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Introduction

The analysis of electroencephalographic (EEG)
signals is usually done using tools generally adequate for
linear signals. As it is well known that the EEG signals are
extremely nonlinear signals, the need for suitable
algorithms comes up.

One possible answer to this challenge may be the use
of a new technique employed in the nonlinear spectral
analysis which is based on the generalized entropy of a
probability distribution, the so called Rényi entropy. It
defines a set of fractal dimensions that characterize the
time series from both the amplitude and the frequency
point of view.

In what follows, we will review the theoretical
background for the algorithm that allows the computing of
the fractal spectrum in the next section. The third one is
devoted to the characterization of the EEG signals, the
fourth deals with the potential implications of the results in
detecting the epileptiform activity and the possibilities of
using the fractal spectrum as an indicator for the brain
activities specific to a certain task; the last one is
committed to the conclusions.

The fractal dimension based on the Rényi entropy

Dealing with EEG signals classification and taking
into account the nonlinear character of these signals there
are just a few possibilities to choose from when
characterization is needed. One of them is to determine the
so-called correlation dimension. This measure belongs to a
wider, in fact infinite, class of fractal dimensions and this
is why it seems possible to gather more information when
computing the whole fractal spectrum, not only the
correlation dimension itself.

The definition for the generalized entropy based on
the moments of order r of the probability pi, according to
Rényi, [1], is given by
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with rR-{1} and pi[0,1].
When dealing with EEG signals, the above

probability is not known and therefore an adapted
algorithm must be employed: the signal is divided into m
intervals and for each one the times mk that the signal
passes through it is counted. Consequently, the probability
for a generic interval is
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Knowing the above probabilities, the generalized
fractal dimension of order r may be written as follows:
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where x is, in a practical circumstance, the smallest value
of the signal that may be evidenced by the instrumentation
used to record the EEG signal.

For a given probability distribution, the generalized
fractal dimension Dr is named fractal spectrum; it provides
information concerning both the amplitudes and frequency
of the analyzed time series and that is why it is considered
a better way to characterize it.

It is worth noticing the following particular cases for
the above definition: 1) the correlation dimension,
mentioned earlier, is obtained when r = 2 and 2) there are
two limit cases, for r = -  and r = , when the fractal
dimension is
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mkpp k ,1},max{max  ; (6)

mkpp k ,1},min{min  . (7)

These two cases define the ranges of fractal
dimensions and their difference, D- - D, is a strong
indicator of the chaotic behavior of the time series: the
bigger the difference, the better evidenced are the chaotic
properties.

The presence of less expected values of the signal is
evidenced by larger values of the fractal dimensions of the
same order.

The data sets

The EEG signal seen as a chaotic time series is not a
well-established topic. Some authors even conjecture that
the nonlinear dynamics governing the brain may be seen as
“consciousness”, at least at the evolutionary scale, or in
pathology, [2] - [4]. Nevertheless, due to the obvious
nonlinearities of the signal, the methods suitable for such
signals are supposed to provide more accurate information
than the ones usually employed for linear ones (e.g. FFT).

There are two major possibilities to characterize
chaotic (or chaotic-like) signals: the Lyapunov coefficients
and the fractal analysis. In what follows we shall focus on
the latter in order to suggest a method suitable to fulfill the
need to predict epileptic seizures and to differentiate
between the various points of the scalp where the EEG
signals are taken from, when dealing with P300 evoked
potentials as the ones in the Donchin paradigm.

Classification of the epileptiform EEG was a research
topic since 1990 and the different papers show the various
stages of development of the signal processing tools
involved, [5]-[8].

The EEG signals used for testing our method were
those described in [9] and downloaded from [10].

There are four types of data sets, each one containing
100 files with 4096 samples, taken at a rate of 173.61 Hz,
which is in the 128-1024 Hz. range, as recommended in
[11]. First type of data are taken from a healthy subject, the
second from a subject that has the disease but is between
crises, the third set refers to the epileptogenic zone and the
last is recorded during the crisis. The first 1000 samples of
a typical EEG recording from a healthy person, as
described in [9], are presented in Fig. 1. The first 1000
samples were evidenced for clarity reasons; the signals
look quite the same for the rest of the samples. This remark
is also valid for the rest of the figures.
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Fig. 1. Typical EEG signal from a healthy subject

The same type of signal, for an epileptic subject
between the crises, which is slightly different from the one
in Fig. 1, is presented in Fig. 2.
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Fig. 2. The EEG from an epileptic subject between crises

The shape of the signal changes significantly in the
epileptogenic region, as shown in Fig. 3, also for the first
1000 samples of the signal.
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Fig. 3. The EEG of the epileptogenic zone

The last type of data was the one taken during
epileptic seizure and looks like the one in Fig. 4.
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Fig. 4. The EEG signal during epileptic seizure

From the above figures, it may be clearly seen that
there are strong differences between the four types of EEG
signals. We will show that the shape of these signals are
evidenced in the values of the fractal dimensions of the
signals and that the difference D- - D is significantly
changed for the signals from a healthy person but also for
the three different types for the ill subjects: between
seizures, in the epileptogenic zone and during the seizure.

The same treatment was applied to signals taken
according to the “10-20” system, [12], used in a Donchin
paradigm, [13]. It assumes evidencing lines or columns on
a 66 matrix with letters and numbers appearing on the
screen of the computer; the subject is instructed to think of
a symbol and to react every time the line/column that
contains it is evidenced. This type of stimulus is an
infrequent one, and it usually generates a “spike” (evoked
potential) in the EEG signal, after approximately 300
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milliseconds from its occurrence, hence its name: P300.
This study aims to individualize the place on the scalp that
has EEG signals with significantly higher difference D- -
D and in this way to suggest another way to choose the
appropriate electrode for signal acquiring when dealing
with feature translation problems in brain computer
interfaces.

The fractal spectrum of the EEG signals as a measure
of their chaotic properties

The algorithm for computing the Rényi entropy was
programmed and running the program clearly showed the
differences between the four types of signals, as follows: in
Fig. 5 the fractal spectrum of a healthy subject is shown.
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Fig. 5. The typical fractal spectrum for a healthy subject

It is worth noticing the fact that Fig. 5 presents the
average values for all fractal spectrums that belong to the
data set for healthy persons. This average was found to be
in the same range with the one characterizing the periods
between seizures for ill persons, as shown in Table 1,
where only the maximum values are slightly higher in the
case of an ill person. It is also worth noticing the fact that
the average values for D-- D are, in both cases, closer to
those give by the maximum ones.

Table 1. Average values for all fractal spectrums
healthy ill

average min max average min max

D 0.640 0.517 0.714 0.575 0.348 0.714

D- 1.201 1.144 1.276 1.186 1.112 1.362

D-- D 0.560 0.626 0.561 0.610 0.763 0.647

Fig. 6 presents the fractal spectrum of the EEG
signals in the case of the epileptogene zone.
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Fig. 6. The typical fractal spectrum for the epileptogene zone

Even if the average values are near the ones in Fig. 5,
noteworthy differences may be seen in Table 2 that
presents a comparison between the values for the fractal
spectrum of the EEG signals from healthy persons and the
one from the epileptogene zone of an ill subject.

Table 2. Comparison between the values for the fractal spectrum
of the EEG signals

healthy ill
average min max average min max

D 0.640 0.517 0.714 0.551 0.155 1.070

D- 1.201 1.144 1.276 1.380 1.118 3.260

D-- D 0.560 0.626 0.561 0.829 0.963 2.190

In fact, all the values are higher in this case, but the
differences are obvious, especially in the case of the
maximum values, which are significantly greater.

The real difference may be perceived during seizures,
when the values characterizing the fractal spectrum are
significantly higher, even compared to the epileptogene
zone, as it can be seen from Table 3.

Table 3. Comparison when the values characterizing the fractal
spectrum are significantly higher

healthy ill
average min max average min max

D 0.640 0.517 0.714 0.730 0.168 1.195

D- 1.201 1.144 1.276 2.654 1.342 5.042

D-- D 0.560 0.626 0.561 1.923 1.174 3.846

As a rule, the value of D-- D during seizures is on
the average twice as high as the one for a healthy subject
and this is a clear indicator of the state of illness.

The second part of the research concerning the fractal
spectrum was dedicated to the way in which it can be used
to choose which electrode is most suitable for signal
acquiring in a “10-20” system employed in a Donchin
paradigm. The signals were those obtained from
Wadsworth BCI Dataset, [14].

Fig. 7. The active electrodes in a P300 acquisition system from
the point of view of the fractal spectrum

The available data sets were slightly modified so that
only the P300 parts of the signal to be processed. The
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fractal spectrum was computed for the signal of each
electrode. The mean value (denoted by m) and the standard
deviation (denoted by ) of the difference D- - D were
also computed for all electrodes. Then, only those values
outside the interval [m-, m+] were considered as
significant. A map of the scalp, in fact Fig. 2 from [15], in
which only the active electrodes were left with a tag
bearing their name, is presented in Fig. 7.

It is worth remembering that this result is in obvious
concordance with other research in the field. However, the
fractal spectrum, due to the amount of computing power
needed is not suitable for applications that require high
speed and, fortunately, the brain computer interfaces are
still quite tolerant from this point of view.

Conclusions

Computing the fractal spectrum for the EEG signal
evidenced the cases in which the condition of an epileptic
subject is changing and therefore it may be used
successfully as a detection algorithm for preictal states. In
other applications involving brain-computer interfaces, like
the one that evidences the active electrodes in a Donchin
paradigm, the fractal spectra may be used as an initial
setup or, in conjunction with other methods, to detect P300
evoked potentials, as an supplementary tool.
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A. M. Lazar, R. Ursulean. Further Applications of the Fractal Spectra of the EEG Signals // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2008. – No. 2(82). – P. 45–48.

The chaotic properties of the EEG signals are evidenced by means of fractal spectra. The method involved in computing is based on
the so-called Rényi entropy. The fractal spectra are clearly changed according to the state of the subject and this proved to be a good
indicator in preictal and ictal states of epileptic patients. Another possible application of the fractal spectrum is the one in which, in a
Donchin paradigm, active electrodes may be evidenced based on P300 evoked potentials. Ill. 7, bibl. 15 (in English; summaries in
English, Russian and Lithuanian).
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электротехника. – Каунас: Технология, 2008. – № 2(82). – C. 45–48.

Хаотические свойства сигналов электроэнцефалограммы свидетельствуются посредством фрактальных спектров. Метод 
основан на так называемой энтропии Rényi. Фрактальные спектры ясно изменены согласно состоянию предмета, и это
хороший индикатор состояний эпилептических пациентов. Другое возможное применение фрактального спектра основан на 
парадигме Donchin’a, когда активные электроды характеризуется потенциалами P300. Ил 7, библ. 15 (на английском языке; 
рефераты на английском, русском и литовском яз.).

A. M. Lazar, R. Ursulean. EEG signalų fraktalinio spektro pritaikymo galimybės // Elektronika ir elektrotechnika. – Kaunas:
Technologija, 2008. – Nr. 2(82). P. 41–44.

Chaotiškas EEG signalo savybes galima stebėti naudojant fraktalinį spektrą. Skaičiuojamasis metodas remiasi vadinamąja Rényi
entropija. Fraktalinis spektras aiškiai kinta priklausomai nuo subjekto būsenos. Tai yra geras epilepsija sergančių pacientų būklės prieš
priepuolį ir priepuolio metu indikatorius. Kitas galimas fraktalinio spektro pritaikymas – aktyvių elektrodų stebėsena remiantis P300
sužadintais potencialais ir Donchin‘o paradigma. Il. 7, bibl. 15 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


