of the curves
remains. For a filtered noisy periodic sinusoidal signal

there are no such relations – the curves of kN versus time

generally remain flat (for SNR up to 5 dB) or oscillate
around fixed value (for SNR up to 0 dB). That is, on ave-
rage the nearest neighbors should neither diverge nor con-
verge. This behavior allow us to distiguish noisy chaotic
pseudoperiodic signal from noisy regular sinusoidal signal

after noise reducing. Fig. 2 a) shows the curves of kN
versus time for another pseudoperiodic chaotic signal –
laser dataset contaminated with additive white Gaussian
noise and enhanced by the global projections method. The
computations were done with 2000 points and

25  ,d , 10150 ,;,   (data are normalized

in range from 0 to 1). The results are similar to the Rossler
system.

Fig. 1. Vector divergence rate for a) the noisy-free x component
of the Rossler system and after reduction of additive Gaussian
noise of different levels, b) the periodic sinusoidal signal after
reduction of additive Gaussian noise of different levels

Fig. 2 b) shows the curves of kN versus time for the

two-torus quasiperiodic system. The corresponding time

series,  iz , was created by a superposition of two sinu-

soids with incommensurate frequencies [6]

     tifsintifsiniz  21 22  , (6)

where 73205111 ,f  ; 23606822 ,f  and the sam-

pling period was 010,t  s. The results are similar to

the sinusoidal signal – the curves of kN versus time gen-

erally remain flat (for noisy-free signal) or oscillate (for
SNR up to 5 dB).

Fig. 2. Vector divergence rate for a) the noisy-free laser data set
and after reduction of additive Gaussian noise of different levels,
b) the noisy-free quasiperiodic signal and after reduction of addi-
tive Gaussian noise

Algorithm based on the recurrence properties in phase
space

Recurrence plots (RPs) were originally introduced to
visualize recurrences of trajectories of dynamical systems
in phase space [17]. Suppose we have a dynamical system

represented by the trajectory  iz for M,,i 1 in a

d-dimensional phase space. We then compute the binary
matrix

 jiij zz-ΘR   , M,,j,i 1 , (7)

where  is a predefined threshold,  Θ is the Heaviside

function, and  is a norm defining the distance between

two points. The graphical representation of ijR , called the
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“recurrence plot,” is obtained by encoding the value “one”
by a black point, (i.e., the distance between the respective
points is smaller than the predefined threshold  ) and
“zero” by a white point (i.e., the distance between the res-
pective points is larger than  ).

The recurrence time – i.e., the time that the trajectory
needs to recur to the neighborhood of a previously visited
state – corresponds to a white vertical line in an RP (the
distance between diagonal lines). For a periodic motion of
period T, the states recur at fixed time intervals and, hence,
the corresponding RP consists of uninterrupted diagonal
lines separated by the distance T. The RP of a chaotic sys-
tem shows more intricate structures with many interrupted
lines. The distance between diagonal lines is then not cons-
tant due to the multiple time scales present in the system
and the interruption of the lines is due to the exponential
divergence of nearby trajectories (more details [17], [18]).
The corresponding histograms of white vertical lines [17]
for the noisy-free x component of the Rossler system and
for noisy signal with SNR=0 after nonlinear noise reduc-
tion are plotted in Figs. 3 a) and 3 b), respectively.

Fig. 3. The RPs histograms of the white vertical lines for the x
component of the Rossler system (series length 2000): a) noisy-
free, b) after additive Gaussian noise of SNR=0 dB reduction

The computations were done with 2000 points and

154  ,d , and 40, . The histograms of white

vertical lines for noisy sinusoidal signal with SNR=5 and
SNR=0 after noise reduction are plotted in Fig 4. The

computations were done with 2000 points and

154  ,d , and 10, .

We observe that the histograms of white vertical lines
in an RP for clean and enhanced time series measured from
the x component of the Rössler system has similar behavior
– the pseudoperiodic dynamics has several return times for
a recurrence interval. These return times are multiple to the
fundamental period of the Rössler system (about 60 discre-
te time points for this example).

Fig. 4. The RPs histograms of the white vertical lines for the
regular sinusoidal signal: a) after additive Gaussian noise of
SNR=5 dB reduction, b) after additive Gaussian noise of SNR=0
dB reduction

Differently, the histogram of vertical white lines in an
RP for enhanced regular sinusoidal signal has single domi-
nant return time, which is equal to the period of the sinu-
soidal signal, and many return times multiple to the period
and appeared less frequently. Those non basic return times
are conditioned by distortion of the filtered sinusoidal si-
gnal and due to interruption of the lines in RP. Therefore,
the histogram of white vertical lines in an RP successfully
captures the recurrence properties and allow us to distin-
guish filtered chaotic signal from filtered regular one.

Discussion and conclusion

In this work, the distinguishing between high-noisy
chaotic pseudoperiodic time series and high-noisy periodic
or quasiperiodic time series enhanced by the global phase
space projections method is investigated. The algorithm for
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detecting chaos is described, more robust for distortion of
nonlinear noise reduction than widely used Lyapunov
exponent. Similar to the Lyapunov exponent, the algorithm
is based on the divergence of the nearest neighbors, but the
averaged dynamic of amount of initial vector pairs, that
satisfy the condition of the nearest neighbors, is calculated
instead of the dynamic of distance between the vector pa-
irs. The neighborhood radius  must be chosen small with
respect to the diameter of the reconstructed attractor [6]
and the number k of the first nearest neighbors pairs of (i,j)
should be possible large at defined  , but in other hand
enough appropriate neighbors for every reference phase
point is required. Therefore, the number k depends also on
the length of analyzed time series. To illustrate the robust-
ness of this approach to the distortion of the filtered signal,
algorithm was applied to the Rössler time series and
experimental laser data, contaminated by additive white
Gaussian noise and enhanced by nonlinear noise reduction
method. We observe that the noisy-free chaotic motion is

characterized by a nearly to linear  tN k ~ t curve. For

enhanced chaotic pseudoperiodic time series due to the

remaining distortion the curve  tN k ~ t drops nearly to

exponentially and this process is irreversible. While for
enhanced periodic and quasiperiodic signals with noise,
there are no such relations – the curve shows a plateau or
vary slowly around a certain value with small trend. This
clear difference provides a direct method of distinguishing
low-dimensional chaotic signal from a periodic signal with
noise. By combining the proposed algorithm with primary
nonlinear noise reduction methods we can distinguish
between regular and chaotic signals contaminated by addi-
tive white Gaussian noise with SNR up to 0 dB.

Secondly, the numerical investigation of the recurren-
ce properties of orbits from filtered x component of the
Rossler system and filtered regular sinusoidal signal by
using a two-dimensional visualization technique – the re-
currence plot (RP) is also presented. It was founded that
the histograms of white vertical lines in an RP successfully
capture the recurrence properties of enhanced signals – the
patterns in the RPs of enhanced pseudoperiodic chaotic
and enhanced regular orbits remain qualitatively different
similarly to the noisy-free signals. The pseudoperiodic
dynamics has several return times for a recurrence interval
and enhanced regular sinusoidal signal has single dominant
return time, which is equal to the period of the sinusoidal
signal. Based on the histogram of white vertical lines for
data enhanced by nonlinear noise reduction methods one
can conclude that the motion is regular or chaotic pseudo-
periodic at relatively high level of additive white Gaussian
noise – for SNR up to 0 dB.
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K. Pukenas. Detecting deterministic structure in high noisy pseudoperiodic time series // Electronics and Electrical Engineering.
– Kaunas: Technologija, 2008. – No. 4(84). – P. 75-80.

The distinguishing between high-noisy chaotic pseudoperiodic time series and high-noisy periodic or quasiperiodic ti-
me series primarily enhanced by the nonlinear noise reduction methods is investigated. The different algorithm is described to
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detect deterministic structure from a pseudoperiodic time series enhanced by the singular value decomposition method. The algorithm
is more robust for distortion of nonlinear noise reduction than widely used Lyapunov exponent. Similar to the Lyapunov
exponent, the algorithm is based on the divergence of the nearest neighbors, but the averaged dynamic of amount of initial
vector pairs, that satisfy the condition of the nearest neighbors, is calculated instead of the dynamic of distance between
the vector pairs. By combining with nonlinear noise reduction methods the proposed algorithm can distinguish reliable
between regular and chaotic pseudoperiodic time series, contaminated by additive white Gaussian noise with SNR up to 0
dB. Also, the difference of the recurrence properties between enhanced noisy pseudoperiodic chaotic and enhanced regular
signals is analyzed. It is concluded, that the histograms of white vertical lines of the recurrency plots (RP) allow to distin-
guish chaotic signal enhanced by nonlinear noise reduction method from enhanced regular sinusoidal signal at a signal-additive
white Gaussian noise ratio up to 0 dB. Ill 4, bibl. 18 (in English; summaries in English, Russian and Lithuanian).

К. Пукенас. Ообнаружение детерминистических структур в псевдопериодических временных рядах с высоким уровнем 
шумов // Электроника и электротехника. – Каунас: Технология, 2008. - № 4(84). – C. 75-80.

Исследуется возможность обнаружения детерминистического начала в псевдопериодических временных рядах с высоким 
уровнем шумов при использовании в качестве первичной фильтрации нелинейных методов. Описывается алгоритм для
обнаружения хаоса в псевдопериодических временных рядах после применения первичной фильтрации методом декомпозиции 
сингулярного значения в глобальном фазовом пространстве, более устойчив к искажениям, обусловленным первичной 
нелинейной фильтрацией, чем широко применяемая  экспонента Ляпунова. Как и экспонента Ляпунова алгоритм также 
основан на дивергенции векторов реконструированного фазового пространств, но вместо расчета динамики расстояния между 
векторами расчитывается усредненная зависимость количества ближайших векторов реконструированного фазового 
пространств от времени, являющаяся индикатором детерминистического хаоса. Показывается, что алгоритм позволяет 
детектировать хаос при использовании первичной нелинейной фильтрации при отношении сигнал-белый Гауссовый шум выше 
0 дБ. Также показывается, что при использовании первичной нелинейной фильтрации гистограммы времени возврата, 
построенные на основании диаграмм повторения, позволяют отличать хаотическую природу псевдопериодических временных 
рядов от зашумленного синусоидального сигнала при отношении сигнал- белый Гауссовый шум выше 0 дБ. Ил. 4, библ. 18 (на 
английском языке; рефераты на английском, русском и литовском яз.).

K. Pukėnas. Deterministinių struktūrų detekcija didelio triukšmingumo pseudoperiodinėse laiko eilutėse // Elektronika ir elekt-
rotechnika. – Kaunas: Technologija, 2008. – Nr. 4(84). – P. 75-80.

Tiriama deterministinio chaoso detekcija pseudoperiodinėse laiko eilutėse esant aukšto lygio baltojo Gauso triukšmo pirminei filtra-
cijai netiesiniais metodais. Aprašomas chaoso detekcijai singuliarinių reikšmių dekompozicijos globalinėje fazinėje erdvėje pagrindu
filtruotuose signaluose algoritmas, atsparesnis pirminės netiesinės filtracijos sukeltiems iškraipymams, negu plačiai taikoma Liapunovo
eksponentė. Kaip ir Liapunovo eksponentė, algoritmas remiasi artimiausių rekonstruotos fazinės erdvės vektorių trajektorijų divergenci-
ja, bet vietoj distancijos tarp vektorių dinamikos, yra skaičiuojama suvidurkinta artimiausių rekonstruotos fazinės erdvės vektorių kiekio
priklausomybės nuo laiko kreivė, kurios nuožulnumas yra deterministinio chaoso indikatorius. Algoritmas įgalina detektuoti chaosą
netiesiniais metodais filtruotose pseudoperiodinėse laiko eilutėse, kai pirminis signalo ir baltojo triukšmo santykis didesnis kaip 0 dB.
Straipsnyje taip pat tiriami filtruotų pseudoperiodinių chaotinių laiko eilučių ir filtruotų reguliariųjų laiko eilučių pasikartojimo diagra-
mų grįžimo laiko histogramų skirtumai. Parodoma, kad pasikartojimo diagramų grįžimo laiko histogramos įgalina patikimai atskirti
filtruotas pseudoperiodines laiko eilutes nuo filtruoto sinusinio signalo, kai pirminis signalo ir baltojo triukšmo santykis didesnis kaip 0
dB. Il. 4, bibl. 18 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


