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Introduction

Recent investigations [1–3] show that mathematical
modelling is the problem of today in medicine.

Aneurysm is an irregular sac formed by the dilatation
of the wall of an artery. Parameters and location of
aneurysm determine the treatment of a patient [4, 5].

Mathematically simply expressed surface is to be
chosen for calculations of aneurysm parameters, i.e. the
mathematical model was made. Medical practitioners try to
approximate aneurysm to ellipsoid because it is close to
shape of aneurysm. Such models are often made from one
projection of aneurysm only [6, 7].

In this publication methodology for choosing ellipsoid
parameters (center, directions and lengths of axes, volume)
which approximates three-dimensional (3D) aneurysm
image points (Fig. 1) was suggested. Also, spread of
aneurysm points with respect to the ellipsoid surface and
deviation of calculated volume were analysed.

Approximation by ellipsoid

The points of aneurysm surface, produced by
processing 3D region of aneurysm image, were used as
initial data. So, the coordinates and the volume in voxels of
each surface point Pi(xi, yi, zi) were known (Fig. 2).

The approximation using ellipsoid was carried out in
this sequence:

1. Calculation of mass center Pc(xc, yc, zc);
2. Calculation of the first ellipsoid axis d1;
3. Projection of all surface points Pi(xi, yi, zi) onto the

plain L, which is perpendicular to the first axis d1;
4. Calculation of the second ellipsoid axis d2;
5. Projection of points from the plain L to the line,

perpendicular to the second axis d2;
6. Calculation of the third ellipsoid axis d3.

The center of ellipsoid was calculated as the mass
center of all surface points.

Let  denote the set of these points:

  iiii zyxP ,, , (1)

where Pi – the points of aneurysm surface, xi, yi, zi – the
coordinates of these points, i = 1, 2, 3, ... N – current
number of the point, N – number of points, used for
modelling, where N = 106.

The formula for calculation of the mass center point
Pc coordinates was as follows:
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where xc, yc, zc – the coordinates of the mass center.
The point Pc was considered as an approximating

ellipsoid center.
Further, it was purposeful to check if the points form

a sphere. Therefore the Euclidean distance di between each
point and the center was calculated as follows:

       222, cicicicii zzyyxxPPdd  . (3)

Later on the maximal and the minimal distances were
chosen; their difference was compared with the chosen
criteria  by the following formula:
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Fig. 1. Approximating aneurysm with ellipsoid
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Fig. 3. Calculation of surface spread
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If the condition (4) was satisfied, the aneurysm image
points were approximated by a sphere. In this case, the
volume of sphere was calculated. Then the parameters of
the aneurysm were the volume and the center coordinates.

If the condition (4) was not satisfied, the approxima-
tion of the aneurysm by sphere was not allowed. Then the
approximation was carried out with ellipsoid and the
process started from the calculation of the axes.

The main axis of the ellipsoid was a line segment
between two furthest points and lied on the center point Pc.
The endpoints of the main axis were denoted P1(x1, y1, z1)
and P2(x2, y2, z2). The mentioned points were selected from
 , therefore their coordinates were known. Then the

length 1d of the main axis was calculated as follows:
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where x1, y1, z1 – the coordinates of the point P1 and x2, y2,
z2 – the coordinates of the point P2.

The length of the axis was one of the parameters
necessary for the calculation of the ellipsoid volume. The
current data describes the following parameters of the
aneurysm: the center coordinates describe the spatial
position, the main axis describes the orientation in 3D
space and the maximal dimension. The orientation was
described by the coefficients of the line equation:
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where k = x2 – x1, l = y2 – y1, m = z2 – z1 – the direction
coefficients.

Two residual ellipsoid axes were calculated as
described below. The equation of the plane L crossing the
calculated center and perpendicular to the longest axis was
made as follows:

0 Cmzlykx , (7)

where C = kxc – lyc – mzc – the computable coefficient
describing the center.

The second axis of the ellipsoid was obviously onto
the plane L and all the current points were projected to this
plane. Therefore a line segment perpendicular to the plane
L was drawn through each point Pi and the crossing points
of the line segment with the plane were searched. The
equation of the mentioned line segment was formulated as
the following system of equations:
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where k, l, m – the direction coefficients, xi, yi, zi – the
coordinates of any current point.

The system of equations (8) supplemented with the
plane equation (7) forms the system below (9). The
solution to the system was the searched projection of the
point, calculated for each data point.
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where iii kylxA  , iii kzmxB  . Ai and Bi –

coefficients computed for each data point.

Thus, inserting the coordinates nnn zyx ,, of n point

 nnnn zyxP ,, to the system of equations (9), its solution

was the coordinates nnn zyx  ,, of the projection point nP .

The system (9) was solved according to Kramers formulas.
The length of the second axis d2 was calculated according
to the formula (5).
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Surface point Pqi

Distance ∆Pi

Data point Pi

Fig. 2. Approximation of data points. Data points marked with “+”, the first projection marked with “*”, the second projection marked with “”
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Fig. 5. Surface match criteria and parameters of distance ∆Pi

Fig. 4. Volume comparison

The third axis of the ellipsoid d3 was calculated as
follows:

1. The points, previously projected onto plane L, were
projected to the line segment perpendicular to the second
axis d2 of the ellipsoid;

2. In that new projection two furthest points were
searched. Those points were considered to be the endpoints
of the axis and the length was the distance between them.

3. Having calculated the third axis, one more parameter

of the aneurysm, i.e. volumeV
~

, was calculated.

The volume V
~

was calculated according to the
following formula:

2223

4~ 321 ddd
V  . (10)

Thus, the main parameters of the aneurysm were the
spatial position of the ellipsoid center Pc (xi, yi, zi) , the
lengths of the axis d1, d2, d3 , the directions k, l, m and the

volume V
~

.

Spread of aneurysm points

Spread of aneurysm points with respect to the chosen
ellipsoid model was characterized by volume deviation and
spread of the surface points.

The relative deviation e of aneurysm volume:
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The evaluation of the spread of the surface points was
more difficult. In this case the distance ∆Pi from each
current point Pi to the ellipsoid surface point Pqi (Fig. 3)
was calculated.

The distance ∆Pi was calculated by the following
sequence:

1. A line segment was drawn through the ellipsoid
center Pc crossing the chosen point Pi;

2. The coordinates of the point Pqi were calculated,
where the mentioned line segment crossed the surface of
the ellipsoid;

3. The distance between the surface point Pqi and the
chosen point Pi was calculated.

The distance ∆Pi was calculated using the following
system of equations:
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where x, y, z – the coordinates of the searched point Pqi, a,
b, c – the semi-axes of the approximating ellipsoid,
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The first equation of the system (12) was the
expression of the ellipsoid when its center and axes
corresponded to the center and axes of the coordinates
accordingly. The second and the third equations described
the line segment crossing the points Pc and Pi. The system
(12) was solved by expressing one variable from the
second and the third equations and inserting the received
expression into the first equation. Having solved the first
equation with respect to the expressed variable, two
solutions were received, i.e. two points where the line
segment crossed the ellipsoid. The point Pqi that was closer
to the data point Pi was chosen from the two points. The
distance ∆Pi was calculated according to the formula (3).

Having calculated all distances to evaluate the spread
of surface points, the Euclidean norm of the mismatch

vector ir was calculated:
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The mismatch criteria of the surface was as follows:
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where  – tolerance threshold.
If the condition (14) was satisfied, it was considered

that the approximation of aneurysm surface points by
ellipsoid was sufficiently good and suitable for further
appliances.

Results

The aneurysm model in four different resolutions was
investigated. The largest aneurysm number in the fourth
and fifth figures corresponds to the largest aneurysm
resolution.
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Having compared the volumes of the approximating
ellipsoids (Fig. 4) it is seen that in most cases the volume
of the ellipsoid is smaller than that of the aneurysm,
however, the deviation of the volume does not exceed
20 %.

Increasing volume of modelling aneurysm, the spread
of surface points increases (Fig. 5). It is seen, that in larger
resolutions (and with larger aneurysms) the distance ∆Pi

deviation increases. The distance ∆Pi reaches maximum
value 4 in two largest resolutions.

Conclusions

1. The ellipsoid is a suitable model for the human‘s
intracranial aneurysm.

2. The position and the size of the aneurysm in
human‘s brain are described by the following ellipsoid
parameters: the coordinates of the center, the directions
and lengths of the axes and the volume.

3. The deviation of the calculated volume does not
exceed -20 % than that of real aneurysm.

4. When the volume of the modelling aneurysm is
increasing, the deviation of the volume is decreasing.
However, the spread of the surface points is increasing,
due to the complex form of the aneurysm.
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The methodology of modelling 3D aneurysm image points was suggested in the article. The ellipsoid was used for the modelling of
human‘s saccular aneurysm. The spread of aneurysm image points was analysed with respect to the chosen ellipsoid surface as well as
the deviation of the calculated volume. The position and the size of the aneurysm in human‘s brain were described by the mass center
point, the directions and the length of the ellipsoid axes as well as the ellipsoid volume. The mass center point was calculated as the
mass center of aneurysm image points. The end points of the axes were found by choosing two furthest points of the aneurysm. The
volume was calculated using the axes lengths of the ellipsoid. 3D aneurysm model at four different resolutions was used in this research.
All the modelling stages were realised using programming language C. Ill. 5, bibl. 7 (in English; summaries in English, Russian and
Lithuanian).
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и електротехника. – Каунас: Технология, 2008. – № 3(83). – С. 15–18.

Предложена методика моделирования совокупности точек изображения аневризмы. Для моделирования мешкообразной 
аневризмы применен эллипсоид, параметры которого приравниваются параметрам аневризмы. Проанализировано рассеивание 
точек изображения аневризмы относительно поверхности моделирующего эллипсоида и рассчитано отклонение объема. 
Положение и размер аневризмы в мозге человека характеризуют координаты центра эллипсоида, направление и длина его 
осей, а также объем эллипсоида. Координаты центра эллипсоида определяются как центр тяжести точек изображения
аневризмы. Точки концов осей определяются путем выбора двух наиболее удаленных точек аневризмы. Объем аневризмы
рассчитывается, используя длину осей. Исследования трёхмерной модели проводились, используя четыре различные
резолюции. Все этапы моделирования реализованы на языке программирования C. Ил. 5, библ. 7 (на английском; рефераты на 
английском, русском и литовском яз.).

L. Mockus, R. Martavičius, A. Ušinskas, M. Meilūnas. Maišelinės aneurizmos parametrų skaičiavimas // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2008. – Nr. 3(83). – P. 15–18.

Siūloma trimačio aneurizmos vaizdo taškų modelio sudarymo metodika. Žmogaus galvos kraujagyslių aneurizmai modeliuoti
panaudotas elipsoidas, kurio parametrai prilyginami aneurizmos parametrams. Analizuojama aneurizmos vaizdo taškų sklaida pasirinkto
elipsoido paviršiaus atžvilgiu ir apskaičiuoto tūrio nuokrypis. Aneurizmos padėtį žmogaus smegenyse ir jos dydį apibūdina
aproksimuojančio elipsoido centro koordinatės, ašių kryptys, ašių ilgiai bei elipsoido tūris. Masės centro taškas apskaičiuojamas kaip
aneurizmos vaizdo taškų masės centras. Ašių galai randami išrenkant du labiausiai nutolusius aneurizmos taškus. Tūris apskaičiuojamas
iš rastų elipsoido ašių ilgių. Tyrime panaudotas trimatis aneurizmos modelis esant keturioms skirtingoms raiškoms. Visi modeliavimo
etapai atlikti C programavimo kalba. Il. 5, bibl. 7 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


