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Introduction

A long-standing fundamental issue in nonlinear time
series anaysis is to determine whether a complex time
series is regular, deterministically chaotic, or random. An
accurate identification of the dynamics underlying a
complex time series, is of crucial importance in understan-
ding the corresponding physical process, and in turn affects
the subseguent model development. A steady stream of
efforts has been made, and a number of effective methods
have been proposed (also in the latest years — [1]-[3]) to
tackle this difficult problem. The vast majority of these
methods are based on attractor reconstruction from time
series and such characteristics as largest Lyapunov expo-
nents, K2 entropy, and correlation dimension calculation
[4], [5]. Since the analysis of chaotic data in terms of di-
mensions, entropies, and Lyapunov exponents requires
access to the small length scales (small-scale fluctuations
of the signal), already a moderate amount of measurement
noise on data is known to be destructive. One class of time
series — pseudoperiodic — has aroused great interest due to
their close relation to some important natural and physio-
logical systems. Zhang et all [6] have proposed a method
to detect deterministic structure from this certain class of
chaotic time series, which can deal with small or moderate
amounts of noise. But | have not found any publication,
devoted to detecting the deterministic structure from a high
noisy pseudoperiodic time series, when the noise level
reducing is desirable with expected to preserve the expo-
nential divergence of nearest neighbors. Noise reduction
methods designed for signals that can be treated by alinear
model fail to eliminate noise from a contaminated chaotic
time series because the spectra of the chaotic signal and the
noise overlap. Noise reduction based on time delay em-
bedding, which has been widely studied, may be the most
promising way to filter the noisy chaotic data [8]-[10].
Several phase space projection methods, based on subspa-
ce decomposition, were proposed for application to the
problem of additive noise reduction in the context of phase
space analysis — the global projections method [10] and the
local (nearest neighborhoods) phase spaces method [7],
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[9], [10]. A two step method is proposed to reduce colored
noise [11]. These methods performed well with moderate
amounts of noise. Hovewer, in order to distinguish
between regular and non-regular dynamics of time series,
which exhibit pseudoperiodic behaviour, it is not necessary
to eliminate the noise perfectly. Importantly, that signal
distortion and noise residual on noise reduction would
enable to detect the presence of chaos in a dynamical sys-
tem by measuring the largest Lyapunov exponents or char-
acteristics, related with the largest Lyapunov exponents.

The aim of present paper — to establish, which method
fits best for a primary noise reduction of high noisy pseu-
doperiodic time series and evaluate primary noise reduc-
tion efficiency for detecting chaos in these time series.
Also the straightforward and relative noisy resistant algo-
rithm to detect chaos in pseudoperiodic time series by us-
ing the correlation coefficient as a measure of the distance
[6] between vectors of reconstructed phase space is pre-
sent. Proposed algorithm is principally based on the algo-
rithm of Rosenstein [12] for largest Lyapunov exponent’s
calculation, but by over-embedding and an appropriately
longer embedding window and by using the correlation
coefficient as a measure of the distance instead of Euclid-
ean distance. Throughout the paper, the x component of the
well-known Rosder system for illustration, which is cha-
otic and contain obvious periodic component, is used.

The organization of this paper isasfollows. In Sec. I,
the principle of noise reduction for chaotic data in the
global and local phase space is reviewed, and algorithm for
detecting chaos in pseudoperiodic time series is described.
In Sec. 1, the results of calculations are given. Finaly,
some discussions and conclusions are given in Sec. IV.

Phase space projection methods of noise reduction for
chaotic data

Let z, =s, +w, denote the time series contaminated
by noise, where s, is the clean data generated by a dy-
namical system and wj, is the additive noise. For a time



series {Zn };:1 with L samples, the phase points can be

reconstructed by time delay embedding [4], [5], i.e,
{Zn }Lf(d*l)f and areconstructed phase space (RPS) matrix

n=1

Z withdrowsand L— (d —1)7: columns (called a tra-
jectory matrix) is defined by

Z Z, ZL—(d 1)
Z _ lerr 22+r ZL*(d*Z)T ' (1)
Zl+(d 1) ZZ+(d 1) Z

where d — the embedding dimension and 7 —time delay.
By applying the Principal Components Analysis (PCA),
also known as Singular Systems Analysis per Broomhead
and King [10], on the trajectory matrix, a projected trajec-
tory matrix is computed via the equation:

Z2=U,-Ul.(z-2)+Z, @

where U, consists of the columns of the eigenvector ma-

trix of the trajectory covariance U such that the corre-
sponding singular values are greater than the noise level

threshold, Z is the mean over dimension 1---,d and

(-)T denotes the transpose of areal matrix.

The result is that the original attractor is projected
onto the principal eigenvectors of the space. To implement
this approach for noise reduction, the original time seriesis
over-embedded, i.e. embedded into a dimension well over
that required for attractor representation. As each element

of the time series {Zn };:1

occurs as an entry of one of d
successive phase vectors Z,, k= n—(d —1)7:,---,n,
there are d enhanced entries which may be different in
values. An enhanced one-dimensional signal 2, is created
from the new space, typically by time-aligning and
weighted averaging the columns of the new trajectory ma-

trix Z [10],i. e.

21 T 21+(dfl)r 2L—(d—l)f
za] _ 21+(r:11)r 2L—(.d—l)f G
21+(d—1)r 2L—(d—1)r 2|_

The concept of projection within the reconstructed
phase space can be easily adapted to apply to local
neighborhoods within the space [9]-[11]. For these approa-
ches, the time series is over-embedded as with the global
method, and then each point in the space is individually
transformed using a projection based only on its local nei-
ghborhood region. The near neighborhood of the reference

point Z  isdefined as

A
N, ={z, Hze-z.| <& 1<k< m), @

where € e size of the

- th
m=L-(d-1).
Similar to global phase space, the local projection
(LP) method assumes that the local phase space, i.e., the
neighborhood N of the reference point z,, can be di-

vided into an M-dimensional signal subspace and a (d—M)-
dimensional white noise subspace, where M is the mini-
mum embedding dimension of the dynamical system. For a
preset M, the standard eigenvalue decomposition for the
covariance matrix of the windowed neighborhood data

matrix N, isperformed, i.e.,

neighborhood,

C,-u—-»4,-u, =0. (5)

matrix C is defined as

n

The

1
C, :szkeNnXk-Xl with notation X, =Z,—Z

n:'

where Z, — the center of the neighborhood, i.e,

n

1 . .
= szkeN Z, , and N — the number of neighborsin

N,,. Sorting the eigenvalues A = diag(h,, Ay, -+, Ay )
in descending order, the eigenvectors
U, = [ul,---,uM ] associated with the M largest eigen-
values, span the signa subspace, and the eigenvectors
U, =[Uy.y. Uy ], corresponding to the (d-M)
smallest eigenvalues, span the noise subspace, respec-
tively. Then the phase vector Z  can be decomposed as

Z, :7n+ Ul' UI(Zn—fn)-f- UZ' U;(Zn_zn) (6)

in the local phase space, where Ul-UI(Zn—Zn),
U, U;(Zn—fn) — the projections of (Zn—Zn) in the
signal subspace and the noise subspace, respectively.

Eliminating UZ-UZ(Zn—Zn), we obtain the en-
hanced signal vector

2. =2,+U,-Ul(z,-2,). @)

As each element of the time series {Zn }L

ne1 OCCUIS @s

an entry of one of d successive phase vectors Z,,

k=n—(d—1)r,---,n, there are d enhanced entries

which may be different in values. The arithmetic weighted
mean over these values is taken as the enhanced el ement

én. More details about the phase projection methods can

be found in Refs. [9]-[10].

Usually, neighborhoods merge if al data are contami-
nated by large amounts of noise. Thus, it becomes a non-
trivial problem to identify the correct neighbors. In some
degree the high dimension of the embedding space helps to



identify neighbors also for rather high noise levels. Fur-
thermore, the correlation coefficient as a measure of the
distance between certain vectors of reconstructed phase
space instead of Euclidean distance is used in both cases —
by prefiltering and diverging slope between neighbors
vectors calculation. This approach for pseudoperiodic sig-
nal is proposed by Zhang et al [6], although the execution
of the idea in this paper is different. Differently from
method proposed by Zhang et al, where the pseudoperiodic
time series are segmented into consecutive (no overlap-
ping) cycles according to the local minimum (or maxi-
mum) without embedding, | have applied this measure for
phase-space vectors of reconstructed dynamics.

The exponential divergence of initialy close state-
space trajectories, as an indicator of chaos, is calculated
according dightly modified Rosenstein method for largest
Lyapunov exponent’s calculation [12]:

1) For agiven vector Z; with time delay 7 =1 (defined
approximately as one period T, of pseudoperiodic time
series) of reconstructed phase space matrix (1) with d
rowsand mcolums, i =1, 2, ---, m/2—Tp —Ty (Tq

is explained below) the correlation coefficient pi a
the distance between each pair of vectors Z; and Z;

for |j—i|ZTp is caculated. The con-

straint|j - i| > T, is necessary to exclude temporally
correlated points. The correlation coefficient character-
izes the similarity between vectors Z; and Z;. Con-

sidering the continuity and smoothness of the vector
fields of deterministic systems, two vectors with a lar-

ger p;j will also be close in the phase space, i. e., for

the relation between vectors describing, the correlation
coefficient can be used equivaently as the phase-space
distance [6].

The search of the most similar vectors is executed us-
ing a dliding overlapping window of constant length
T=m/2 for al i. For a given i the values of lag j
changes from 1 to m/2.

The algorithm locates most similar ij™ pair of vectors
(with maximum correlation coefficient p,; ) of each

point i. Like Rosenstein algorithm [12], the averaged
divergence p,,(k) between two nearby vectors at time

stepsk (k=1,2,---, Ty ) iscalculated

(Inpri ()

2)

3)

_1

pm(k)_ At

©)

where (---) denotes the average over all values of i, At

—the sampling period of the time series.

For chaotic systems, the distance between two nearby
vectors will increase exponentially over time due to the
very nature of sensitivity to initial conditions. There-
fore, the correlation between two nearby vectors, which
decreases smoothly and monotonously with the distan-
ce between vectors, is also expected to drop exponen-

4)
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tialy with the step k [6]. The semilogarithmic plot
In(pm(K)) ~ k (or versus time t=k- At ) thus appears

to be aline nearby straight, whose slope is actually re-
lated to the largest Lyapunov exponent. The larger the

|AInp,(k)/AK|, the higher the level of chaos. Since
pm(k) iscloseto 1, In(p,(k)) =~ pm(k) -1 and we can
estimate slope as |Ap,(k)/ Ak|. The curve saturates at

longer times since the system is bounded in phase spa-
ce and the average divergence cannot exceed the
“length” of the attractor (in sense of the Euclidean dis-
tance, since the absolute value of correlation coefficient

cannot be less than zero) and T, is defined normally
only for the slope region.

Numerical Results

Both prefiltering methods and diverging slope calcu-
lating approach are applied to time series measured from
the Rosdler system, which is defined by

.

dy

E:x+a-y, (9)
% =b+2z(x-c)

with parameters a = 0.2, b = 0.2 and ¢ = 5.7. It has been
argued that the LP method can obtain better results by
over-embedding with time delay =1 and an appropri-
ately longer embedding window [9]-[11]. While the em-
bedding window cannot be set too long, otherwise there
are not enough appropriate neighbors for the reference
phase point (here the appropriate neighbors mean that the
wave forms of the data segments covered by the neighbors
are well matched that of the reference phase point). Thus a
tradeoff of the length of the embedding window should be
made [11]. In this paper, | have set the initial embedding
dimension d=60 and z=1 and the first 10 nearest
neighbors were used for each reference phase point. The
results were obtained with relative small data sets — the
series length for Rossler system is 1600 points.

The final projection dimensions for noise-reduction
algorithms are 2 dominant dimensions. Also a single filter-
ing iteration was performed.

The performance of both prefiltering methods at vari-
ous level of additive white Gaussian noise, i.e., measure-
ment or instrumentation noise, was investigated. The di-
vergence slope was calculated by using newly created em-
bedding vectors from enhanced one-dimensional signal

Z,. Fig. 1 shows aplot of (p,;(k)) versusk (in each fig-
ure “<Divergence>" and “Iteration” are used to denote
(pmi(k)) and k, respectively) for the x component of the

Rossler system with additive white Gaussian noise of dif-
ferent levels after primary reduction of noise.



Fig. 2 shows aplot of (p;(k)) versusk for the regu-

lar sinusoidal signal with additive white Gaussian noise of
different levels after primary reduction of noise.
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Fig. 1. Plot of <Divergence> versus iteration for the x compo-
nent of the Rosser system (series length 1600) with additive
Gaussian noise of different levels after primary noise reduction; a
— with global space projection method, b — with local space pro-
jection method

In Fig.1, we can see that more preferable is global
space algorithm. After prefiltering the truly chaotic noisy
pseudoperiodic Rossler signal with global space algorithm
the slope of nearby straight lines indicates deterministically
chaotic behavior for signal-noiseratio (SNR) up to —10 dB.
With SNR decreasing the divergence lines remain nearby
straight, although the negative slope of lines increases.
Whereas, after prefiltering the truly chaotic noisy pseu-
doperiodic Rossler signal with local space algorithm the
divergence lines lose straight shape at SNR near to zero.

But in Fig. 2, we can see that for a periodic sinusoidal

signal with noise the curves of (p;(k)) versus k remain

relatively flat only for SNR up to 6 dB after prefiltering the
noisy sinusoidal signal with global space algorithm.
With lower SNR the negative slopes |Ap,,(k)/ Ak| are

larger and the regular sinusoidal signal due to low fre-
guency distortion of amplitude on filtering is wrongly de-
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tected as chaotic. After prefiltering the noisy periodic sinu-
soidal signal with local space algorithm, the divergence
lines indicate wrongly deterministically chaotic behavior at
similar SNR.
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Fig. 2. Plot of <Divergence> versus iteration for the regular
sinusoidal signal (series length 1600) with additive Gaussian
noise of different levels after primary noise reduction; a — with
global space projection method, b — with local space projection
method

Discussion and conclusion

The obtained results allow to conclude, that noise re-
duction, based on phase space projection methods (the
global projection method and local neighborhood projec-
tion method), marginally enlarges the possibility to distin-
guish chaos from regular signal in noisy pseudoperiodic
time series by further applying algorithms for largest
Lyapunov exponent's calculation or similar methods,
which track the exponential divergence of nearest nei-
ghbors, for enhanced signal. The noise resistant algorithm
for chaos detecting described above, based on to calculat-
ing the averaged divergence p,,(k) at time steps k be-
tween two nearby vectors of reconstructed phase space,
performed reasonably well for SNR up to 10 dB without
prefiltering for time series data exhibiting strong pseudope-



riodic behavior. For the noisy chaotic time series with SNR
up to 10 dB, correlation coefficient (p,; (k)) will decrease
with k, and a scaling region is present in the plot of
(Inpyi(k)) ~kor {py(k)) ~k The clear presence of a
negative slope given the qualitative confirmation of a
exponential divergence of initially close state-space trajec-
tories and systems chaotic behavior. While for contami-

nated with noise periodic signals for SNR up to 10 dB,
there are no such relations (Fig. 3).
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Fig. 3. Plot of <Divergence> versus iteration by applying algo-
rithm for chaos detecting without primary noise reduction; a— for
the x component of the Rossler system (series length 1600) with
additive Gaussian noise of different levels, b — for the regular
sinusoidal signal with additive Gaussian noise of different levels

That is, on average the nearest neighbors should nei-
ther diverge nor converge. Multiple averaging of distance
measuring (correlation coefficient) between two nearby
high-dimensional vectors (the original time series is over-
embedded) allows reducing noticeably the influence of
random high-dimensional noise. The traditional universal
algorithms for calculating largest Lyapunov exponents
[12], [13] cannot reliably estimate the largest Lyapunov
exponents at noise level about SNR = 10 dB.
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The overal error on filtering is given by a combina-
tion of the signal distortion and noise residual. Although
by applying global space projection method the signal is
cleared from high-frequency noise (by applying local space
projection method the level of noise is till high after first
iteration), however high noisy signal is distorted. Truly
chaotic behavior of pseudoperiodic signal is masked and
the regular sinusoidal signal is wrongly detected as chaotic
by applying described algorithm for chaos detecting.
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K. Pukénas. Primary Noise Reduction Efficiency for Detecting Chaos in High Noisy Pseudoperiodic Time Series // Electronics
and Electrical Engineering. — Kaunas: Technologija, 2008. — No. 2(82). — P. 83-88.

The deterministic structure from a high noisy pseudoperiodic time series is detecting by using the different noise reduction methods
based on principal component analysis for a primary noise reduction and algorithm for detecting chaos is described. The correlation
coefficient as a measure of the distance between closest embedding vectors is used and averaged diverging slope, as an indicator of
chaos, is calculated according modifying well known Rosenstein method for largest Lyapunov exponents calculating. It is concluded,
that the global phase space singular value decomposition method gives better results for pseudoperiodic signal with high level of addi-
tive white noise (the noise is comparable with signals) than local phase space projection method. But commonly the prefiltering of high
noisy pseudoperiodic time series gives limited advantage — by using global phase space method for noisy signal prefiltering we can
reliably distinguish chaos from regular sinusoidal signal in the presence of additive white noise at a signal-noise ratio up to 6 dB. The
proposed agorithm for chaos detecting performed reasonably well for SNR up to 10 dB without prefiltering for time series data exhibit-
ing strong pseudoperiodic behavior. 11l 3, bibl. 13 (in English; summariesin English, Russian and Lithuanian).

K. Ilykenac. D¢pdexkTHBHOCTS NePBHYHON (HIBTPALMHU NPU 0OHAPYKEHUH Xa0Ca B NCEBIONEPHOINYECKHX BPEMEHHbIX psiax
NP HAJIMYHM LIYMOB BBICOKOT0 YPoBHs // JjiekTpoHuKa u 1exkTporexHuka. — Kaynac: Texnoaorus, 2008. — Ne 2(82). — C. 83—
88.

VccnenoBana BO3MOXKHOCTh OOHAPYKEHHUSI ICTCPMUHUCTHYECKOIO Havalla B IICEBIONEPHOINICCKUX BPEMEHHBIX PsIaX C BHICOKHM
YPOBHEM IIyMOB IIPH MCIOJIb30BAHWH B KAYECTBE MEPBUYHON (DMIBTPALIMM METOJ0B, OCHOBAHHBIX HA aHAM3€ MPUHIUINAIEHBIX KOM-
HOHEHT, ONMCAH NPOCTOM AITOPUTM JUIs OOHApYKEeHHs Xaoca. B kauecTBe Mepbl AUCTAHINHM MEXIY ONPEIEICHHBIMI BEKTOpPaMHU pe-
KOHCTPYHPOBaHHOTO ()a30BOTO MPOCTPAHCTBA MPUMEHEH KOA()(GHUIMEHT KOPPEIsILMK, HA OCHOBAHMH KOTOPOTO PAaCCUUTBIBACTCS yCpell-
HEHHas HaKJIOHHAs IMBEPreHLMN MEXIy OJNMKaHIIMMU BEKTOPAMH, SBJISIOLIASCS HHINKATOPOM JETePMHHUCTHYECKOTrO Xaoca. Ycpea-
HEHHas 3aBUCHMOCTb PacXOXKICHHS MKy OJKaillInMU BEKTOPaMH OT BPEMEHH PacCUUTBIBACTCS 10 MeToay Po3eHiuTeitna niis onpe-
JICTICHUsI MaKCUMaJIbHOW dKCIOHeHTHI JIsmyHoBa. [oka3aHo, YTO METOJ, OCHOBaH Ha JICKOMIIO3HLMH CHHTYJISIPHOTO 3HAYCHHUS B TJIO-
6asibHOM (ha30BOM MPOCTPAHCTBE, SBISIETCS GOJiee MPEIIIOYTUTENBHBIM [UIsl HEPBUYHON (PUIBTpALUK MICEBIAONEPUOANYCCKHX BPEMEH-
HBIX PSIJIOB C BBICOKMM ypPOBHEM 0eJIoro mryma (CpaBHUMOTO C CHUTHAJIOM) YeM METOM, OCHOBAaH Ha IPOCKLHH B JIOKAIBHOM (Hha30BOM
npocrpancTse. Ho B obuiem ciiydae, nepBuyHas GUIbTPALMS [CEBIONEPUOANYCCKUX BPEMEHHBIX PsJlax C BBICOKHM YPOBHEM IIyMOB
JIaeT OrpaHUYCHHOE MPEUMYIIECTBO — MPH HCIOJIb30BAHUH METO/a, OCHOBAHHOI'O HA JEKOMIIO3ULMH CHHIYJSIPHOTO 3HA4YeHMS B IJI0-
OaybHOM (Da30BOM MPOCTPAHCTBE, MOXKHO OOHAPY)KUBATh XaOTUUECKYIO IPUPOAY NCEBJONEPHOIMIECKUX BPEMEHHBIX PSJIOB IIPU HaJIM-
4Ky 0eJI0ro IIyMa NPH OTHOIIEHUH CUTHAJI-IIYM Bbile 6 1b. B To Bpems npeziaraemslii anroput™ crocoGeH JeTeKTHPOBaTh Xaoc Mpu
OTHOILCHNH curHan-uryM Beitre 10 1b 6e3 nepBuunoit pusTpanuu M. 3, 6ubs. 13 (Ha aHrmiickoM si3bIke; pedeparsl Ha aHTIHICKOM,
PYCCKOM H JIATOBCKOM $I3.).

K. Pukénas. Pirminio filtravimo efektyvumas deter ministinio chaoso detekcijai pseudoperiodinése laiko eilutése, esant auksto
lygio triuk§mams// Elektronikair elektrotechnika. — Kaunas: Technologija, 2008. — Nr. 2(82). — P. 83-88.

Tiriama deterministinio chaoso detekcija pseudoperiodinése laiko eilutése esant auksto lygio triuksmams pirminei filtracijai naudo-
jant metodus, pagristus esminiy komponenciy analize, aprasomas chaoso detekcijos agoritmas. Naudojant koreliacijos koeficienta, kaip
distancijos tarp tam tikry rekonstruotos fazinés ervés vektoriu mata, apskai¢iuojama suvidurkinta divergencijos tarp artimiausiy vektoriy
priklausomybés nuo laiko kreive, kurios nuozulnumas yra deterministinio chaoso indikatorius. Suvidurkintai divergencijai tarp artimiau-
Siy vektoriy skaiciuoti panaudotas Rozensteino metodas didziausigjai Liapunovo eksponentel apskaiciuoti. Straipsnyje parodoma, kad
pirminei pseudoperiodiniy laiko eiluciy filtracijai esant auksto lygio baltam triuksmui, labiau tinkamas metodas, pagristas singuliariuju
reiksmiy dekompozicija globalingje fazinéje erdveje, negu algoritmas, pagristas projekcija lokalingje fazinéje erdvéje. Taciau apskritai
pirminés pseudoperiodiniy laiko eiluciy esant aukstam triuksmy lygiui filtracijos taikymas duoda ribota efekta — pirminei filtracijai
taikant metoda singuliariuju reitksmiy dekompozicijos globalingje fazingje erdvéje pagrindu galima detektuoti chaosa pseudoperiodinése
laiko ellutése, kai signalo ir balto triuksmo santykis virsija 6 dB. Tuo tarpu straipsnyje aprasomas algoritmas uztikrina chaoso detekcija
be pirminésfiltracijos, kai signalo ir triuksmo santykis virsija 10 dB. II. 3, bibl. 13 (anglu kalba; santraukos angluy, rusu ir lietuviy k.).
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