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Introduction 
 
 Due to the need of secure communications, no matter 
the type of the channel used, recent trends in cryptology 
are focused on the possibilities that chaotic maps can offer 
as pseudo random bit generators. 

The opportunity to generate pseudo random bits from 
some discrete chaotic maps was under investigation and a 
review of the recent developments was published in [1]. 
Nevertheless, a general method to fit every discrete chaotic 
map cannot be yet developed in spite of some attempts [2], 
[3], that gave some useful suggestions. 
 These principles can be viewed as useful hints to 
develop new criteria in pseudo random bit generators 
based on discrete chaotic maps.  

The logistic map is one of the most studied discrete 
chaotic maps. It was first proposed as pseudo random 
number generator by von Neumann in 1947 partly because 
it had a ”known algebraic distribution'' and mentioned 
later, in 1969, by Knuth. It is given by 
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and is supposed to have good qualities as pseudo random 
number generator [1], [4], [5] when r = 3.9 ÷ 4 and its 
behaviour is chaotic.  
 
A decision criterion for pseudo random bit generators 
 

Since the probability density function of the pseudo 
random bits must be the uniform one, it is necessary to 
establish a certain level in order to decide, from the 
relation that gives the discrete chaotic map, for which xn a 
zero or a one is generated. For the distributions that have 
symmetrical probability density functions there is a clear 
answer: choosing the mean of the xn values will assure the 
generating of the same numbers of bits according to the 
following formula: 
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where x  denotes the mean value and bn is the bit 
generated by the n-th iteration of the map. 
 Another possibility is to choose the middle of the 
interval between the minimum and the maximum of the 
generated values, [6], but unfortunately this works only if 
the function is symmetrical. 
 In fact, when symmetrical probability density 
functions are involved, it is easy to show that the mean 
value is identical with the median, the value that splits the 
probability density function into two equally filled regions 
and with the middle of the interval. A true indicator for 
symmetrical distributions is the skewness, which is zero in 
this case.  

From the point of view of the discrete chaotic maps 
used as pseudo random bit generators it is important that 
the co-domain of the mapped function to be symmetrical, 
but this usually doesn’t happen. In what follows we shall 
consider the important observation that the median is the 
most suitable statistical characteristic that may split the 
domain into two equally filled sub domains and in this way 
one can achieve the goal of equal numbers of zero and one 
bits. Because of this statement, the criterion for generation 
of a one or a zero bit (2) becomes 
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where med denotes the median of the values generated by 
the discrete chaotic map. 
 Let us see the difference between the two ways of 
generating pseudo random bits using the generalized 
logistic map  
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with x0∈[0,1] and β∈[1,4], whose graphic image is 
presented in Fig.1 for β =3.  

It is clearly seen that the map is not symmetric and 
the middle of the interval is 0.5 (since all the values are 
between 0 and 1). The results of 20,000 bits generation for 
different values of β and the statistical indicators are 
summarized in the Table 1. 
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Fig. 1. The generalized logistic map, xi∈ [0;1],  for β=3 
 
Table 1. Statistical indicators and 0 and 1 bit count for the 
generalized logistic map in [0,1] interval 
 
 β = 1 β = 2 β = 3 β = 4 
mean 0.348 0.358 0.282 0.238 
median 0.348 0.212 0.08 0.03 
skewness 0.0002 0.564 0.936 1.185 

mean 10028 11699 12873 13595 
median 10000 10000 10000 10000 0 
middle 10027 13132 14703 15512 
mean 9972 8301 7127 6405 
median 10000 10000 10000 10000 1 
middle 9973 6868 5297 4488 

 
 The above results show that the use of the mean and 
the middle of the interval are not suitable since the number 
of bits that are generated differ significantly. It is also 
worth noticing the fact that as β increases, the difference 
between the mean and the median is significant and also is 
the difference between the number of the bits 0 and 1 that 
are generated by the map. 
 This situation changes dramatically if we consider a 
much narrower interval to generate the map. To make 
things more clear, let us consider the above case, with β in 
the same range, but with a much narrower interval, let this 
be [0.3;0.4]. It is easy to understand that we shall generate 
the entire map and choose only the values belonging to this 
interval; therefore, the time needed to get the numbers is 
slightly longer. 

From the statistical point of view, the skewness is not 
significant since its value is so close to zero and the values 
of the median and the mean are different by 0.1. It is as 
well easy to notice that the number of bits of each kind are 
almost equal, no matter which statistical indicator was 
used, the mean, the median or the middle of the interval, as 
indicated in Table 2.  

The problem appears elsewhere: let us take a closer 
look at the generated numbers by screening some of them 
for different values of β, as in Figs. 2 to 4. This procedure, 
suggested in [7], is a good indicator when one is able to 
“magnify” the map, plotted as two-dimensional 
consecutive values. 

These figures clearly show that, except for β=2, there 
are spaces that are not filled and this puts in doubt the 
quality of the numbers, even for well established cases 

(β=1), where the map should behave as an random number 
generator with uniform distribution. 
 
Table 2. Statistical indicators and 0 and 1 bit count for the 
generalized logistic map in [0.3,0.4] interval 
 

 β = 1 β = 2 β = 3 β = 4 
mean 0.349 0.349 0.349 0.349 
median 0.349 0.349 0.348 0.348 
skewness 0.019 0.048 0.047 0.036 

mean 10070 10085 10075 10092 
median 10000 10000 10000 10000 0 
middle 10193 10304 10364 10344 
mean 9930 9915 9925 9908 
median 10000 10000 10000 10000 1 
middle 9807 9696 9636 9656 

 
 Therefore, much testing will be needed to be able to 
decide in each case if the quality of the numbers is the one 
that was expected. 

 
Fig. 2. The generalized logistic map, xi∈ [0.3;0.4], for β=1 

 
Fig. 3. The generalized logistic map, xi∈ [0.3;0.4], for β=2  

 
Fig. 4. The generalized logistic map, xi∈ [0.3;0.4], for β=4  
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A brief review of the statistical tests for bit sequences 
 
 To test the validity of our initial supposition, that 
narrowing the interval will led to better quality of the 
numbers (because in this case the median and the mean 
will have virtually the same value), we must recall the 
standard [8], whose requirements are reviewed in brief in 
what follows. 
 The standard is taking into account sequences of 
20,000 bits that must pass four statistical tests: the 
Monobit Test, the Poker Test, the Runs Test and the Long 
Runs Test. 
 The Monobit Test is projected to evidence if the 
number of ones and zeros are nearly equal; the standard 
specify the value of the number of ones to be somewhere 
between 9,654 and 10,346 in order to pass it. 
 The Poker Test requires the dividing of the initial 
sequence into 4 bit contiguous segments, the counting and 
the storing of each of the 16 possible 4 bit values. 
Denoting as f(k) the number of each value, 0 ≤ k ≤ 15, the 
X statistic is computed by means of the formula (5): 
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 The test is passed only if  X ∈ [1.03;57.4]. 
 If we describe a run as the maximal sequence of 
consecutive bits of the same kind then the incidence of 
runs (for both consecutive zeros and consecutive ones) of 
all lengths between 1 and 6 in the sample stream should be 
in the corresponding interval specified in the following 
table. 
 
Table 3. The number of occurrences for each length of  
consecutive bits of the sequence 
 
Length 1 2 3 4 5 6&6+ 
Number of 
occurrences 

2,267 
÷ 

2,733 

1,079 
÷ 

1,421 

502 
÷ 

748 

223 
÷ 

402 

90 
÷ 

223 

90  
÷  

223 
 
 It is worth noticing the fact that the sequences longer 
than 6 are considered of length 6 when counting them. The 
test is passed if for the generated sequence the number of 
consecutive bits of each length is between the limits given 
in Table 3. 
  The Long Runs Test is proposed to get rid of those 
sequences that have long runs greater than 34.  
 
Testing the generalized logistic map as a pseudo 
random bit generator 
 
 First, the histogram of the frequencies of the initial 
data was computed; no matter the value for β, there were 
obtained histograms like the one in Fig. 5, distinctive for 
uniform probability density function. 
 The map was first generated for several initial values 
knowing the sensitivity to initial condition of the chaotic 
maps. From the statistical point of view no noteworthy 

changes have been recorded, as can be seen from the 
following results, presented in Table 4. 

 
Fig. 5. The histogram of the real numbers generated by the 
generalized logistic map, xi∈ [0.3;0.4], for β=2 
 
Table 4. The statistical indicators and the representative values 
of the tests for three different initial values of the generalized 
logistic map for β=2 and the interval [0.3;0.4] 
 

Initial value  x0 = 0.1 x0 = 0.5 x0 = 0.9 
Mean 0.349 0.349 0.349 
Median 0.348 0.349 0.349 
Standard dev. 0.029 0.029 0.029 
Monobit Test 10000 10000 10000 
Poker Test 7.725 2.822 6.227 

1 2547 2517 2474 
2 1204 1245 1224 
3 622 653 620 
4 303 314 299 
5 152 148 155 

Runs Test 

6&6+ 162 150 183 
0 11 11 11 Long Run 

Test 1 12 11 11 
 
 As a general remark the sequence generated by the 
initial condition x0 = 0.5 led significantly to the best results 
for the Poker Test. 
 Let us now consider the different values for the β 
parameter and do the similar testing, this time considering 
the same initial condition x0 = 0.51. The initial condition 
needs to be slightly different than 0.5 since for this value 
and β = 1 the map won’t behave chaotically, as it can be 
seen from (4). The results of the simulations are those in 
Table 5. 
 
Table 5. The statistical indicators and the values of the tests for 
different values of the β parameter of the generalized logistic 
map in the interval [0.3;0.4] 
 

 β = 1 β = 3 β = 4 
Mean 0.349 0.349 0.349 
Median 0.349 0.348 0.349 
Standard dev. 0.029 0.029 0.029 
Monobit Test 10000 10000 10000 
Poker Test 315.84 34.259 3.706 

1 3065 2601 2488 
2 1347 1249 1212 
3 597 610 629 
4 219 300 310 

Runs 
Test 

5 101 125 143 
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6&6
+ 57 159 165 

0 9 11 13 Long 
Run Test 1 11 11 11 

 The shaded areas in Table 5 indicate that the 
sequence failed the test and this happened only for the case 
β = 1. 
 
Conclusion 
 
 The statistical tests carried out for the generalized 
logistic map in the case of narrow intervals surprisingly 
showed that, except for the usual value of the β parameter, 
β=1, when considering the median as the decision 
criterion, the map could be a source of pseudo random bits 
and the sequences pass the usual tests for this kind of bit 
streams. 
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Описываются возможности применения логической схемы, когда невозможно генерировать однозначные цифры псевдо 
сигналов. Оцениваются ресурсы таких цифр при определенных ограничениях. В случаях, когда это возможно, доказывается, 
что при помощи статических тестов есть возможность полностью открыть результаты использования. Доказано, что 
генераторы псевдослучайных битов оцениваются статистическими тестами и показано, что они используются для составления 
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