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The statistical method for discrete stroboscopic
transform of signals was published in article [1]. In article
[2], a correction for reduction of the systematic error of the
method, which emerges in circumstances of a small
number of samples, was found. This research is devoted to
further improvement of signal transform precision.

Introduction

The principle of the statistical method is the
following. Let us assume that with normally distributed
noise, the momentary value of the masked signal at

moment it is iu . Due to the masking activity of the

normally distributed grain noise of the stroboscopic
converter’s input level, actually the following value is
observed:

Χ iuiU , (1)

where  is a normally distributed random value with a
mean

0E (2)

and a standard deviation

2DX , (3)

where  is a constant value known for the specific device.
By performing standardization, further in the research

we can assume that 1 . In accordance with the

statistical method, at phase point it the value of the signal

masked with noise is compared n times with a known

threshold ie . If, out of n times of comparison, iU

exceeds the threshold ie
n times, then an estimation of

the signal’s momentary value is calculated
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where  is the standard normal distribution function;

1 – its inverse function;
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of the probability of exceeding the threshold; n – the

number of cases of exceeding the threshold; 1)0(  ,

1)( n and 0)( n in all other cases. After

calculation of
^

iU , the next value of the threshold is set

^
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and, in an analogous way, the signal momentary value at
the next phase point 1it is calculated. In case of weak (i.e.

such signals, the amplitude of which is 1A ) and,

furthermore, centred signals, a constant threshold equalling
0 may be used.

To speed up the locator, it is advisable to divide its
mode into 2 stages: signal detection and exact registration
modes. When the signal has been detected by using a small
number of samples, for its exact registration the scanning
can be repeated a sufficient number of times and averaging
can be performed, until the necessary signal-noise ratio is
obtained. However, it turns out that, with a small number
of samples, after averaging we obtain signal estimation
with a systematic error. This phenomenon was given the
name A2 paradox [2]. The goal of this research is to reduce
the error caused by the paradox.
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we shall determine the random value iY , which assumes a

value of 1 with a probability ip and a value of 0 – with a

probability ip1 . Then the value n can be given as the

sum of n independent random values distributed equally

with iY . Then n shall be the value of a binomially

distributed random number with parameters n and ip .

Denoting this random value with n
iX , we can write that
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In our case, where 0ie and 1 , we can write
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As shown in [3], the average value of the measuring

result of the corresponding 1A is
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After that, we shall change )( n so as to reduce the

signal estimation error. By introducing the denomination
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we can write the average value of the modification result
amplitude as
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In this research, we shall use a superbroadband
radiolocation signal model as a signal example – harmonic

mono-oscillation with amplitude 1A . Due to the symmetry

of the masking noise distribution function, we shall use the

equation )()( jnj   .

Apparently we can speak about correction only in a
limited diapason of amplitudes 1A . Because of this we

shall choose a range YX 0 , which we divide into r

parts YAAAX r  11211 ...0 . To minimise the

systematic error of signal measuring, we are interested in
the minimum of function
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and shall look for such correction parameters, at which the
output signal values in the given diapason of amplitudes
differ the least from the corresponding input signal values.

Taking into account the continuity of 2Ā with respect to

)( j , it shall be in effect for the whole diapason, unless

the division is too crude. Depending on the chosen
parameters of correction, we shall obtain various methods
of systematic error reduction.

“Multiplier” correction.

By using equation (12), at a fixed input signal

amplitude 1A , number of samples n , the lowest discrete

value
n

)0(
  and introducing correction multiplier k

(i.e., taking into account that )()0( 1   k ,

)0()(  n and )()( 1
n

j
kj  in the remaining

cases), the output signal amplitude average value 2Ā can

be written as
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where

10   . (15)

Therefore, in each limited diapason of amplitudes, for

the chosen rAAA 11211 ...0  we can look for the

minimum of function
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with respect to both k and  .

With index i we shall denote the corresponding

values is , it , iQ , iP , ni at amplitude iA1 . Then we

must look for the minimum with respect to k and )(1 

for function
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We shall denote q )(1  . To find the minimum,

we will use the necessary condition of differentiable
function extremum. For this purpose we will derive
equation (17) with respect to k and q .

By expanding equation (17), we obtain
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Both partial derivatives of equation (16) are:
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By composing and solving system
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with respect to k and q , we obtain:

01 k , (22)
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By using the sufficient condition of the differentiable
function extremum, it is easy to verify that the point with
coordinates (22), (23) is not, but the point with coordinates
(24), (25) is the minimum point.

As B is an continiusly differentiable function with
respect to k and q, then the only local minimum shall also
be the global minimum. Therefore we can calculate the
coefficients of the ‘’multiplier’’ correction method in
accordance with equations (24) and (25).

“Addend” correction.

For this correction method, we shall use parameters

n

)0(
  and the addend c . Taking c  )()0( 1  ,
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the remaining cases, we obtain equation (12) in the
following form
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By using the previously introduced denomination

)(1 q , equation
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must be minimised with respect to q and c .

By expanding equation (27), we obtain:
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Both partial derivatives of equation (28) with respect
to q and c are
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By composing and solving linear equation system
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with respect to q and c , we obtain:
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Therefore the only stationary point with coordinates
(32) and (33) has been found. Taking into account that
equation (27) is limited from the bottom, this point will
also be the absolute minimum point.

“Combined” correction.

In order to further improve the precision of transform,
we can use a combination of both previous corrections. In

this case, at input signal amplitude 1A , multiplier k ,
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lowest discrete value  and addend c , i.e. taking into

account that ))(()0( 1 ck    , )0()(  n and
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cases, we can write the output signal amplitude average
value as
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By using the previously introduced denomination

)(1 q , the equation
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must be minimised with respect to k , q and c .

By grouping monomials to kq , kc and k , we obtain

1b , 2b and 3b as coefficients, respectively. Then, in

formula (38), we can write the equation in brackets as
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By expanding equation (38) and grouping monomials

to 22qk , 22kc , qck 2 , qk 2 , 2ck , 2k , kq , ck and k ,

we obtain 1d ,..., 9d as coefficients, respectively. Then, by

partially deriving equation
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with respect to k , q and c , we obtain
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We compose an equation system
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The solution of system (44) with certain q and c can

also be 0k . By using the sufficient condition of the
differentiable function extremum, it is easy to verify that in
that case, the respective point is not the minimum.
Therefore the point with coordinates q, c and k is the only
possible point of extremum. As equation (40) is limited
from the bottom, the only possible point of extremum
found will be the minimum point. Therefore, in case of the
‘’combined’’ method, we can calculate the correction
coefficients in accordance with equations of q, c and k.

Practical application of correction methods

As a practical example of application of these
methods, we shall look at transform of superbroadband
radiolocation signal masked with noise 1 at amplitude

values 25.01 A ; 50.01 A ; 75.01 A ; 00.11 A ;

25.11 A ; 50.11 A and at a number of samples n

within the range from 5n to 30n . In a statistical
modelling experiment, to obtain the average values of
output amplitudes with sufficient precision, the number of
numerical experiments is taken as 50000N . The
obtained results are shown in tables 1-3. The theoretically

calculated
1

2

A

A
relations have been denoted with index 1,

while index 2 denotes the experimentally obtained
1

2

A

A

values.

(44)
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Table 1. Results with the “multiplier” correction

n 0.25 0.50 0.75 1.00 1.25 1.50
51 0.980 0.999 1.018 1.023 1.007 0.970
52 0.979 1.008 1.019 1.027 1.005 0.969
101 0.987 0.996 1.008 1.015 1.009 0.984
102 0.989 0.992 1.013 1.016 1.009 0.982
151 0.989 0.995 1.004 1.012 1.010 0.990
152 0.986 0.999 1.011 1.013 1.008 0.990
201 0.990 0.995 1.002 1.010 1.010 0.993
202 0.995 0.998 1.005 1.011 1.011 0.992
251 0.991 0.995 1.001 1.008 1.010 0.995
252 0.987 0.999 1.001 1.005 1.011 0.997
301 0.992 0.995 1.000 1.007 1.010 0.996
302 0.997 0.997 1.006 1.008 1.010 0.996

Table 2. Results with the “addend” correction

n 0.25 0.50 0.75 1.00 1.25 1.50
51 0.978 1.001 1.022 1.026 1.007 0.965
52 0.967 1.005 1.027 1.023 1.003 0.964
101 0.977 1.000 1.021 1.027 1.011 0.972
102 0.978 1.001 1.023 1.026 1.010 0.971
151 0.975 1.000 1.022 1.030 1.016 0.978
152 0.979 1.005 1.026 1.030 1.017 0.978
201 0.977 0.999 1.019 1.030 1.020 0.983
202 0.982 1.004 1.024 1.031 1.020 0.983
251 0.979 0.999 1.017 1.028 1.022 0.987
252 0.980 1.004 1.019 1.027 1.021 0.988
301 0.981 0.999 1.014 1.025 1.023 0.990
302 0.981 1.002 1.014 1.025 1.022 0.991

Table 3. Results with the “combined” correction
n 0.25 0.50 0.75 1.00 1.25 1.50
51 1.004 0.996 0.996 1.003 1.007 0.995
52 0.997 0.996 0.990 1.003 1.009 0.996
101 1.003 0.996 0.996 1.003 1.007 0.995
102 1.005 0.995 1.001 1.004 1.003 0.992
151 1.003 1.000 0.996 1.002 1.005 0.996
152 1.001 1.003 0.997 1.006 1.005 0.996
201 1.003 0.997 0.996 1.002 1.005 0.997
202 1.009 1.000 0.996 1.002 1.005 0.996
251 1.003 0.997 0.996 1.001 1.005 0.998
252 1.004 0.997 0.996 0.999 1.004 0.997
301 1.003 0.998 0.996 1.001 1.005 0.998
302 0.999 0.999 0.999 1.001 1.005 0.998

From tables 1–3 it can be seen that:
1) the modelling results match the analytical

calculations well;
2) all correction methods in the given diapason of

amplitudes 5.125.01 A ensure quite high precision of

measurements;
3) the highest precision is demonstrated by the

“combined” method;
4) by increasing n , the systematic error of transform

is reduced, and at sufficiently large n it can be
disregarded.

For illustration, Fig. 1 displays a comparison of
precision of the classic statistical method, the corrected

method [2] and the “combined” method at 11 A and

number of samples within a range from 5n to 30n .

Fig. 1. Comparison of the “classic” statistical method, correction

method [2] and “combined” correction method at 11 A

It shows that the “combined” method ensures
practically ideal compensation of the systematic error. It
must also be pointed out that the correction method
proposed in article [2] was designed for amplitude

diapason up to 11 A , while the results obtained in this

research allow correcting the mistake up to 5.11 A .

For illustration, Fig. 2 displays the result of modelling
a transform of a superbroadband radiolocation signal with
the “classic” (non-corrected) statistic method in the signal
detection mode (one scan) at 5.11 A , 1 and 5n .

Fig. 3 displays the result of averaging the same input signal
transform at 300m in the case of non-corrected method
(thin line) and “combined” correction (thick line). As the
modelling results show, in case of the “combined” method,
the signal modification precision increase is quite
significant.

Fig. 2. Result of transform of a superbroadband radiolocation
signal masked with noise with the “classic” statistic method in the

signal detection mode (one scan) at 5.11 A , 1 and 5n

In this research, the correction of the systematic error
was designed for the variable signal amplitude

diapason 5.125.01 A . It is understandable that, at

amplitude 25.01 A in the signal detection mode, the
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signal will be completely masked with noise. However, it
must be taken into account that an actual superbroadband
radiolocation signal is not a perfect mono-oscillation, but a
quickly fading oscillation process with a certain bending.
Because of that, in order to precisely register such actual
signals with the averaging method, correction is necessary
in a sufficiently broad diapason of amplitudes. In our case,

it has been done in the diapason 5.125.01 A .

Fig. 3. Transform of a mono-oscillation masked with noise using
the ‘’classic’’ statistic method (thin line) and the ‘’combined’’

statistic method (thick line) at 5.11 A , 1 , 5n and

300m

It must be pointed out that the “combined” correction
method is not the most precise possible method in an
absolute sense, because the minimising of the systematic
error is performed only by 3 parameters. In the general

case, the mistake should be minimised by  2/n variables,

which would be involved in a system of linear equations
similar to (33). However it has no practical purpose, as the
“combined” method of optimisation by three parameters is
already displaying a sufficiently high precision of
transform.
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method. Two methods of minimisation of the error are offered, as well as a combination of both these methods for the signal amplitude

diapason 5.125.01 A . With examples of superbroadband radiolocation signal transform, it is shown that both offered methods

and especially the combination of both methods offer a practically ideal correction of the systematic error. Ill. 3, bibl. 3 (in English;
summaries in English, Russian and Lithuanian).

В. Плоцинш. Возможности корректирования статискических методов // Электроника и электротехника. – Каунас: 
Технология, 2008. – № 2(82). – С. 29–34.

Исследование посвящено проблеме уменьшения систематической погрешности, вызванной парадоксом A2 метода
статистической обработки сигнала. Предлагаются два метода минимизации погрешности, так же комбинация обоих этих 

методов для диапазона амплитуды сигнала 5.125.01 A . С примерами трансформации сигнала суперширокополосной 

радиолокации показано, что предлагаемые методы и особенно комбинация обоих методов фактически идеально исправляют 
систематическую погрешность. Ил. 3, библ. 3 (на английском языке; рефераты на английском, русском и литовском яз.).

V. Plociņš. Statistinių metodų koregavimo galimybės // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2008. – Nr.
2(82). – P. 29–34.

Tyrimas skirtas sisteminėms paklaidoms, gautoms taikant statistinį signalų apdorojimo metodą A2, minimizuoti. Pasiūlyti du
paklaidos minimizavimo metodai bei abiejų metodų kombinacija. Metodai taikytini kai signalo amplitudės diapazonas

5.125.01 A . Pateikti superplačiajuosčio radiolokacijos signalo transformacijų pavyzdžiai. Jais remiantis parodyta, jog abu

siūlomi metodai ir ypač jų derinys užtikrina praktiškai idealią sisteminės paklaidos korekciją. Il. 3, bibl. 3 (anglų kalba; santraukos
anglų, rusų ir lietuvių k.).
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