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Introduction

A long-standing fundamental issue in nonlinear time
series analysis is to determine whether a complex time
series is regular, deterministically chaotic, or random. An
accurate identification of the dynamics underlying a
complex time series, is of crucial importance in understan-
ding the corresponding physical process, and in turn affects
the subsequent model development. A steady stream of
efforts has been made, and a number of effective methods
have been proposed (also in the latest years [1]-[3]) to
tackle this difficult problem. The vast majority of these
methods are based on attractor reconstruction from time
series and such characteristics as largest Lyapunov expo-
nent, K2 entropy, and correlation dimension calculation
[4], [5]. However, the existence of noise, which may mask
or mimic the deterministic structure of the time series, can
lead to spurious results [6]. Finally, most of these ap-
proaches depend heavily on a good reconstruction of the
phase-space geometry of the dynamical system. Since
there is no unique way to choose the embedding dimension
and the time lag, the accuracy of such methods is hard to
guarantee [6], [7]. For a certain class of time series this
task is simpler. Zhang et al [6] have proposed a different
method to detect deterministic structure from a pseudope-
riodic time series. By using the correlation coefficient as a
measure of the distance between cycles, they were ex-
empted from the phase-space reconstruction and construct
a hierarchy of pseudocycle series. Appropriate statistics are
then applied to reveal the temporal and spatial correlation
encoded in this hierarchy of the pseudocycle series, which
allows for a reliable detection of determinism and chaos in
the original time series. The algorithm developed here is
also based on the concept of the using correlation coeffi-
cient as a measure of the distance between cycles, but the
execution of the idea in this paper is different. We present
the straightforward and noisy resistant algorithm to detect-
ing chaos in pseudoperiodic time series by using the corre-
lation coefficient as a measure of the distance between
cycles, but without building a hierarchy of pseudocycle
series. Proposed algorithm is similar to Rosenstein algo-
rithm [8] for largest Lyapunov exponent calculating, but
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without reconstructing of the attractor dynamics. Same as
in work [6], throughout the paper, we use the X component
of the well-known Rossler system and an experimental
laser dataset for illustration, both of which are chaotic and
contain obvious periodic component. The laser dataset is
the record of the output power of the NH; laser available in
Santa Fe Competition (Data Set A).

Description of the algorithm

1) Given pseudoperiodic ~ time  series
{Xi}={X» X3, -, %y} of length N, one can define m-lengths

a

sequence cycles C(m)(i):{xi,xi+l,~--, X; +m—l}' These cycles
represent m consecutive X values, commencing with the ith
point and m is defined approximately as one period T of
pseudoperiodic time series. For a given C(m)(i):
i=1,2,--,N/2-m+1-T, -T; (Tq is explained below)
the correlation coefficient pj; as the distance between each
pair of cycles C(i) and C(j) for |j —i| >T, is calculated.

The correlation coefficient characterizes the similarity
between cycle C(i) and C(j). The larger the correlation
coefficient, the higher the level of similarity. Considering
the continuity and smoothness of the vector fields of de-
terministic systems, two cycles with a larger p; will also

be close in the phase space, i. e., for the relation between
cycles describing, the correlation coefficient can be used
equivalently as the phase-space distance [6].

2) The search of most similar cycles is executed us-
ing a sliding overlapping window of constant length
T =N/2 for all i. For a given i the values of lag j changes

from 14T, to N/2+T,. The constraint|j —i| 2T, is neces-
sary to exclude temporally correlated points.

3) The algorithm locates most similar ij" pair of cy-
cles (with maximum correlation coefficient p,; ) of each
point i. Like Rosenstein algorithm [8], the averaged diver-
gence between two nearby cycles p, (k) at time steps k
(k=1,2,---,Ty) is calculated


mailto:k.pukenas@lkka.lt

1
pnlk)=—{1n i (K)) (1
where <> denotes the average over all values of i, At —

the sampling period of the time series. This process of
averaging is the key to calculating divergence between two
nearby cycles in presence of noise

4) For chaotic systems, the distance between two
nearby cycles will increase exponentially over time due to
the very nature of sensitivity to initial conditions. There-
fore, the correlation between two nearby cycles, which
decreases smoothly and monotonously with the distance
between cycles [6], is also expected to drop exponentially
with the step k. The semilogarithmic plot In(py, (k)) ~k (or

versus time t = K - At ) thus appears to be a line nearby
straight, whose slope is actually related to the largest
Lyapunov exponent. The larger the |Aln Pm (k)/ Ak|, the
higher the level of chaos. So we can use |Aln P (K)/ Ak| as
an indicator of chaos. Since pp(k) is close to 1,
In(py(k))~ pm(k)=1 and we can estimate slope as

|Apm (k)/ Ak|. The curve saturates at longer times and T,

is defined normally only for the slope region.
Results

We consider the influence of different types of noise
on the measure we have defined. In the case of additive
noise, i.e., measurement or instrumentation noise, all the
pair-wise correlation coefficient pmi(k) will decrease.
However, since the additive noise has no preference in
influencing different cycles in the time series, pp; (k) will

decrease roughly to the same extent, and their averaged
divergence remains nearly unchanged. Fig. 1 shows a plot

of ( Pmi (K )) versus K (in each figure “<Divergence>" and

“Iteration” are used to denote < Pmi (k )) and k, respectively)

for the x component of the Rossler system with additive
white Gaussian noise and colored noise (1/f noise) of dif-
ferent levels. The Rossler system is given by

%=—(y+2),
Y oxray, @
%=b+z(x—c);

with parameters a=0.2,b=0.2 and ¢ =5.7.

Fig. 2 shows plot for experimental laser data set with
additive white Gaussian noise and colored noise of differ-
ent levels. In Fig.1, 2, we can see that algorithm can suc-
cessfully detect chaos in the presence of additive white
Gaussian and colored noise — the slope of lines indicates
chaos for signal-noise ratio (SNR) up to 10 dB. For a peri-
odic sinusoidal signal with noise there are no such relations

— the curves of <pmi (k)) versus Kk remain flats for SNR up

to 10 dB for white Gaussian noise and for colored noise
(Fig.3).
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Fig. 1. Plot of <Divergence> versus iteration for the x component
of the Rossler system (series length 1600) with additive Gaussian
noise (upper panel) and additive colored noise (lower panel) of
different levels

In the case of additive white Gaussian noise the corre-
lation coefficients between different pairs of cycles are

random and (pmi (k)) will assume statistically the same

value for different k, while for the colored noise, though
cycles of the noisy periodic signal might appear “corre-
lated” due to the intrinsic correlation of the colored noise,

we cannot find the scaling region in the plot of ( Pnmi (k )> ~
k, since <pmi (k)> are roughly the same for k shorter than

the decorrelation time of the noise [6].

Discussion and conclusions

Through this approach, we can also discriminate be-
tween a low-dimensional chaotic signal and a periodic
signal with noise. For low-dimensional pseudoperiodic
chaotic signal with slow divergence between nearest
neighbors it is possible to find the similarity between rela-
tive length cycles without a risk that first parts of two cy-
cles are close and the late parts could be far away from
each other due to the influence of the positive Lyapunov
exponents. Multiple averaging of distance measuring (cor-
relation coefficient) between two nearby relative long cy-
cles allows reducing the influence of random high-



dimensional noise. For the chaotic time series, as we have
seen, correlation coefficient < o (k)> will decrease with k,

and a scaling region is present in the plot of <ln Pmi (k )> ~k

or <pmi (k)> ~ k. While for periodic signals with noise,

there are no such relations. The algorithm performed rea-
sonably well for SNR up to 10 dB.
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Fig. 2. Plot of <Divergence> versus time for the experimental
laser data set (series length 1000) with additive Gaussian noise
(upper panel) and additive colored noise (lower panel) of differ-
ent levels

The traditional universal algorithms for calculating
largest Lyapunov exponents [8], [9] cannot reliable esti-
mate the largest Lyapunov exponents at noise level about
SNR =10 dB.

In summary, we have proposed a noise resistant algo-
rithm to detect deterministic structure and chaos for time
series data exhibiting strong pseudoperiodic behavior. The
intrinsic correlation of the data set is studied on the scale of
single cycles by using a similarity measure, thus phase-
space reconstruction can be avoided. Differently from
method proposed by Zhang et al [6], where the pseudope-
riodic time series are segmented into consecutive (no over-
lapping) cycles according to the local minimum (or maxi-
mum), we use overlapping cycles similarly to phase-space
vectors of reconstructed dynamics. This allows obtaining
the results with relative small data sets. For example, in
paper [6] 1596 cycles for the Rossler system and 1224
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cycles for laser data set are used to produce a wider scaling
region for visual inspection. In our work the series length
for Rossler system is 1600 and for laser data set — 1000
points, i.e. comparable with series length for calculating
largest Lyapunov exponents according to the Rosenstein
method [8].
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Fig. 3. Plot of <Divergence> versus time for a periodic sinusoidal
signal (series length 1600) with additive Gaussian noise (upper
panel) and additive colored noise (lower panel) of different levels

In case of the high level of noise, algorithm can be
successfully applied together with nonlinear phase-space
reconstruction and the principal components analysis
(PCA) — a well known technique, which can be used for
pseudoperiodic signal prefiltering [10]. Starting from a
time series {Xi}z {X(» X5, -+, Xy }, a matrix Y is construc-
ted by using the nonlinear embedding phase-space
technique [4], [5] as follows:

Y(Q,j)=x(j+(-1)), (3)

where j=1,---,N-mz, i=1---,m, and m and 7 are

the reconstruction dimension and time delay, respectively.
By applying PCA [5], [11] for noise reduction and choo-
sing only some eigenvectors with the largest eigenvalues
of covariance matrix, the projected vectors are calculated
with reduced dimension | <m. Finally, chaos is detected
according to the introduced algorithm. If |>1, two-
dimensional correlation coefficient between two matrices
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IpemnaraeTcst HOBBIH MIPOCTOH aITrOPUTM ISl OOHAPYXKEHHS JeTePMUHUCTHYECKOTO Hadasla B MICEBIONCPHOINIECKIX BPEMEHHBIX
psinax 6e3 peKOHCTPYKIHK (a30BOTO MPOCTPAHCTBA. B kauecTBe Mephl AUCTAHIIMH MEX/y ONpeIeIICHHBIMU [INKIAMH BPEMEHHOTO pPsia
npuMeHeH KOd()(GHULIMEHT KOppeNsiuy, Ha OCHOBAaHHM KOTOPOTO PAaCCUMTBHIBACTCS YCPEAHEHHAs HAKJIOHHAS IUBEPreHIUH MEXTY
OmmKalIMMy (C HauMEHbBLICH JMCTAHIWEH) LMKIAaMHM, SBISIOINAsCS HWHIUKATOPOM JIETEPMHHHCTHYECKOTO Xaoca. YCpeIHEHHas
3aBHCHMOCTb PacXOXICHHUS MEXIy OMMmKallllMMM LUKJIAMH OT BPEMEHH PacCUMTHIBAeTCS MO MeToAy PoseHIuTeiHa Ui onpeneneHus
MaKCUMaJIbHOW 3KcroHeHThl JlanyHoBa. ITokasbiBaeTcsi, YTO JITOPUTM CIIOCOOEH HAAEKHO OOHApPYKUBATh XAOTHYECKYIO IPHUPOLY
CMOJIENIUPOBAHHBIX ¥ OKCHEPUMEHTAIBHBIX MCEBJONEPHOJUYECKUX BPEMEHHBIX DSNOB INPU HAIMYUM IIYMOB Pa3JIMYHOTO
MPOMCXOKICHUS U TMPH OTHOIICHWH cUrHan-myM Beime 10 nb. Mn. 3, 6ubn. 11 (Ha aHrmiickoM s3bIKe; pedeparsl Ha aHTIIHHCKOM,
PYCCKOM H JTUTOBCKOM $3.).

K. Pukénas, K. Muckus. Algoritmas deterministinio chaoso detekcijai pseudoperiodinése laiko eilutése // Elektronika ir elektro-
technika. — Kaunas: Technologija, 2007. — Nr. 8(80). — P. 53-56.

Pateikiamas naujas paprastas deterministinio chaoso detekcijos pseudoperiodinése laiko eilutése algoritmas be fazinés erdvés re-
konstrukcijos. Naudojant koreliacijos koeficienta kaip distancijos tarp tam tikry laiko eilutés cikly mata, skai¢iuojama suvidurkinta
divergencijos tarp artimiausiy cikly (su maziausia distancija) priklausomybés nuo laiko kreivé, kurios nuozulnumas yra deterministinio
chaoso indikatorius. Suvidurkintai divergencijai tarp artimiausiy cikly skai¢iuoti panaudotas Rozensteino metodas didziausiajai Liapu-
novo eksponentei apskaiciuoti. Straipsnyje parodoma, kad algoritmas gali patikimai aptikti chaoting sumodeliuoty ir eksperimentiniy
pseudoperiodiniy laiko eiluc¢iy prigimti veikiant ivairiems triuk§mams, kai signalo ir triuk§mo santykis didesnis kaip 10 dB. Il. 3, bibl.
11 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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