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Introduction

In problems of automatic control system (ACS)
optimization it is required to determine the structure of
controller, its parameters or the law of reference value
variation which would guarantee the required quality of
control. Problems of optimal control can be solved using
variational calculus, maximum principle, dynamic
programming and other classical methods of ACS
synthesis when control objects are simple and have
mathematical models. Problems of optimal control are
often solved using variational calculus methods which are
simple and convenient according to the authors of the
monograph (1). However the indicated methods are not
universal; it is difficult to apply them when the object is
described by logic operators and impossible when
mathematical model does not exist.

The objective of the present study is as follows: by
application of search optimization methods [2] and system
synthesis methods [3] to create algorithmic variational
calculus methods that would allow to solve variational
calculus problems in cases when mathematical model
(functional) of the object is not set by analytic method, and
it is impossible to apply classical synthesis methods
(including variational calculus).

Problems of variational calculus

We are going to analyze several simple problems of
variational calculus.

The simplest classical problem of variational
calculus is formulated as follows: out of a set of functions
an extremal y(f) needs to be found that would give the
functional

=] fy(t.y.9)dt (1)
f
minimum and would intersect fixed marginal trajectory
ends

Y1) =Yy, y(ff)=y_/, (2)
where f;(¢,y,y)— function of variables ¢,y and y thatis

generally uninterrupted and has uninterrupted partial
fluxions up to the second row following all variables.
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Euler’s equation is applied for solving the problem

1, 2)
%y, ) _d oty ) _
dy dr oy

Its solution is the searched extremal y(z).

Problems of variational calculus that require finding
extremals for their solutions make a certain class of
problems. Problems with fixed trajectory ends, problems
with unfixed trajectory ends, search of extremals with
breaking points can be attributed to it.

Another class of variational problems involves
problems connected with finding conditional extremum of
a functional, e.g. function y(¢) needs to be found that would
give the functional

0.

1= fy(e.y. 3 3)
minimum with respect to limitations
h(t,y)=0,j=1,.,p<n, (4)

where y —is an n-dimensional vector.
The method of Lagrange multipliers is applied for
solution (3), (4). Lagrange function is written down

P
F(t,3,9) = fo(t,y, )+ Y Ak (t,y) . &)
J=1
A system of n+p equations is made, where n of
Euler’s equations
OF(t,y,y) _d 8F(t,.y,y) —0.izl..n  (6)

oy, dt 0oy

i

and p limitation equations are involved (4).

From the equation system (4), (6) a solution
»,(),...,»,(t) is found which corresponds to conditional
extremum of the functional (3).

It has to be noted that application of methods of
Euler’s equations and Lagrange multipliers for the solution
of problems (1), (2) and (3), (4) requires analytical
expression of function f;(¢,y,y); in addition this function

must have uninterrupted partial fluxions.



The basics of algorithmic methods of variational
calculus

We shall analyze the solution of problem (1), (2) by
application of methods of algorithmic system synthesis [3].
Within the time interval 7, <# <7, when #,=0, using

discreet values of function y(f)

y[iT],i=0,..,N-1, (7
a k — dimensional vector x is introduced.
x:{xl :y[O],x2 :y[lT],...,
3

X, = y[(N=2)T),x, = p[(N-DT]},

where k = N, T =t;/N is a sampling period.
A step function or another function made out of
linear intervals is formed using the components of vector x

)

Then a variational calculus problem (1), (2) becomes
a search optimization problem. An extremal y(¢) has to be
found that would secure functional

y=y(x1), 0<t<t,.

()= 1((e.0), 011, (10)
minimum with respect to marginal conditions
Y(t)=y(0) =y, 5 )=y, (In

Problem (10), (11) is solved applying the methods of
simplex search [2]. The scheme of problem solution is
presented in Fig. 1.
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Fig. 1. Scheme of variational calculus problem solution

Variational calculus problem (3), (4) i.e.
optimization problem with functional limitations in the
form of equals (4), can be rearranged into an optimization
problem without limitations with the help of penalty
function method. This problem can be formulated as
follows:

1,(x) = 1(x)+ P(x) = I[y(x,0)] +

39 B [y(x.0] - min (12)

where P(x)- penalty function; ¢; — weight coefficient, y(x,?)
— vector function.

Problem (12) is solved by application of simplex
search methods following scheme of Fig. 2.
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Fig. 2. Scheme of solution of variational calculus problem with
functional limitations

Examples of variational calculus problem solutions
following algorithmic methods

Problem No. 1. Function y(¢) needs to be found that
would give a minimum to the functional

T

ct—|n

2
I=[f(ty.)e=[(" =3 ). (13)
0
Marginal conditions are given by
»0)=1, y(z/2)=0. (14)

Problem (13), (14) is solved following the technique
(7)-(11) and the scheme of Fig. 1. We choose that N=8
then

tf
T=-L=0,196s.
N

Since the marginal points y(0) and y(NT) of the
trajectory are fixed, an octangular simplex is made in
seven dimensional space. Extremal y(f) is searched
according to simplex search method of prohibited
backward step. The result of problem solution — extremal
y(¢) found by algorithmic means. It is shown in Fig. 3
(curve No. 1). Theoretical extremal y(f) [3] is shown in
Fig. 3 (curve No. 2).
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Fig. 3. A chart of extremals of problem No. 1
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Problem No. 2. Function y(f) needs to be found that
would give a minimum to the functional (13) complying
with marginal conditions

¥(0)=0, y(z/2)=1. (15)

The problem is solved the same way as indicated
above. The result of problem solution — extremal y(¢) found



by algorithmic method. It is shown in Fig. 4 (curve No. 1).
Theoretical extremal y(f) [3] is shown in Fig. 4 (curve No
2).

Problem No. 3. Function y(¢) needs to be found that
would give a minimum to the functional

(16)

u]
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Fig. 4. A chart of extremals of problem No. 2

Marginal conditions are given
y(0)=0, yO0)=1, yO =1, yMH=1.  (17)

Problem (16) is solved (17) following the same
technique (7)-(11) and scheme of Fig. 1. We choose that
N=5 then

t
T=-2L=0,2s.
N

A pentagonal simplex is made in four dimensional
space of variables. Extremal () is searched according to
simplex search method of backward step. The result of
problem solution — extremal y(f) found by algorithmic
means is shown in Fig. 5 (curve No. 1). Theoretical
extremal y(¢) [3] is shown in Fig. 5 (Curve No. 2).
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Fig. 5. A chart of extremals of problem No. 3

Problem No. 4. The equation of torque of DC motor

dw
[—=M,6-M_, 18
7 M, (18)
where M, = C,,i —dynamic torque (motor torque); M, —
load torque; I- inertia; C), — coefficient.
From (18) we get

i:ﬂ:#(]d_a’jLMC). (19)
¢, C, dt

Heating of motor during time interval 7 when M, =0

T 12R T T
0= [Ri*dt=—-[adt=k[@’dt,  (20)
0 CM 0 0
. . I*R
where R is resistance of the armature; &k =——.
M

The problem is formulated as follows: laws of speed
o(t)and current i(¢f) wvariation have to be found that

would assure maximum angular displacement of the shaft
T T
(@) = ja)dt = jfo(t,w,a'))dt Smax, (1)
0 0
keeping the limitations
T T
O(w) =k j @t =k j ftoo)di=0,. (22)
0 0

Problem (21), (22) is solved applying the method of
Lagrange multipliers.

However when analytical expressions of functions f
and f; are unknown or are very complicated, problem (21),
(22) can be solved according to algorithmic variational
calculus methods if there is a possibility to measure or
calculate funcionals ¢(w)and Q(w@). Problem (21), (22)

will be rearranged using the penalty function method:
law a(¢) needs to be found which gives maximum to the

functional /(@)

1,(@) = plo(x,0)] - {Olo(x,0)] - 0,}" @ - max, (23)

following marginal conditions w(0)=0, w(7)=0 (here a —
weight coefficient; w(x,f) — step function). Law i(¢) can be
found from equation i=/w/C,,, or inserting to (23) i

instead of w.

Problem (23) is solved following an identical scheme
as the one shown in Fig. 2. The solution of problem (23) is
shown in Fig. 6 — it is a speed law w(f) found by
algorithmic method (curve No. 1) and theoretical optimal
law w(?) [4] (curve No. 2). The chart of armature current of
motor working in the mode of curve No. 1 from Fig. 6 is
shown in Fig. 7 (curve No. 1).
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Fig. 6. Charts of speed extremals of problem No. 4



Theoretical law i(¢) is shown in Fig. 7 (curve No. 2). Conclusions

Analytical expressions of funcionals were not used
in the process of solving problems (Fig. 3-6). The created algorithmic methods of variational
calculus allow to solve various variational calculus
problems by applying simplex search algorithms, e.g. to
find extremals during search optimization, even in such
cases when mathematical model of the object (functional)
is described by logic operators, or its analytical expression
is unknown, i.e. in cases when classical variational
calculus methods are impossible to apply.
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In problems of automatic control system optimization it is required to determine the structure of controller, parameters or the law of
reference value variation which would guarantee the required quality of control. Methods of variational calculus are often used to solve
problems of optimal control when control objects are simple and have mathematical models. But these methods are not universal, it is
difficult to use them when objects are defined by logical operators and it is impossible to use them when mathematical model does not
exist. The aim of the present work is as follows: by application of optimization methods to create algorithmic variational calculus
methods that would allow solving variational calculus problems in cases when mathematical model (functional) of the object is not set
by analytical method and it is impossible to apply classical methods. The technique of algorithmic variational calculus method is set in
the article, problems of variational calculus are formulated in the form of search optimization problems, methods of solution are
indicated and examples of solutions of variational calculus problems are presented. Ill. 7, bibl. 4 (in Lithuanian; summaries in English,
Russian and Lithuanian).

A. JlamOpayckac, B. PunkeBnuwc. AJropuTMuyeckue MeTOAbl BAPHALMOHHOIO HCYUCJIEHHS // DJEKTPOHHUKA WU
ejexkTporexHuka. — Kaynac: Texnonorus, 2007. — Ne 6(78). — C. 75-78.

IIpn pemennn 3amad ONTHUMHU3AIUHM ABTOMATHYECKUX CHUCTEM YHPABICHUS HEOOXOAWMO YCTAaHOBUTH CTPYKTYpPY W IapaMeTphl
YCTPOWCTBA YHpaBICHUSI WM 3aKOH YIPABILIONIErO BO3ACHCTBHS, KOTOpHIE oOecredmn Obl HEoOOXOQUMOE KadeCTBO YIPABICHUSL.
Kornma o0bexTsI ymnpaBieHHsl MPOCTBIC M MMEIOT MAaTeMaTHYeCKHe MOJEIH, YacTO JUI PEIICHUs 3ajad ONTHMAJIbHOTO YIPABICHHUS
HNPUMEHSIOT METOJbl BapHALMOHHOrO McuucieHus. VY Bcé ke yka3aHHbIE METOABI HE SIBISIFOTCS YHHBEPCAIbHBIMH, MX HNPHMEHEHHE
3aTpyJHUTENBHO, KOr/la OOBEKT ONUCAH JIOTMYECKUMH ONEepaTopaMHM M HEBO3MOXKHO, KOTJa MaTeMaTH4eCKOH MOJENN BOOOIIE HeT.
Llens 3Toi paboThl — UCTIONB3YS] METO/BI MOMCKOBOH ONTUMU3ALUH, CO3/aTh alTOPUTMHYECKHE METOIbl BAPUALIMOHHOTO MCUUCIEHHUS,
MO3BOJISAIOIINE pellaTh 3aja4i BapUAIMOHHOTO MCYMCICHHS B TEX CIy4YHsAX, KOTJa MaTeMaTHyeckas Mojenb 00bekTa (PpyHKUHOHAI) B
aHAIUTHIECKOH (hopMe He 3a1aH, KOT[a MPHMEHEHHE KIACCHYECKHX METOIOB BapHAI[OHHOTO HCUHCICHHS HEBO3MOXXHO. B craThe
M3JI0KEHA aNTOPUTMHYECKasi METOIMKA BapHAI[IOHHOTO HCUYHCIEHHs, chOPMYITHPOBAHBI 3a[adl BapHALIOHHOTO HCYUCICHHS B (hopme
3aja4 IIONCKOBOH ONTUMM3AINH, YKa3aHbI CIIOCOOBI peIeHHs, IPUBEACHBI IIPUMEPHI PEIICHUS 3a]ad BAPHAIMOHHOTO HCUHCIeHHs. M.
7, 6ubmn. 4 (Ha TUTOBCKOM SI3bIKe; pedepaTsl Ha aHTTIMHCKOM, PYCCKOM U JIUTOBCKOM $3.).

A. Dambrauskas, V. Rinkevi¢ius. Algoritminiai variacinio skai¢iavimo metodai // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2007. — Nr. 6(78). — P. 75-78.

Sprendziant automatiniy valdymo sistemy optimizavimo uzdavinius, reikia nustatyti valdymo itaiso struktiira, parametrus arba
valdymo poveikio kitimo désni, kurie uztikrinty reikiama valdymo kokybg. Kai valdymo objektai yra paprasti ir turi matematinius
modelius, daznai optimalaus valdymo uzdaviniams sprgsti naudojami variacinio skaifiavimo metodai. Taciau Sie metodai néra
universalis, juos taikyti keblu kai objektas aprasytas loginiais operatoriais, ir neijmanoma, kai matematinio modelio i§vis néra. Sio darbo
tikslas — taikant optimizavimo metodus, kurti algoritminius variacinio skai¢iavimo metodus, leidziancius sprgsti variacinio skai¢iavimo
uzdavinius tais atvejais, kai objekto matematinis modelis (funkcionalas) analitiniu bidu neduotas, kai klasikiniy skai¢iavimo metody
taikyti nejmanoma. Straipsnyje i§déstyta algoritminé variacinio skai¢iavimo metodika, suformuluoti variacinio skai¢iavimo uzdaviniai
paieskinio optimizavimo uzdaviniy forma, nurodyti sprendimo budai, pateikta variacinio skai¢iavimo uzdaviniy sprendimo pavyzdziy.
1. 7, bibl. 4 (lietuviy kalba; santraukos angly, rusy ir lietuviy k.).
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