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Introduction

Parallel coupled microstrip transmission lines in
inhomogeneous media have found use in microwave
circuits as filters [1], couplers [2], phase shifters [3], etc.
Quasi-TEM analysis of such structures reveals that
multiple phase velocities as well as characteristic
impedances are supported and must be considered for
accurate prediction and understanding of circuit behavior
[41-[7].

In general, a transmission line which consists of
n + 1 conductors in an inhomogeneous dielectric and in
which one conductor is taken as ground, supports n
distinct “normal” quasi-TEM modes, each with distinct
phase velocity and with distinct characteristic impedance
for each line [6]. The case of a homogeneous dielectric
represents a sort of symmetry in which the quasi-TEM
modes become true-TEM modes with different
characteristic impedances but a single propagation
velocity, this fact implies that the per-unit-length (PUL)
inductances can be calculated from the PUL capacitances
for the homogeneous case [6].

Various analyses for coupled lines embedded in
inhomogeneous medium have also been reported [1]-[9].
Tripathi performed a quasi-TEM analysis of symmetric
coupled lines based on the structure’s PUL impedance and
admittance matrices [5]. Nguyen and Chang specialized
this to the lossless case, where the impedance matrix
becomes jw[L] and the admittance matrix becomes

ja)[C] [4]. Farina and others in paper [8] derive a coupled

lines model from the “spot frequency” characteristics of
transmission media derived by means of a numerical
electromagnetic simulator. Levy wuses a method of
equivalent circuits for modeling the coupled lines [9].

In this paper, we present a detailed investigation of
the model of coupled suspended striplines and
microstriplines based on the moment method and partial
charge images technique. We also report the results of its
analysis.

Mathematical model of the microstrip coupled lines

In general case, electromagnetic waves of various
configurations propagate in microstrip lines at various
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phase velocities. However influence of longitudinal
electromagnetic field components on general wave
configuration can be neglected in wide frequency range.
Thus quasi-TEM approach can be used in the analysis of
coupled microstrip lines.

TEM waves in coupled lines are named in accordance
with relation of conductors widths. In case of equal widths,
electromagnetic waves can be either even-mode or odd-
mode. Even-mode wave propagates in lines if voltages
equal in magnitude and sign are applied to the signal strips.
Odd-mode wave propagates in case voltages equal in
magnitude and opposite in sign are applied.

If widths of signal strips are unequal, TEM waves are
called c-mode and out p -mode according to line
excitation mode. It should be noted, that in case of unequal
widths, voltages of signal strips can be different in sign and
magnitude. Relation of voltages in case of c-mode and p -
mode is denoted R, and R, respectively.

It is considered, that length of lines is infinite, and
quasi-TEM waves propagate in lines. Thus, static analysis
of cross-section of coupled microstrip line is enough to
determine line parameters (Fig. 1).

Signal strips

Dielectric substrate

Ground plane

Fig. 1. Cross-section of coupled microstrip line

The main parameters of coupled microstrip lines:

characteristic impedance of signal strips Z,,, , , effective

relative dielectric permittivity &

Ceffe relation of voltages
R,

are found from capacitances of conductors [10]:
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where subscripts 1 and 2 denote conductors, widths of
which are W, and W, respectively;c and p subscripts
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denote of c-mode andp -mode; superscript a denotes
capacitances of coupled microstrip line with same
geometric properties but with no dielectric substrate
(dielectric substrate is replaced with air).

Self capacitancesC,,, C,,, C}

s and mutual

Ca
capacitances C,,, C}, are calculated by introducing so
called magnetic and electric walls to the coupled
microstrip line [11] or, in other words exciting signal strips
in phase and out of phase respectively:

0= €, +CY2s Cp= €yt Cr)20 (4.5
C,=(C,- Cle)/z =Cy=(,- Cze)/z; (6)
Ch=Ci+ Cle)/2 Cpn=(C5,+C)2: (D.®)
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where C,, and C,, — capacitances per unit length of signal

strips with widths W, and W,

magnetic wall is introduced to the system (or when
voltages of same sign are applied to the strips); C,,, C,, —

respectively, when

capacitances of the same signal strips, when electric wall is
introduced (or voltages different in sign are applied);
superscript a denotes capacitance calculated when
dielectric substrate is replaced with air.
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Fig. 2. Model of coupled microstrip lines in a homogeneous
dielectric medium

Several methods can be used to determine
capacitances, used in expressions (4)—(9). Among these
are: conformal mapping [12]-[14], finite difference [15]-
[17], finite elements [18], [19], spectral domain [20], [21],
FDTD [22] etc. In model, investigated in this article,
capacitances C and C{,,, are calculated using

moment method [23]. This method is distinguished for it‘s
low demands for computational resources in comparison
with other methods.

Using the moment method, charge of the conductor is
determined when voltage of the conductor is known. In
this case capacitance is calculated by well known

1,2,e,0
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relationship C = Q /0 , where O — charge accumulated in

the conductor and j — conductor voltage.

Model of coupled lines in a homogeneous dielectric

Applying the moment method, conductors in the cross
section of coupled lines are divided into N equal sub-strips
AW in width. Consider the model of coupled lines
presented in Fig. 2. Conductors are divided into N = 6
sub-strips. It is assumed, that in every sub-strip 7 charge is
distributed uniformly with charge densityr . For sake of

simplicity, it is assumed, that charge of every sub-strip is
concentrated in the string of infinitesimal thickness
positioned in the center of the sub-strip, and charge per
unit length of the sub strip is expressed by:

q; = Py X AW . (10)

Ground plane is modeled by introducing mirror pair
of conductors with respect to ground plane, and applied
opposite voltage, positioned at a distance 24 from the
“real” pair of conductors (Fig. 2).

Charge at point P, and its potential, created in point

P, are related by Green’s functions [24]:

G(P:P)= —ﬁ[ln[%]—l} (11)
(P, :P,.)=—2LglnR(Pj :P), (12)
’ TT

P, and its created

i

where P, : P, denotes charge at point
potential at the same point; P, : P, denotes charge and its

RGP i) -

distance between points P, and P, . In case points P, and

created potential at different points P, and P, ;

P, are in the same signal strip, R(P] :Pi)=|i—j|AW, if
points are in different strips — R(Pj :P,-):|i— j|AW+S ,

where S is gap width between the strips.
According to the superposition principle, voltage at
any point P; is the sum of voltages, created by charges g,

1

positioned in all points P; of the cross section of a coupled

microstrip line:

N
= :E:(;([35
Jj=1

whenl1<i< N,

where z G\P ( )

potentlal at point P,

R+ Y 6lp:p)

J=1

(13)
Greens function, which expresses
in terms of positive charge

N

accumulated in point P, ; ZG(PJ : P,-) — Greens function,
=

which expresses potential at point P, in terms of negative

i

charge accumulated in point P, . Green’s functions in (13)

are calculated using equations (11) and (12).



Charges accumulated in conducting strips are
determined by solving linear equation system, which in
matrix form can be expressed as:

l]=[6]xa],
where [p] — column-matrix consisting of 2N elements of

[G]- 2N x2N matrix of Green’s
functions; [q ] - column-matrix consisting of 2N elements

(14)

known potentials;

of charges to be found. Equation system (14) can be solved
by any conventional technique, e.g. by calculating inverse
matrix of Green’s functions and multiplying it by column—
matrix of voltages:

la]=[G]" x[e]. (1)

It should be noted, that in case of equal strip widths
two planes of symmetry exist in the cross-section of a
coupled lines (Fig. 2), therefore number of unknown
charges reduces four times. In case widths are different,
only horizontal plane of symmetry is present, and number
of unknown elements is NV .

Model of coupled lines in a non-homogeneous dielectric
medium

In order to model coupled lines in a non-
homogeneous dielectric medium, technique described in
[24] shall be used. This technique is based on the principle
of partial charge images [25]. According to this technique,
influence on potential of point P, (see Fig. 3) of every
charge ¢, is expressed in 6 steps:

1. Potential at point P, created by the charge of the

same point ¢; and it’s first partial image Kgq; is

expressed by:
1+K)g; AW
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.—1 . . . .
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Fig. 3. Cross-section of couled microstrip line model in a non-
homogeneous dielectric medium

2. Potential at point P, created by all remaining
charges of ¢, is expressed by:

olP :P)- Mi[(z(”l) In(4nh).  (17)
=1

2re,
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3. Potential at point P,, created by mirror charge

J
- ¢; and all it’s partial images is expressed by:

K(i-x)g,

4"(Pj ZP/'): 27z,

> K2 nf(an-2)n]. (18)
n=1

4. Potential at point P, created by charges g,
situated in all points P, (1<i<Nand i#}],
where N = N1+ N2 — number of all unknown
charges), and their first partial images Kgq, is
expressed by:

1-K?

o ‘inR(P,: B).

olp,:p)=- (19)

Potential at point P,, created by all reaming
partial charges of g, situated in all points P, is
expressed by:

e, p)= K Kb

4rg,

x iKZ(”_l) n{R(P, : B + (4n)?

n=l

Potential at point P,, created by mirror charges

(20)

—q; at points P, and all their partial images is

(-x2),

4re,

x i K2 nfR(p, - B P+ [2n - 18P}

n=1

Full potential at point P, is expressed by summing all

expressed by:

60(P/ :PZN—j+1): x

ey

components of potential at that point. Expressions of full
potentials of all points are found and equation system is
built. In case potentials of both strips are equal to 1 V,
equation system takes shape:

= G +Gyq, + +G1lqﬁ

2 2

=" G4 +Gpg, + +G vy
P2, @

1= Gﬁlq1+Gl2q2+ +Gy vdn

2 2 22 2

or in matrix form:

[1]=[G)x[a]. (23)
Coefficients G, define potential at point P, created

by charge ¢, in expression (22). In case under
consideration, coefficients G, are expressed by adding
potentials, expressed by (16)—(21), and dividing by charge

g

24)

6
Gij :Z‘P(Pi PJ)

J=1



Column-matrix of unknown charges is calculated by
solving linear equation system:

la]=[G]" x[1].

Capacitances per unit length of conducting strips are
determined by summing all unit length charges of sub-
strips:

(25)

N2
Z q; -

i=N1+1

N1
= ZCL‘ > (26)

i=1

In case of odd mode wave propagation, elements of

respective conductor strips in potential matrix are changed
to - 1. Further calculation procedure remains the same as
for even mode wave propagation.
Characteristic impedances and effective relative dielectric
permittivity are calculated by (1)—(3).

Results of investigation of the coupled lines model

Software tools have been developed by authors
according to expressions (1)—(9) and (16)—(26). Normal
mode parameters of symmetrically and asymmetrically
coupled lines were calculated given various widths of gap
between the strips and relations of strip widths. Calculation
results were compared with published results worked out
by other methods.
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Fig. 4. Characteristic impedance (a) and effective dielectric
constant (b) of coupled microstrip lines versus strip width and
space between them. &= 9.6

Dependence of characteristic impedance and relative
effective permittivity on width of strips and gap width is
presented in Fig. 4. It is seen that characteristic impedance
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decreases, and effective relative permittivity increases
when width of strips increases for both — odd and even
wave. Capacity per unit length of wider strips is higher,
and more charge is accumulated in middle part of wider
strips. This explains the dependencies presented in Fig. 4.
Capacitance per unit length when even-mode wave
propagates is lower than that when odd-mode wave
propagates. Hence characteristic impedance and effective
relative permittivity in case of even-mode are always
higher than in case of odd-mode. Strength of electric field
in the gap between the strips is much higher in case of odd-
mode, than in case of even-mode; therefore charge density
at the inner edges of strips is higher for odd-mode. On the
other hand, majority of electric field lines is concentrated
in the air between the strips; consequently effective
relative permittivity is lower for odd-mode.
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Fig. 5. Normalized relative effective dielectric constant of
coupled microstrip lines as a function of strip width and space
between them. &= 9.6

It is known that, when gap between the strips
decreases, interaction between the strips increases —
electric field strength for odd-mode increases (charge at
inner edges of strips increases), and field strength
decreases in case of even-mode (charge at inner edges of
strips decreases). Accordingly, when gap between the
strips decreases, characteristic impedance increases for
even-mode, and decreases in case of odd-mode.
Dependence of effective relative permittivity on gap width
for odd-mode is similar. In case of even-mode, dependence
of effective relative permittivity on gap width is more
complex. When gap width increases (and widths of strips
remain constant), effective relative permittivity initially
increases, and for higher values of gap width decreases
(Fig. 5). This phenomenon is caused by changing of charge
distribution at the inner and outer edges, and in middle
parts of strips at the increase of gap width. When gap
between strips increases (S/ /4 is close to zero), charge

density at outer edges of strips decreases, and less electric
field lines cross air, thus effective relative permittivity
increases. Further increase of gap width causes increase of
charges at inner edges of strips; this in turn causes increase
of electric field lines in air at the gap between strips.
Therefore, effective relative permittivity decreases. It
should be noted, that parameters of thinner strips are more
sensitive to the change of gap width. This is due to higher



Table 1. Values of characteristic impedance of asymmetrically coupled lines calculated by various methods, when 7,/ W, = 0.6/1.2,

h=0.62 mm, and & = 9.7

S, Reference [27] Reference [26] This method
mm | 7, Q Lo, Q Zot, Q | Zpo, Q Za, Q Zo, Q L1, Q Lo, Q 20, Q | 70, Q | 211, Q | Zpo, Q
0,1 74,50 42,15 34,45 19,49 75,50 43,90 35,00 20,70 72,78 | 42,48 | 34,63 20,21
0,2 | 70,81 41,50 38,85 22,77 71,43 42,86 39,64 24,30 69,57 | 41,61 | 39,10 | 23,39
03 | 68,04 | 40,90 | 41,58 | 2505 | 68,57 | 42,14 | 42,82 26,43 | 67,02 | 40,85 | 41,89 | 25,53
0,4 65,90 40,40 43,51 26,69 66,43 41,43 44,29 27,86 64,96 | 40,18 43,87 27,14
0,5 | 64,28 40,01 44,96 27,99 64,29 40,71 46,43 29,29 63,29 | 39,62 | 4534 | 28,38
0,6 | 62,99 39,67 46,10 29,04 63,21 40,00 47,50 30,35 61,91 | 39,13 | 46,48 29,38

relation between charges accumulated in edges of strips
and in middle part of strips for thinner strips than for wider
ones.

At the increase of gap width, interaction between
strips decreases. It is seen in Fig. 4 that when ratio S/ &

increases, parameters of coupled lines approach to
parameters of single microstrip line.

Comparison of characteristic impedance of coupled
lines with same geometrical parameters determined by
conformal mapping and spectral domain methods is
presented in Table 1. It is seen that values of coupled lines
characteristic impedance, determined by method under
consideration is almost always a bit lower than values
calculated by other methods (except characteristic
impedance of the wider strip in out of phase mode).
Nevertheless, relative error in respect of conformal
mapping method is below 3.7%, and in respect of spectral
domain method — below 3.8%. It must be noted, that values
of characteristic impedance published in [26] are
determined assuming signal of 10 GHz acts on a line,
whereas influence of frequency is neglected in the model
under consideration.

Conclusions

A model have been presented for calculating the quasi-
static TEM design parameters of coupled transmission
lines in an inhomogenous medium. Comprehensive
comparisons between the results which are obtained by
using the created model on one hand, and those obtained
by a rigorous conformal mapping and spectral-domain
analysis on the other hand, have shown an excellent
accuracy of better than four percent for most of the
practical ranges of physical dimensions. The model
presented here are about 200 times faster than the finite
difference analysis, hence it is especially applicable in
CAD of (M)MIC design.
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V. Urbanavitius, S. Miku¢ionis, R. Martavi¢ius. Susietyjy perdavimo linijy modelis dielektriko nevienalyti§kumui jvertinti //
Elektronika ir elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 5(77). — P. 23-28.

Pateiktas susietyju perdavimo liniju matematinis modelis, ivertinantis dielektriko nevienalytiSkuma linijos skerspjivyje.
Matematiniam modeliui sudaryti pritaikytas momenty metodas ir kriiviy daliniy atvaizdy principas. Sukurtas matematinis modelis
leidzia nustatyti elektros kriivio pasiskirstyma signaliniy laidininky skerspjiivyje, taip pat apskaiciuoti analizuojamy susietyjy linijy
laidininky ilgines talpas ir budinguosius impedansus esant lyginiam, nelyginiam, sinfaziniam ar priesfaziniam jy sazadinimui. Sitlomo
modelio tikslumas patikrintas autoriy sukurta programine iranga. Skai¢iavimy rezultatai gerai sutampa su publikuotais mokslingje
spaudoje, esant plac¢iam analizuojamy susietyjy linijy konstrukeciniy parametry ruozui. Il. 5, bibl. 27 (angly kalba; santraukos angly, rusy
ir lietuviy k.).
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