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Introduction

A long-standing fundamental issue in nonlinear time
series analysis is to determine whether a complex time
series is regular, deterministically chaotic, or random. An
accurate identification of the dynamics underlying a
complex time series, is of crucial importance in understan-
ding the corresponding physical process, and in turn affects
the subsequent model development. A steady stream of
efforts has been made, and a number of effective methods
have been proposed (also in the latest years – [1]-[3]) to
tackle this difficult problem. The vast majority of these
methods are based on attractor reconstruction from time
series and such characteristics as largest Lyapunov expo-
nents, K2 entropy, and correlation dimension calculation
[4], [5]. Since the analysis of chaotic data in terms of di-
mensions, entropies, and Lyapunov exponents requires
access to the small length scales (small-scale fluctuations
of the signal), already a moderate amount of measurement
noise on data is known to be destructive. One class of time
series – pseudoperiodic – has aroused great interest due to
their close relation to some important natural and physio-
logical systems. Zhang et all [6] have proposed a method
to detect deterministic structure from this certain class of
chaotic time series, which can deal with small or moderate
amounts of noise. But I have not found any publication,
devoted to detecting the deterministic structure from a high
noisy pseudoperiodic time series, when the noise level
reducing is desirable with expected to preserve the expo-
nential divergence of nearest neighbors. Noise reduction
methods designed for signals that can be treated by a linear
model fail to eliminate noise from a contaminated chaotic
time series because the spectra of the chaotic signal and the
noise overlap. Noise reduction based on time delay em-
bedding, which has been widely studied, may be the most
promising way to filter the noisy chaotic data [8]-[10].
Several phase space projection methods, based on subspa-
ce decomposition, were proposed for application to the
problem of additive noise reduction in the context of phase
space analysis – the global projections method [10] and the
local (nearest neighborhoods) phase spaces method [7],

[9], [10]. A two step method is proposed to reduce colored
noise [11]. These methods performed well with moderate
amounts of noise. Hovewer, in order to distinguish
between regular and non-regular dynamics of time series,
which exhibit pseudoperiodic behaviour, it is not necessary
to eliminate the noise perfectly. Importantly, that signal
distortion and noise residual on noise reduction would
enable to detect the presence of chaos in a dynamical sys-
tem by measuring the largest Lyapunov exponents or char-
acteristics, related with the largest Lyapunov exponents.

The aim of present paper – to establish, which method
fits best for a primary noise reduction of high noisy pseu-
doperiodic time series and evaluate primary noise reduc-
tion efficiency for detecting chaos in these time series.
Also the straightforward and relative noisy resistant algo-
rithm to detect chaos in pseudoperiodic time series by us-
ing the correlation coefficient as a measure of the distance
[6] between vectors of reconstructed phase space is pre-
sent. Proposed algorithm is principally based on the algo-
rithm of Rosenstein [12] for largest Lyapunov exponent’s
calculation, but by over-embedding and an appropriately
longer embedding window and by using the correlation
coefficient as a measure of the distance instead of Euclid-
ean distance. Throughout the paper, the x component of the
well-known Rossler system for illustration, which is cha-
otic and contain obvious periodic component, is used.

The organization of this paper is as follows. In Sec. II,
the principle of noise reduction for chaotic data in the
global and local phase space is reviewed, and algorithm for
detecting chaos in pseudoperiodic time series is described.
In Sec. III, the results of calculations are given. Finally,
some discussions and conclusions are given in Sec. IV.

Phase space projection methods of noise reduction for
chaotic data

Let nnn wsz  denote the time series contaminated

by noise, where ns is the clean data generated by a dy-

namical system and nw is the additive noise. For a time
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series  L

nnz
1

with L samples, the phase points can be

reconstructed by time delay embedding [4], [5], i.e.,
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nnz and a reconstructed phase space (RPS) matrix

Z with d rows and  1 dL columns (called a tra-

jectory matrix) is defined by
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where d – the embedding dimension and  – time delay.
By applying the Principal Components Analysis (PCA),
also known as Singular Systems Analysis per Broomhead
and King [10], on the trajectory matrix, a projected trajec-
tory matrix is computed via the equation:

  ZZZUUẐ  T
11 , (2)

where 1U consists of the columns of the eigenvector ma-

trix of the trajectory covariance U such that the corre-
sponding singular values are greater than the noise level

threshold, Z is the mean over dimension d,,1 and

 T denotes the transpose of a real matrix.

The result is that the original attractor is projected
onto the principal eigenvectors of the space. To implement
this approach for noise reduction, the original time series is
over-embedded, i.e. embedded into a dimension well over
that required for attractor representation. As each element

of the time series  L

nnz
1

occurs as an entry of one of d

successive phase vectors kz ,   ndnk ,,1 ,

there are d enhanced entries which may be different in

values. An enhanced one-dimensional signal nẑ is created

from the new space, typically by time-aligning and
weighted averaging the columns of the new trajectory ma-

trix Ẑ [10], i. e.
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Ẑ







111

111

1111









. (3)

The concept of projection within the reconstructed
phase space can be easily adapted to apply to local
neighborhoods within the space [9]-[11]. For these approa-
ches, the time series is over-embedded as with the global
method, and then each point in the space is individually
transformed using a projection based only on its local nei-
ghborhood region. The near neighborhood of the reference

point nz is defined as

 mknkkn 


1ε,zz:zN , (4)

where ε – the size of the neighborhood,

 1 dLm .

Similar to global phase space, the local projection
(LP) method assumes that the local phase space, i.e., the

neighborhood nN of the reference point nz , can be di-

vided into an M-dimensional signal subspace and a (d–M)-
dimensional white noise subspace, where M is the mini-
mum embedding dimension of the dynamical system. For a
preset M, the standard eigenvalue decomposition for the
covariance matrix of the windowed neighborhood data

matrix nN is performed, i.e.,

0 iiin uλuC . (5)

The matrix nC is defined as
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with notation nkk zzx  ,

where nz – the center of the neighborhood, i.e.,
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, and N – the number of neighbors in

nN . Sorting the eigenvalues  ddiag λ,,λ,λΛ 21
in descending order, the eigenvectors

 Mu,,uU 11  , associated with the M largest eigen-

values, span the signal subspace, and the eigenvectors

 dM u,,uU 12  , corresponding to the  Md 
smallest eigenvalues, span the noise subspace, respec-

tively. Then the phase vector nz can be decomposed as

   nn
T

nn
T

nn zzUUzzUUzz  2211 (6)

in the local phase space, where  nn
T zzUU  11 ,

 nn
T zzUU  22 – the projections of  nn zz  in the

signal subspace and the noise subspace, respectively.

Eliminating  nn
T zzUU  22 , we obtain the en-

hanced signal vector

 nn
T

nn zzUUzẑ  11 . (7)

As each element of the time series  L

nnz
1

occurs as

an entry of one of d successive phase vectors kz ,

  ndnk ,,1 , there are d enhanced entries

which may be different in values. The arithmetic weighted
mean over these values is taken as the enhanced element

nŝ . More details about the phase projection methods can

be found in Refs. [9]-[10].
Usually, neighborhoods merge if all data are contami-

nated by large amounts of noise. Thus, it becomes a non-
trivial problem to identify the correct neighbors. In some
degree the high dimension of the embedding space helps to
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identify neighbors also for rather high noise levels. Fur-
thermore, the correlation coefficient as a measure of the
distance between certain vectors of reconstructed phase
space instead of Euclidean distance is used in both cases –
by prefiltering and diverging slope between neighbors
vectors calculation. This approach for pseudoperiodic sig-
nal is proposed by Zhang et al [6], although the execution
of the idea in this paper is different. Differently from
method proposed by Zhang et al, where the pseudoperiodic
time series are segmented into consecutive (no overlap-
ping) cycles according to the local minimum (or maxi-
mum) without embedding, I have applied this measure for
phase-space vectors of reconstructed dynamics.

The exponential divergence of initially close state-
space trajectories, as an indicator of chaos, is calculated
according slightly modified Rosenstein method for largest
Lyapunov exponent’s calculation [12]:

1) For a given vector iz with time delay 1 (defined

approximately as one period Tp of pseudoperiodic time
series) of reconstructed phase space matrix (1) with d

rows and m colums, dp TTmi  221 /,,,  (Td

is explained below) the correlation coefficient ij as

the distance between each pair of vectors iz and jz

for pTij  is calculated. The con-

straint pTij  is necessary to exclude temporally

correlated points. The correlation coefficient character-

izes the similarity between vectors iz and jz . Con-

sidering the continuity and smoothness of the vector
fields of deterministic systems, two vectors with a lar-

ger ij will also be close in the phase space, i. e., for

the relation between vectors describing, the correlation
coefficient can be used equivalently as the phase-space
distance [6].

2) The search of the most similar vectors is executed us-
ing a sliding overlapping window of constant length

2/mT  for all i. For a given i the values of lag j
changes from 1 to m/2.

3) The algorithm locates most similar ijth pair of vectors

(with maximum correlation coefficient mi ) of each

point i. Like Rosenstein algorithm [12], the averaged

divergence  km between two nearby vectors at time

steps k ( dTk ,,2,1  ) is calculated

   k
t

k imm  ln
1


 , (8)

where  denotes the average over all values of i, t

– the sampling period of the time series.
4) For chaotic systems, the distance between two nearby

vectors will increase exponentially over time due to the
very nature of sensitivity to initial conditions. There-
fore, the correlation between two nearby vectors, which
decreases smoothly and monotonously with the distan-
ce between vectors, is also expected to drop exponen-

tially with the step k [6]. The semilogarithmic plot

  kmln ~ k (or versus time tkt  ) thus appears

to be a line nearby straight, whose slope is actually re-
lated to the largest Lyapunov exponent. The larger the

  kkm  /ln  , the higher the level of chaos. Since

 km is close to 1,      1ln  kk mm  and we can

estimate slope as   kkm  / . The curve saturates at

longer times since the system is bounded in phase spa-
ce and the average divergence cannot exceed the
“length” of the attractor (in sense of the Euclidean dis-
tance, since the absolute value of correlation coefficient

cannot be less than zero) and dT is defined normally

only for the slope region.

Numerical Results

Both prefiltering methods and diverging slope calcu-
lating approach are applied to time series measured from
the Rossler system, which is defined by
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with parameters a = 0.2, b = 0.2 and c = 5.7. It has been
argued that the LP method can obtain better results by
over-embedding with time delay 1 and an appropri-
ately longer embedding window [9]-[11]. While the em-
bedding window cannot be set too long, otherwise there
are not enough appropriate neighbors for the reference
phase point (here the appropriate neighbors mean that the
wave forms of the data segments covered by the neighbors
are well matched that of the reference phase point). Thus a
tradeoff of the length of the embedding window should be
made [11]. In this paper, I have set the initial embedding

dimension 60d and 1 and the first 10 nearest
neighbors were used for each reference phase point. The
results were obtained with relative small data sets – the
series length for Rossler system is 1600 points.

The final projection dimensions for noise-reduction
algorithms are 2 dominant dimensions. Also a single filter-
ing iteration was performed.

The performance of both prefiltering methods at vari-
ous level of additive white Gaussian noise, i.e., measure-
ment or instrumentation noise, was investigated. The di-
vergence slope was calculated by using newly created em-
bedding vectors from enhanced one-dimensional signal

nẑ . Fig. 1 shows a plot of  kmi versus k (in each fig-

ure “<Divergence>” and “Iteration” are used to denote

 kmi and k, respectively) for the x component of the

Rossler system with additive white Gaussian noise of dif-
ferent levels after primary reduction of noise.
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Fig. 2 shows a plot of  kmi versus k for the regu-

lar sinusoidal signal with additive white Gaussian noise of
different levels after primary reduction of noise.

Fig. 1. Plot of <Divergence> versus iteration for the x compo-
nent of the Rossler system (series length 1600) with additive
Gaussian noise of different levels after primary noise reduction; a
– with global space projection method, b – with local space pro-
jection method

In Fig.1, we can see that more preferable is global
space algorithm. After prefiltering the truly chaotic noisy
pseudoperiodic Rossler signal with global space algorithm
the slope of nearby straight lines indicates deterministically
chaotic behavior for signal-noise ratio (SNR) up to –10 dB.
With SNR decreasing the divergence lines remain nearby
straight, although the negative slope of lines increases.
Whereas, after prefiltering the truly chaotic noisy pseu-
doperiodic Rossler signal with local space algorithm the
divergence lines lose straight shape at SNR near to zero.

But in Fig. 2, we can see that for a periodic sinusoidal

signal with noise the curves of  kmi versus k remain

relatively flat only for SNR up to 6 dB after prefiltering the
noisy sinusoidal signal with global space algorithm.

With lower SNR the negative slopes   kkm  / are

larger and the regular sinusoidal signal due to low fre-
quency distortion of amplitude on filtering is wrongly de-

tected as chaotic. After prefiltering the noisy periodic sinu-
soidal signal with local space algorithm, the divergence
lines indicate wrongly deterministically chaotic behavior at
similar SNR.

Fig. 2. Plot of <Divergence> versus iteration for the regular
sinusoidal signal (series length 1600) with additive Gaussian
noise of different levels after primary noise reduction; a – with
global space projection method, b – with local space projection
method

Discussion and conclusion

The obtained results allow to conclude, that noise re-
duction, based on phase space projection methods (the
global projection method and local neighborhood projec-
tion method), marginally enlarges the possibility to distin-
guish chaos from regular signal in noisy pseudoperiodic
time series by further applying algorithms for largest
Lyapunov exponent’s calculation or similar methods,
which track the exponential divergence of nearest nei-
ghbors, for enhanced signal. The noise resistant algorithm
for chaos detecting described above, based on to calculat-

ing the averaged divergence  km at time steps k be-

tween two nearby vectors of reconstructed phase space,
performed reasonably well for SNR up to 10 dB without
prefiltering for time series data exhibiting strong pseudope-
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riodic behavior. For the noisy chaotic time series with SNR

up to 10 dB, correlation coefficient  kmi will decrease

with k, and a scaling region is present in the plot of

 kmiln ~ k or  kmi ~ k. The clear presence of a

negative slope given the qualitative confirmation of a
exponential divergence of initially close state-space trajec-
tories and systems chaotic behavior. While for contami-
nated with noise periodic signals for SNR up to 10 dB,
there are no such relations (Fig. 3).

Fig. 3. Plot of <Divergence> versus iteration by applying algo-
rithm for chaos detecting without primary noise reduction; a – for
the x component of the Rossler system (series length 1600) with
additive Gaussian noise of different levels, b – for the regular
sinusoidal signal with additive Gaussian noise of different levels

That is, on average the nearest neighbors should nei-
ther diverge nor converge. Multiple averaging of distance
measuring (correlation coefficient) between two nearby
high-dimensional vectors (the original time series is over-
embedded) allows reducing noticeably the influence of
random high-dimensional noise. The traditional universal
algorithms for calculating largest Lyapunov exponents
[12], [13] cannot reliably estimate the largest Lyapunov
exponents at noise level about SNR = 10 dB.

The overall error on filtering is given by a combina-
tion of the signal distortion and noise residual. Although
by applying global space projection method the signal is
cleared from high-frequency noise (by applying local space
projection method the level of noise is still high after first
iteration), however high noisy signal is distorted. Truly
chaotic behavior of pseudoperiodic signal is masked and
the regular sinusoidal signal is wrongly detected as chaotic
by applying described algorithm for chaos detecting.
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The deterministic structure from a high noisy pseudoperiodic time series is detecting by using the different noise reduction methods
based on principal component analysis for a primary noise reduction and algorithm for detecting chaos is described. The correlation
coefficient as a measure of the distance between closest embedding vectors is used and averaged diverging slope, as an indicator of
chaos, is calculated according modifying well known Rosenstein method for largest Lyapunov exponents calculating. It is concluded,
that the global phase space singular value decomposition method gives better results for pseudoperiodic signal with high level of addi-
tive white noise (the noise is comparable with signals) than local phase space projection method. But commonly the prefiltering of high
noisy pseudoperiodic time series gives limited advantage – by using global phase space method for noisy signal prefiltering we can
reliably distinguish chaos from regular sinusoidal signal in the presence of additive white noise at a signal-noise ratio up to 6 dB. The
proposed algorithm for chaos detecting performed reasonably well for SNR up to 10 dB without prefiltering for time series data exhibit-
ing strong pseudoperiodic behavior. Ill 3, bibl. 13 (in English; summaries in English, Russian and Lithuanian).

К. Пукенас. Эффективность первичной фильтрации при обнаружении хаоса в псевдопериодических временных рядах
при наличии шумов высокого уровня // Электроника и электротехника. – Каунас: Технология, 2008. – № 2(82). – C. 83–
88.

Исследована возможность обнаружения детерминистического начала в псевдопериодических временных рядах с высоким 
уровнем шумов при использовании в качестве первичной фильтрации методов, основанных на анализе принципиальных ком-
понент, описан простой алгоритм для обнаружения хаоса. В качестве меры дистанции между определенными векторами ре-
конструированного фазового пространства применен коэффициент корреляции, на основании которого рассчитывается усред-
ненная наклонная дивергенции между ближайшими векторами, являющаяся индикатором детерминистического хаоса. Усред-
ненная зависимость расхождения между ближайшими векторами от времени рассчитывается по методу Розенштейна для опре-
деления максимальной экспоненты Ляпунова. Показано, что метод, основан на декомпозиции сингулярного значения в гло-
бальном фазовом пространстве, является более предпочтительным для первичной фильтрации псевдопериодических времен-
ных рядов с высоким уровнем белого шума (сравнимого с сигналом) чем метод, основан на проекции в локальном фазовом
пространстве. Но в общем случае, первичная фильтрация псевдопериодических временных рядах с высоким уровнем шумов 
дает ограниченное преимущество – при использовании метода, основанного на декомпозиции сингулярного значения в гло-
бальном фазовом пространстве, можно обнаруживать хаотическую природу псевдопериодических временных рядов при нали-
чии белого шума при отношении сигнал–шум выше 6 дБ. В то время предлагаемый алгоритм способен детектировать хаос при 
отношении сигнал-шум выше 10 дБ без первичной фильтрации Ил. 3, библ. 13 (на английском языке; рефераты на английском,
русском и литовском яз.).

K. Pukėnas. Pirminio filtravimo efektyvumas deterministinio chaoso detekcijai pseudoperiodinėse laiko eilutėse, esant aukšto
lygio triukšmams // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2008. – Nr. 2(82). – P. 83–88.

Tiriama deterministinio chaoso detekcija pseudoperiodinėse laiko eilutėse esant aukšto lygio triukšmams pirminei filtracijai naudo-
jant metodus, pagrįstus esminių komponenčių analize, aprašomas chaoso detekcijos algoritmas. Naudojant koreliacijos koeficientą, kaip
distancijos tarp tam tikrų rekonstruotos fazinės ervės vektorių matą, apskaičiuojama suvidurkinta divergencijos tarp artimiausių vektorių
priklausomybės nuo laiko kreivė, kurios nuožulnumas yra deterministinio chaoso indikatorius. Suvidurkintai divergencijai tarp artimiau-
sių vektorių skaičiuoti panaudotas Rozenšteino metodas didžiausiajai Liapunovo eksponentei apskaičiuoti. Straipsnyje parodoma, kad
pirminei pseudoperiodinių laiko eilučių filtracijai esant aukšto lygio baltam triukšmui, labiau tinkamas metodas, pagrįstas singuliariųjų
reikšmių dekompozicija globalinėje fazinėje erdvėje, negu algoritmas, pagrįstas projekcija lokalinėje fazinėje erdvėje. Tačiau apskritai
pirminės pseudoperiodinių laiko eilučių esant aukštam triukšmų lygiui filtracijos taikymas duoda ribotą efektą – pirminei filtracijai
taikant metodą singuliariųjų reikšmių dekompozicijos globalinėje fazinėje erdvėje pagrindu galima detektuoti chaosą pseudoperiodinėse
laiko eilutėse, kai signalo ir balto triukšmo santykis viršija 6 dB. Tuo tarpu straipsnyje aprašomas algoritmas užtikrina chaoso detekciją
be pirminės filtracijos, kai signalo ir triukšmo santykis viršija 10 dB. Il. 3, bibl. 13 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


