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Introduction

Network traffic exhibits degree of self- similarity at
large time scale and high degree of multifractal at small
time scale. Network performance is a vital to business for
bringing a product to the consumers. With the growing
number of network users, more acute is maintenance and
reliability of these networks. The predictability of network
traffic is of significant interest in many domains, including
adaptive applications [1], congestion control [2], admission
control [3], wireless and network management [4]. An
accurate traffic prediction model should have the ability to
capture the prominent traffic characteristics, e.g. short and
long dependence, self similarity in large- time scale and
multifractal in small- time scale. For these reasons time
series models are introduced in network traffic simulation
and prediction.

The today’s network has a great number of
applications (not just voice conversation), each with its
own traffic characteristics, and new applications can arise
at any time. There are many more varieties of network
connectivity, architecture, and equipment, and,
accordingly, a different type of traffic flows. There are no
standard network topologies around which all design
efforts can be based, and the topologies that exist are
subject to constant change [5]. These all factors
complicate the accuracy of traffic modelling and
prediction.

There has been a large work focused on developing
prediction models for computer data networks. The most
popular model for prediction is used autoregressive
integrated moving average – ARIMA (also fractional
ARIMA), but this model often fails to perform correct
prediction [6], [7]. The Auto Regressive Integrated Moving
Average (ARIMA) with Generalized Auto Regressive
Conditional Heteroscedasticity (GARCH) model is a non-
linear time series model which combined the linear
ARIMA with conditional variance GARCH.
ARIMA/GARCH model provides flexibility when it is

applied to model the network traffic [8], [9]. Neural
networks also provide reliable prediction, but it depends on

traffic characteristics [10], [11], [12].

The major open question is to understand the accuracy
of made prediction using Internet traffic in different time
scales and what are the benefits of imposed prediction
models.

Self- similarity

For a self similar time series:

{X}={X1, X2, …, Xk}. (1)

The m-aggregate {Xk
(m)} with its k-th term:
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In particular, we assume that X has an autocorrelation
function (ACF) of the form:

r(k)~k-(2-2H)L(k) as k→∞, (3)

where H is called the Hurst parameter and L(k) is slowly
varying at infinity.

Analyzing the ACF we can see whether the traffic data
is short range dependent or long range dependent or
exactly self similar or asymptotically self similar traffic.

The Hurst parameter H in (1) is in the range 0.5<H<1
and it characterizes the process in terms of the degree of
self-similarity and long time dependence. The degree of
self-similarity and long-range dependence increases as
H→1. In our experiments self-similarity will be estimated
by the use of variance-time plot method. This is one of the
easiest methods how to estimate Hurst’s coefficient. In the
process the variance of aggregate the self-similar process is
defined:

VAR(X(m))= VAR(X)/mβ . (4)

In the (4) β is calculated from the equation:

H=1-β/2 . (5)

The (4) can be rewritten is the following form:

log{ VAR (X(m))}~log{ VAR(X) }- β log {m} . (6)
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If VAR(X) and m are plotted on a log-log graph then
by fitting a least square line through the resulting points we
can obtain a straight line with the slope of – β [13], [14],
[15], [16].

ARIMA models

Multistep prediction can be achieved by using the
predicted value as the real value or by aggregating the
traffic into larger time interval. ARIMA(p; d; q) model is
used for prediction. An ARIMA (p,d,q) model is composed
of three elements:
p: Autoregression;
d: Integration or Differencing;
q: Moving Average.
A simple ARIMA (0,0,0) model without any of the three
processes above is written as:

Yt=at. (7)

The autoregression process [ARIMA (p,0,0)] refers to
how important previous values are to the current one over
time. A data value at t1 may affect the data value of the
series at t2 and t3. But the data value at t1 will decrease on
an exponential basis as time passes so that the effect will
decrease to near zero. It should be pointed out that f is
constrained between -1 and 1 and as it becomes larger, the
effects at all subsequent lags increase.

Yt=1Yt-1+at.
(8)

The integration process [ARIMA (0,d,0)] is
differenced to remove the trend and drift of the data (i.e.
makes non-stationary data stationary). The first
observation is subtracted from the second and the second
from the third and …. So the final form without AR or MA
processes is the ARIMA (0,1,0) model:

Yt = Yt-1 + at .
(9)

The order of the process rarely exceeds one (d < 2 in
most situations).

The moving average process [ARIMA (0,0,q)] is used
for serial correlated data. The process is composed of the
current random shock and portions of the q previous
shocks. An ARIMA (0,0,1) model is described as:

Yt = at - q1at-1 . (10)

As with the integration process, the MA process rarely
exceeds the first order.

Box-Jenkins forecasting methodology is used to
establish the ARIMA (p,d,q) model for prediction at each
scale. Box-Jenkins methodology involves four steps:

- The first step is the tentative identification of the
model parameters.

This is done by examining the sample autocorrelation
function:
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and the sample partial autocorrelation function:
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where

,rrrr jk1,kkkj1,kkj   for j=1,2,…,k-1 (23)

- Estimation step. Once the model is established, the
model parameters can be estimated using either a
maximum likelihood approach or a least mean square
approach. In this paper both the maximum likelihood
approach and the least mean square approach were tried
and their results are almost exactly the same. Thus we stick
to the least mean square approach to estimate the model
parameters for its simplicity.

- Diagnostic check step. Diagnostic checks can be
used to see whether or not the model that has been
tentatively identified and estimated is adequate. This can
be done by examining the sample autocorrelation function
of the error signal, i.e. the difference between the predicted
value and the real value. If the model is inadequate, it must
be modified and improved.

- Final model is determined, it can be used to forecast
future time series values.

Neural networks

Many authors have applied many different neural
network (NN) architectures and algorithms to explore
traffic modeling task [10], [11], [12].
In our research we use the following prediction steps:

1. Creation of NN;
2. NN has been initialized (this property defines the

function used to initialize the network’s weight matrices
and bias vectors)

3. NN has been simulated.
4. NN has been trained.
Once the network weights and biases have been

initialized, the network is ready for training. The training
process requires a set of examples of proper network
behavior - network inputs p and target outputs t. During
training the weights and biases of the network are
iteratively adjusted to minimize the network performance
function.

5. NN inputs (also targets) and/or outputs (also errors)
are adapted. This property defines the parameters and
values of the current adapt (initialization, performance,
training) function.

6. After NN model is created, simulated and trained it
is used for prediction ok k steps ahead.

if k=1;

if k=2,3,…;
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Research models (phases)

Our research is emphasized to self- similar traffic
prediction using neural networks. Traffic data is taken
from website http://freestats.com/. This data was collected
for one year. Another data trace is collected using website
access statistics of local area network users using access to
the site www.fotoblog.lv.

For statistical analyses and neural network testing we
use program package “MATLAB p6.5” and
“STATISTICA neural networks”.

Firstly, we have deeply studied the character of the
statistical material (traffic data). Accordingly to that we
have calculated and proved that traffic data is self-similar.
We have investigated the character of the autocorrelation
function (ACF).

Secondly, we modulated and simulated different
prediction models - ARIMA models and neural network
models. Using different step prediction we have verified
the prediction accuracy taking into account prediction steps
ahead.

Review of studied cases (results)

In our experiments we analyze 2 types of traces:

Table 1. Summary of the traces used in the study

Analyzing the self similarity of these traces we have
calculated the Hurst parameter. The results are shown
below in the Fig. 1.
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Fig. 1. The Hurst parameter estimation with the variance - time
plot

The variance-time curve (Fig. 1) shows an asymptotic
slope that is easily estimated to be about –0.50 for
Freestats trace and –0.27 for Fotoblog trace, resulting in a
practically identical estimate of the Hurst parameter H of
about 0.75 for Freestats trace and 0.865 for Fotoblog trace.

It is important to understand the ACF role in the
prediction model selection. If there is no autocorrelation

function present in the signal (traffic data), there is nothing
to model, a linear approach is bound to fail, a nonlinear
approach is likely to fail and the best predictor is probably
the mean value of the signal. For this reason we have
studied the autocorrelation structure of our traces. Fig. 2
and Fig. 3 shows the ACF of a representative Freestats
trace.
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Fig. 2. Autocorrelation structure of Freestats (all possible lags)
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Fig. 3. Autocorrelation structure of Freestats (part of lags)

Analyzing the ACF for Freestats trace in the different
lag window (Fig. 3) we can see that ACF has a sine-wave
shape pattern which exponential decays. We expect that
such trace will be quite predictable using linear models.

Fig. 4 and Fig. 5 shows the ACF of Fotoblog trace. It
is clearly not a white noise and yet it doesn’t have the
strong behavior of Freestats trace. We would expect that
such a trace is predictable to some extent linear models or
Neural network models.

The Fig. 2-4 shows that the traffic data is long – range
dependent process. It can be verified analyzing the Hurst
parameter H which is a measure of the level of self-
similarity of a time series that exhibits long-range
dependence. The closer H is to 1, the greater the degree of
persistence or long-range dependence.

Name Observations Step Duration
Freestats 8760 1 hour 365 days
Fotoblog 172800 1 sec 2 days
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Fig. 3. Autocorrelation structure of Fotoblog (all possible lags)
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Fig. 4. Autocorrelation structure of Fotoblog (part of lags)

We have also analyzed the ACF for some m-
aggregates of the traffic data (Fig. 5-6).

The nature of autocorrelations of m-aggregates shows
a hyperbolic fall- off as in [17], [18]. We can find a notable
self similarity when we compare the plots for different m-
aggregates (Fig. 5-6). This requires a data set over a long
duration.

Especially at the higher level m all the m - aggregated
series give familiar autocorrelations. Thus we have a
different indication of self similarity also useful for
verification in a small data set.

For future value prediction modeling we used feed
forward backpropogation neural network.
The graphical representation of the results of feed-forward
backpropogation network use for traffic simulation and
training are in Fig. 7- Fig. 9.
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Fig. 5. Autocorrelation structure of Freestats at different
aggregation level m
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Fig. 6. Autocorrelation structure of Fotoblog at different
aggregation level m
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Fig. 7. The simulation and training result of Freestats statistics
using feed forward NN
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Fig. 7 shows that the NN model has 100% trained and
simulated the traffic data as they were given in the inputs.
The average error (mean square error) is 8.3e-29 what means
that error is closed to zero - in Fig. 7 we can see that there are no
differences between simulation and raining result.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Network output plotted against the targets

Epochs

T
h
e

re
s
u
lt

o
f

s
im

u
la

ti
o
n

Fig. 8. Network output during the learning process of Freestats
statistics using feed forward NN
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Fig. 9. The network output after training of Freestats statistics
using feed forward NN

After NN model simulation and training we have used
it for prediction ok k- steps ahead. The same prediction of
k -steps ahead is done using ARIMA models. The results
are summarized in Fig. 10 - Fig. 11.
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Fig. 10. Freestats statistics prediction using ARIMA and NN
models

As we see in Fig. 10 the ARIMA models produce very
familiar results - after some step prediction the prediction
slope becomes changeless. In the picture we have shown
30 steps of previous known input values and 20 steps of
prediction ahead. The prediction values of NN model
differs from those of ARIMA.
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Fig. 11. Fotoblog statistics prediction using ARIMA and NN
models

As we see in Fig. 11 we have gain almost the same results
as in Fig. 10.

Conclusions

The traces used in our experiments can be considered
as continuous-time stochastic process X(t) to be statistical
self-similar with parameter H =0.75 for Freestats trace and
H=0.865 for Fotoblog trace (0.5<H<1). The self similar
traffic estimation shows that as longer period is used for
traffic data analyses (or the total volume of the traffic data
observations) as faster the Hurst parameter becomes closer
to 1. This trend is shown in the Fig. 1. This means that the
infinite traffic data is the best, but that is not the real case.

We have analyzed ACF in different scales. The
conclusion is that the traffic data is long – range dependent
process in the both cases - for Freestats and Fotoblog
traces. It can be verified analyzing the Hurst parameter H -
the closer H is to 1, the greater the degree of persistence or
long-range dependence.

Regarding ARIMA models for Freestats trace:
ARIMA(0,0,1) was able to predict only 2 steps ahead,

ARIMA (1,0,0) – 6 steps ahead, ARIMA (2,0,0) - 8 steps
ahead and ARIMA (1,0,1) - 50 steps ahead after what the
parameter estimation process converged.

Regarding ARIMA models for Fotoblog trace:
ARIMA(0,0,1) was able to predict only 2 steps ahead,

ARIMA (1,0,0) - 14 steps ahead, ARIMA (2,0,0) - 20 steps
ahead and ARIMA (1,0,1) - 100 steps ahead after what the
parameter estimation process converged.

Regarding NN models we focused only on one type of
neural network, respectively, feed-forward
backpropogation network, because this model is very easy
to use (simulation and training process don’t take a long
time and simulation and training errors are close to zero).
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Comparing the results of done prediction we can
conclude that ARIMA models are easier to use for training
and forecast, but the prediction result is not very accurate.
Contrary NN models are quite complex while they are
created simulated and trained and only after that they are
used for prediction. As a result of such complex process
the prediction result is much better comparing with
ARIMA models.
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