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Introduction

Signal reconstruction is one of the main tasks in
signal processing, where a discrete signal has to be
transformed into an analog form. Commonly used analog-
to-digital converters sample signals uniformly. The
sampling rate is determined by maximal frequency in
signal spectrum. A level-crossing sampling approach
differs from traditional sampling scheme. For level-
crossing sampling quantization levels are regularly
disposed along the amplitude range of the signal [1]. A
sample is captured only when the analog input signal
crosses one of these levels. In general, samples are not
uniformly spaced out in time and the sampling density
depends on the signal's local properties [2]. This allows
minimizing activity, power consumption and hardware
complexity of the circuit that performs the digitizing. The
paper describes the method proposed for signal
reconstruction from its level-crossing samples.

Asymmetric constructing functions

To reconstruct the uniformly sampled signal a
corresponding reconstruction filter is used. In time domain
reconstruction becomes convolution of samples with
impulse response of the filter:
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where §(7) is reconstructed signal, s(¢,) are the original
signal samples and A(f) is the impulse response that can

be considered as signal constructing function. In case the
sampling rate equals the Nyquist rate, an ideal filter is used
and constructing function is the well-known sinc-function,
which has fairly poor decay properties. In contrast, the case
of oversampling gives some freedom in the choice of A(z) .

If the use of cubic cardinal spline 773 (?) is considered, then
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decays comparatively fast (Fig. 1.), where o = ﬁ -2 and
B>(¢) is the cubic B-spline [3].
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Fig. 1. Sinc-function (dotted line) and the cubic cardinal spline

To reconstruct the nonuniformly sampled non-
stationary signal, the use of asymmetric constructing
functions with fast decay time is considered. This allows
improving the locality of signal reconstruction.

The asymmetric cubic cardinal spline K3n(l) is
determined by expression:

Q0= 3 {n{“t’“’"
5
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where n is the index of level-crossing sample,
At, =t,.1—t, and Au, =u(t—t,)—u(t—t,,) is the

difference of two unit step functions. An example of
asymmetric cubic cardinal spline is shown in Fig. 2.
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Fig. 2. Asymmetric third-order cardinal spline



Note the constructing function K3n(t) differs for each

individual sample. In of uniform sampling

K3n(t):r]3((t—tn)-fs) for all n, where f, is signal
sampling frequency.

case

Signal reconstruction

Signal reconstruction formula is similar to (1):

0= st,)x20).

n=0
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In this case the calculation of K‘S () is quite simple in

comparison with iterative estimation of local atoms in [5].

If two successive level-crossing samples are at the
same level, i.e. s(¢,)=s(t,41), than §(¢) between these
samples will often be less in magnitude than the original
signal (Fig. 4.). To prevent it, the following correction
method is presented.

Correction of the reconstructed signal

To increase the magnitude of the reconstructed signal
between two successive samples s(z,) = s(¢,,1), the use

of the quadratic Bezier spline [6] is considered.

Fig. 3. Quadratic Bezier spline
If three points Py, A and P, are given (Fig. 3.), then

P(t)=(1-0)*Py+2(1— )R + 2Py, t€[0]].  (5)

If each point is determined by its rectangular
coordinates (x,y) and Fy, =P, than the maximal value

of the ordinate of P(¢) is

1 Ax

P (max)
2 kl -1 _ k2—1

y :Poy"r

(6)
where Ax=P, —Fy and ky, k, are the slopes of the
lines FyP, and AP, .

To correct the reconstructed signal, formula (6) can
be used to determine the coefficient C:

(max)
C= Py _Poy :l. 1 . Il —In
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and

S (8) = C-(5() = 5(t,)) + 5(1,,)
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where S, ™ s the maximal value of the reconstructed
signal between two successive samples s(t,,)=s(f,,1)
and S, (¢) is the reconstructed signal after correction.
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Fig. 4. Original s(¢) and reconstructed S(¢) signals

To determine the slopes k; and k,, two methods are

considered. The first one can be wused, if
s(t,—1) #=s(t,)=s(t,41) #s(t,,2) and the slopes are
kl = AS al’ld k2 = - AS . (9)
tnfl Athrl

where AS is the difference between two successive
quantization levels (Fig. 4.). The precision of the estimated
slopes is obviously limited by AS , which shouldn’t be too
small. To improve it, the second method is considered.
Each time the signal crosses one of the defined levels S;

an additional level S;+dS is used to determine the
derivative of the signal (Fig. 5.). In this case the slopes are

a5 and k) =— ds
dt
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Fig. 5. Derivative estimation of the signal

The precision of derivatives is determined by dS,
which can be small enough, and the condition
s(t,—1) #s(t,)=5(t,41) #s(t,42) may not hold. If the
estimated coefficient C in (7) exceeds allowable value due
to big difference Af,, than original signal between ¢, and

t,+1 must have local extremes (Fig. 6.).

To limit the corrected signal in allowable amplitude
range, the following technique is proposed. Firstly the
values 1>d;>dy>d;>.. are chosen such that

a;=Si

, where a j indicates the level at which
i TRi-1



corrected signal will be reflected. Secondly the maximal
value of the corrected signal before limitation 5., ...

S +S

must be equal S;_; :ITH after the limitation (Fig.

6.). To ensure this, the following expression must hold
true:

dy+dy+dy+..= Seorrmax ~Siz1
S;i—=8i4

(11

Fig. 6. The limitation of the corrected reconstructed signal

When initial d; values are chosen, the equation (11)

mostly will not be satisfied, so the smallest j.;, is found
such that

a < jmin
Scorrmax - Si—l .
S —S < dj ’ lf Jmin = 1’
i T Ri-l =
A _ A 12)
Jrain =1 3 _3 Jmin
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After the estimation of j,;, , new values of d; are

calculated:

Scorrmax _Si—l d

. (13)

(Si _Si—l)zdj
j=1

d) =

For new d’; equation (11) holds true and new a’;

values are found:

@y = (1) ay(s; =5 J+ Sir. (14

Index j,, indicates a number of times the corrected

signal is reflected in the process of limitation at levels a;.

Simulation results

The performance of described signal reconstruction
technique has been investigated by computer simulations
on two test signals. The first one is a chirp with constant
amplitude, while the second is a chirp with time varying
amplitude. The result of reconstruction of the first signal is
illustrated in Fig. 7. Note that in this case s(¢,) # s(¢,41)

for all n» and no correction of reconstructed signal is
needed. In contrast, the difference between original signal

and recovered one in Fig. 8. is quite obvious. The result
gets better after correction and limitation of the
reconstructed signal. This can be seen in Fig. 9. If more
quantization levels for level-crossing sampling are used,
the reconstruction result of the second test signal is
illustrated in Fig. 10.
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Fig. 7. Reconstruction of the first test signal: a) original signal; b)
reconstructed signal
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Fig. 8. Reconstruction of the second test signal: a) original signal;
b) reconstructed signal
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Fig. 9. Reconstructed second test signal after a) correction and b)
correction and limitation
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Fig. 10. Reconstructed second test signal (sampled by 8 levels-
crossings) a) before correction and b) after correction and
limitation

To estimate the quality of reconstruction, effective
values of error signal &(¢) =$(¢) —s(¢) and original s(¢)
are compared. The results are summarized in Table 1. The
reconstruction error for the first test signal is

geﬁ’/seﬁ’ =5%.



Conclusions (except when the limitation is done) so that rapid changes
in original signal are not taken into account. This effect can
As can be seen from the results of simulations, the  be reduced by increasing the number of levels when
reconstruction of the signal improves as the number of  performing signal sampling.
level-crossing samples increases. The reconstruction error
can be considerably reduced after the correction and  References
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(this gives a chance to build an almost real time

signal reconstruction systems).
The reconstruction result gets worse if three or more
successive samples are at the same level. The reconstructed
signal between two successive samples is always smooth
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R. Shavelis. Signal Reconstruction from Multiple Level Crossings Using Asymmetric Constructing Functions // Electronics and
Electrical Engineering. — Kaunas: Technologija, 2007. — No. 5(77). — P. 57-60.

Signal reconstruction is one of the main tasks in signal processing, where a discrete signal has to be transformed into an analog
form. Commonly used analog-to-digital converters sample signals uniformly. The sampling rate is determined by maximal frequency in
signal spectrum. A level-crossing sampling approach differs from traditional sampling scheme and results in nonuniformly spaced
samples with sampling density depending on the signal's local properties. The method is proposed for signal reconstruction from its
level-crossing samples, using asymmetric cubic cardinal splines. Achieved results are demonstrated by simulations. Ill. 10, bibl. 6 (in
English; summaries in English, Russian and Lithuanian).

P. IllaBeamc. BoccraHoBiIeHHe [JHCKPETH30BAHHBIX 10 YPOBHSIM CHTHAJIOB C HCHOJb30BAHHEM AaCHMMeTPHYHBIX
KOHCTPYMPYIOIIUX (pyHKIMii / DiiekTpoHUKA U dj1ekTpoTexHuka. — Kaynac: Texnoaorus, 2007. — Ne 5(77). — C. 57-60.

BoccraHOBIICHHE CHTHANIOB NPECTABISAET COOOM OJHY M3 OCHOBHBIX 3a/1ad 00pabOTKH CHTHAJIOB, I'/le AUCKPETU30BAHHBII CHIHAT
JIomkeH OBITH IpeoOpa3oBaH B aHanoroBylo ¢opmy. Illnpoko mcmomb3yeMele aHamoro-upoBeie Mpeodpa3oBaTesll JUCKPETU3YIOT
CHUTHAJIBI PaBHOMEPHO 110 BpeMeHH. [Ipy 3ToM yacToTa JUCKpeTH3alMi CUTHAJIA OIPEIeIIIeTCsl MaKCUMAIBHOI YacTOTOH B €r0 CIIEKTpE.
JluckpeTn3anusi CUTHAJIOB MO YPOBHSM OTIHMYACTCS OT YIOMSHYTOH M IPHBOJUT K HEPaBHOMEPHOMY pacHpe[esIeHHIO OTCYETOB BO
BPEMEHH, 3aBHCSLIEMY OT cremuduueckux cBoiicTB curHaia. [Ipemnaraercsi METOll BOCCTAHOBIICHHUS TUCKPETH30BAHHBIX 110 YPOBHSIM
CHTHAJIOB C HCIOJB30BAHMEM AaCCUMMETPHYHBIX KyOMYecKMX (yHIaMEHTaJbHBIX CIUIAaHHOB. [lodydeHHBIE pe3yJIbTaThI
POJEMOHCTPUPOBAHbI pe3ysbTaTaMmu MojeaupoBanus. M. 10, 6u6i. 6 (Ha aHTIHICKOM s3bIKe; pedepaThl Ha aHIIIHICKOM, PYCCKOM U
JINTOBCKOM $13.).

R. Shavelis. Diskretizuoty pagal lygius signaly atkiirimas taikant asimetrines konstruojancigsias funkcijas // Elektronika ir
elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 5(77). — P. 57-60.

Signaly atkfirimas yra viena pagrindiniy ju apdorojimo uzduociy, kai diskretizuotas signalas turi biiti kei¢iamas i analoginj. Pla¢iai
taikomi analoginiai kodiniai keitikliai signalus tolygiai diskretizuoja laike. Signalo diskretizavimo daznis nustatomas pagal maksimaly
jo spektro dazni. Diskretizacija pagal lygius skiriasi nuo minétosios, nes gaunamas netolygus laike atskaity iSdéstymas, priklausantis
nuo signalo savybiy. SiGlomas metodas diskretizuotiems pagal lygius signalams atkurti taikant asimetrinius fundamentaliuosius
splainus. Pateikiami gauti modeliavimo rezultatai. Il. 10, bibl. 6 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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