ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2007. No. 3(75)

ELEKTRONIKA IR ELEKTROTECHNIKA

SIGNAL TECHNOLOGY

Ti121

SIGNALY TECHNOLOGIJA

Embedded Microcontrollers Benchmarking using Sliding Window

Algorithm

7. NaKkutis

Department of Electronic and Measurement Systems, Kaunas University of Technology,
Studenty st. 50, LT-51368, Lithuania, tel.: +370 37 300898, e-mail: nakutis@ktu.lt

Introduction

Fast-to-market feature is a key for product or solution
success in today‘s highly changing market. Design
engineer or technical project manager is under constant
stress to make a fast decision for key components and
technologies selection. Microcontroller (MC) and its
firmware development tolls are of the first importance in
embedded systems design since they influence both
hardware and especially time consuming firmware
development. Skills and experience of designers together
with price are the issues considered first of all. Technical
requirements of the task are important as well. Number of
inputs/outputs, integrated peripherals, memory, etc. can be
acquired from datasheets. In real-time applications
performance of MC is a decisive parameter. Specification
of classical MIPS are seldom sufficient to answer the
selection questions. Benchmarking is widely used in the
practice of digital signal and general purpose processors to
compare their performance. There are organizations and
companies like Berkeley Design Technology, Inc. [1],
Embedded Microprocessor Benchmarking Consortium [2]
that produce paid benchmarking reports to assist designers
in processor selection. Availability of large number of
vendors and integration of DSP enabled features pushed
towards benchmarking initiatives in the embedded MC
sector also [3-5]. Benchmarking using standard algorithms
is very convenient to compare different MC but is not
always enough to answer the question if the particular MC
will meet real-time requirements of a considered task.
Thus, starter kits, evaluation boards and simulators are
convenient to preliminary check the capability of MC to
handle the task. Prototyping firmware portions can be
coded in high level language (C most usually) and timing
parameters roughly estimated.

In this paper I present case study of very common 8§,
16 and 32 bit MC benchmarking using sliding window
algorithm. Sliding window algorithm is often used for
surface visual quality inspection data processing. The
algorithm involves intensive RAM and ROM memory
access, bit manipulation instructions and software cycles.

53

Kernel of the algorithm is described bellow. The
benchmark in this case is sampling frequency that can be
processed in real time.

Sliding window algorithm

The algorithm accepts binary pixels (1 represents fault
pixel, 0 — fault free pixel) at the input. The goal of the
algorithm is to check if total sum of fault (black) pixels in
the rectangular window composed of K columns and L
lines exceeds preset threshold level Wy,. The window then
constantly shifts forward taking the new line into its scope
and forgetting the oldest one. See Fig.1 to assist further
explanation and notations. Physically window slide can be
implemented by transporting the investigated object by the
line scan camera. Sum of fault pixels

prj

1

(M

L
Sy =Y,
i=1

K
i j=
must be updated after acquiring the new line of the object
surface image. In the equation (1)) is the pixel obtained
after filtering of raw pixels generated by the line scan
camera

N
p; =1.if D5, >S,. p;, =0 otherwise; (2)

n=1

here §,; is the n-th raw pixel in the i-th column, N is the

size of segment in lines, S, - segment threshold level.

Estimation of the pixels has to be done in every
column i. Fig. 2 presents sequence of necessary
calculations that must be performed by the embedded MC
upon reception of a new raw line. Critical data path is
marked with the solid line. It is evident that the bottleneck
of the algorithm will be experienced upon reception of the
N-th raw line. Indeed at this moment it has to be:

1. Updated sum ZS
2.

in every column;

ni

Comparison performed to assign D value 1 or 0;

Calculated sum of pixels of recent line (sum of
averaged pixels of all columns in the recent line);

Updated sum S, , which includes:

a.
b.

Comparing new S}, over the threshold level.

subtracting sum of the oldest line,
adding sum of the recent line;

Object
surface

1 Columns (i) Sliding

window

K

L segments

Scanning. Lines (i)

-

Recent
line

Raw
scan
lines

N

Averaged
pixel

Fig. 1. Sliding window algorithm explanation

Benchmark of the sliding window algorithm in my
investigation is the possible raw line scanning frequency
which could be handled by the embedded MC in real time.
Thus, frequency will be defined by the time necessary to
perform all critical data path calculations by the embedded
MC.

Sliding window algorithm implementation

Sliding window algorithm was implemented in high
level programming language C. Simplified flow diagram
of the algorithm is presented in the Fig. 1.

Raw data line of K bit length is the input to the
algorithm (annotation 1). Packing block (ann. 2) is
explained later. Blocks 3 and 4 are executed in cycle for
every column from the first to K-th. Line index (ann.5) is
used to track if an entire segment (N raw lines) was already
acquired (ann. 6). Blocks 7 to 9 implement updating of
sum WndSum of all pixels in the sliding window after the
acquisition of new segment. Block 10 simply compares the
sum value over threshold level and block 11 sets alarm bit
for the further actions to be taken by the application. Block
12 clears temporary variables suck as column counters that
will be used for the next segment processing.

Despite the common algorithm flow diagram there
were implemented five versions of the algorithm (see
Table 1). Even though producing the same output results
given the same inputs, versions differ in their particular
coding techniques. It was assumed that each data line is fed
to the algorithm through 8 bit input port of an embedded

54

MC. The length of line was set to K=16 (bit). Therefore,
two 8 bit data units (in software development literature
called variables) were seen at the input of the algorithm.
Algorithms Al, A2 and A5 performed calculations
manipulating these two separate 8 bit data units, while
algorithms A3 and A4 packed (ann.2) two 8 bit variables to
one 16 bit unit at the beginning and then operated with the
single representation of the line. It was expected that
embedded MC having internal architecture of 16 or 32 bit
could exhibit better performance if the program data is
manually optimized to meet CPU bit size.

Manual unrolling noted in the 3™ column of the Table
1 notifies the style of program cycles implementation.
“No” means that cycles were coded using for cycle
operator of the C language, while “Yes” means that for
cycle operator was substituted by necessary number of
code lines. For instance, cycle describing 8 assignments
was manually changed to 8 consecutive assignments.

The difference between versions A2 and A5 is in that
A5 uses special Mask array to check particular bit
positions while A2 uses constants directly inserted in
source lines.

To understand all algorithm implementation
peculiarities source code can be freely obtained from the
author.

New line data

Increment column
counter

8

Increment line index ‘

‘ Sum pixels in i-th line ‘

P
Y

8

Subtract old line and
add new line sum

9

Update sliding window
buffer

variables

N

Reset temporary ‘

Fig. 2. Sliding window algorithm implementation flow diagram

Duration of the algorithm execution depends upon
data. The worst case scenario takes place when all new line
data bits are equal to 1. In this case all conditional
statements in the algorithm result in true condition and MC
needs to execute all operations. Otherwise, if i-th column
data bit is equal to 0, then MC will skip increment of the
column particular counter (see blocks 3 and 4 in Fig.2),
etc. Therefore, internal variables of the algorithm were set
in the manner to always force MC to follow critical path of
the algorithm.

Table 1. Sliding Window algorithm implementations

Version Bit Manual unrolling

Al 8 No

A2 8 Yes

A3 16 No

A4 16 Yes

AS 8 Yes (but masks in array)

Experimental setups and tools

Three typical embedded MC with 8, 16 and 32
architectures were investigated in this work. The hardware
targets and development tools used are listed in the Table
2.

Table 2. Embedded MC and tools

MC Vendor |CPU |Hardware Development
bits |target & tools |tools
Atmegal6 |Atmel 8 STK500+ WinAVR
JTAGICE mkII |release
20050214 and
AVR studio 4
MSP430 Texas 16 MSP-FET430 |IAR EW
F449 Instr. P440 KickStart for
MSP430
v.3.20
STR712F |ST Micro-|32 STR712-SK + |TAR EW
electronics J-Link KickStart
ARM v.4.40A

Algorithm execution duration was measured using
oscilloscope Tektronix TDS2002 by probing discrete
output which is toggled each time target MC accomplishes
the analyzed algorithm version.

Benchmarking results

It is not only architecture and programming style
define speed of the algorithm execution. Compiler settings
and program memory type are also of significant
importance. It is very common that compiler has options to
enable optimization of C code while translating to
assembler. Optimization feature usually has several levels
and can target program size or speed. Optimization enables
utilization of MC specific addressing modes as well as
other tips like loop unrolling, function inlining, etc.
Optimization features are available in both IAR and
WinAVR compilers. In this research it was evaluated
algorithm execution speed without compiler optimization
and with turned on highest optimization level for speed
(algorithm implementation version marked with asterisk *
in result tables and figures).

55

All analyzed MC execute their programs from internal
memory. Program of STR712F MC based on the ARM7
core can be loaded and executed either from RAM or Flash
memory. Both options were investigated (see Table 3 and
Fig. 4). Algorithm code execution from RAM was 1.3 to
1.5 times faster compared to the execution from Flash
memory (evident from the Table 3).

@ 1st bar : Atmega 16, 16 MHz
® 2nd bar: MSP430 F449, 4.2 MHz
0 3rd bar: STR712F (ARM, Flash), 64 MHz
0O 4th bar: STR712F (ARM, RAM), 64 MHz
25 4
20 +
§ 15
X
w10 M
5
. o
A1l A1* A2 A2* A3 A3* A4 A4* A5 A5*

Algorithm version
Fig. 3. MC real time frequency F (CPU clock freq. 4 MHz)

Table 3. MC real time frequency, kHz

Alg. |Atmega |MSP430 |[STR712F|STR712F |STR712F
Ver. |16 F449 (ARM, [|(ARM, |(Thumb,
Flash) |RAM RAM)
Clock |16 4,2 64 64 64
freq.,
MHz
Al 13 3 20 28 27
Al* 41 5 50 66 62
A2 24 6 30 45 44
A2* 71 6 125 165 121
A3 9 3 17 24 24
A3* 27 4 43 57 53
A4 22 6 30 45 44
A4* 54 7 126 168 117
AS 30 5 24 35 35
AS* 55 7 107 139 90
o 1st bar : Atmega 16, 16 MHz
m 2nd bar: MSP430 F449, 4.2 MHz
0 3rd bar: STR712F (ARM, Flash), 64 MHz
O 4th bar: STR712F (ARM, RAM), 64 MHz
m 5 th bar: STR712F (Thumb, RAM), 64 MHz
180
160 I I
140
120 1 1
E 100
I.I: 80 n
60
40 -
20 1
0 . L]
Al A1* A2 A2* A3 A3* A4 A4* A5 A5

Algorithm version
Fig. 4. MC real time frequency F (max CPU frequency)

In addition STR712F can operate in ARM mode (32
bit processor) or so called Thumb mode (16 bit processor).

Influence of these two possibilities was also considered
and results presented.

Today’s embedded MC internal clock frequency can
be set by the software. To compare operation of
considered MC I present results when all MC were set to
operate from the equal clock frequency 4 MHz (Fig. 3). On
the other hand, full processing power of the MC is utilized
when it runs with the highest possible clock frequency.
Table 3 and Fig. 4 give results when each MC is set to its

Performed embedded MC benchmarking in
combination with the corresponding development tools can
be used to select the best algorithm implementation in
order to optimize execution speed. Considering presented
sliding window algorithm it can be seen that
implementation versions A2*, A4* and AS5* offer the
highest speed despite the MC used (see Fig. 4).

References

upper clock frequency limit.
1. Insight, Analysis, and Advice on Signal Processing
Technology. Web address: http://www.bdti.com/index.html

Conclusions (viewed 2006-12-10).
. . 2. EEMBC Embedded Microprocessor Benchmark
Given fixed 4 MHz CPU clock frequency 8 bit MC Consortium. Web address: http://www.eembc.org/

Atmegal6 from Atmel Corp. outperformed 16 bit MC /About/index.asp (viewed 2006-12-10).

MSP430F449 from Texas Instruments Inc. and 32 bit 3. Embedded System Performance Comparisons. Web
ARMY7 core based STR712F from ST Microelectronics by address: http://www.freertos.org/PC/index.html (viewed
means of described sliding window algorithm execution 2006-12-10).

A Review of Performance Analysis (Benchmarking)
Approaches for Embedded Microprocessors and
Microcontrollers, Report by C. R. Powers, 1998. — Web
address: http://www.ece.utexas.edu/~bevans/students/ms/
/chuck_powers/ms.pdf (viewed 2006-12-10).

5. MiBench: A free, commercially representative embedded
benchmark suite. Web address: http://www.eecs.umich.edu/
/mibench/ /Publications/MiBench.pdf (viewed 2006-12-10).

time. The gain is around twice in case of most favorable 4
algorithm implementation. However, STR712F features the
highest throughput if every MC is set to operate at its top CPU
clock frequency. The highest processable real time sampling
frequency was up to 160 kHz.

The sliding window algorithm includes mostly bit
manipulation instructions, conditional branching, intensive
data and program memory access, but not high precision
arithmetic. Due to this, architecture of MC (8, 16 or 32 bit)

. N Submitted for publication 2006 12 25
does not influence benchmark significantly.

Z. Nakutis. Embedded Microcontrollers Benchmarking using Sliding Window Algorithm // Electronics and Electrical
Engineering. — Kaunas: Technologija, 2007. — No. 3(75). — P. 53-56.

Benchmarking using standard signal processing algorithms is very convenient to compare different embedded microcontrollers
performance but is not always enough to answer the question if the particular microcontrollers will meet real-time requirements of the
considered task. Sliding window algorithm used in materials surface quality visual inspection is described. Speed of this algorithm
execution was tested on three common 8, 16 and 32 bit microcontrollers (Atmegal6, MSP430F449 and ARM?7 core based STR712F).
Influence of different implementation versions of the algorithm in C language as well as compiler optimization settings upon execution
speed were investigated. Applied approach enables to select the best algorithm implementation in order to optimize execution speed.
Atmegal6 microcontroller exhibited the fastest operation set 4 MHz clock frequency for all microcontrollers. However, STR712F
featured the highest throughput if every microcontroller is set to operate at its top CPU clock frequency. Ill. 4, bibl. 5 (in English;
summaries in English, Russian and Lithuanian).

7K. Hakytne. OneHka npoM3BOAUTEILHOCTH BCTPAHBAEMbIX MUKPOKOHTPOIEPOB UCHOJIb3Ys AJTOPUTM CKOJIb3SIIero okHa //
DJIeKTPOHHUKA M dj1eKkTpoTexHuka. — Kaynac: Texnomnorus, 2007. — Ne 3(75). — C. 53-56.

OrneHKka NPOM3BOJUTEILHOCTH, HCIOJB3Ysl CTAaHIAPTHBIE AITOPUTMBI OOpPaOOTKM CHTHAJIOB SIBJISCTCS IIOJIE3HBIM METOIOM
CPaBHUBAHUS BCTPAUBACMbIX MUKPOKOHTPOJIJIEPOB, HO HE BCETa AOCTaTOYHBIM JJIsl OTBETA Ha BONPOC JIOCTATOYHA JIM VISl BBIIOJIHEHHS
00pabOTKH B peaqbHOM BPEMEHU CUTHAJIOB KOHKPETHOH 3aiaun. ONUCHIBAETCS alrOPUTM CKOJIB3SIIEI0 OKHA YacTO HCHONB3YEMbIH B
3a7ayaX ONTHYECKOTO KOHTPOJA KayecTBa IMOBepXHOCTeH. CKOPOCTb BBIMOMHEHMS 3TOTO ajaropuTMa OblIa TpOBEpEHa C TpeMms
OOBIYHBIMH MHKpOKOHTposuiepamu 8, 16 u 32 6utr (Atmegal6, MSP430F449 u STR712F nHa ocHoBe ARMY7). Bruta mccienoBana
BIIMSIHHE pealn3alui Bepcuu anroputMa Ha C A3bIKe M HACTPOMKM ONMIMI ONTHMM3AIMU KOMMMiATopa. IIpeacTaBineHHas MeToAMKa
MOXET OBITh HCIIONBb30BaHA JUI BHIOOpa JIydmled pealu3ald alropuTMa C Ielbl0 ONTHMHU3AIUH CKOPOCTH QJITOPHTMA.
MuxpokonTpoitep Atmegal6 mpeB3omien ocTaabHBIX, KOTJa BCe KOHKYPEHTHI padoTany Ha (GUKCHPOBAHHOM TakTOBOH dacToTe 4 MI'3.
Opnnako mukpokontpoiuiep STR712F OwicTpee BceX BBINOIHSI aIrOPUTM, KOIJa BCE KOHTPOJIEPH! paboTaay Ha CBOMX JIOMYCTHMBIX
TaKTOBBIX yacTtoTax. M. 4, 6ubm. 5 (Ha aHIIIHMIICKOM s3bIKe; pedepaThl Ha aHIUICKOM, PYCCKOM U JINTOBCKOM S13.).

7. Nakutis. [terptiniy valdikliy na§umo vertinimas naudojant slenkané&io lango algoritma // Elektronika ir elektrotechnika. —
Kaunas: Technologija, 2007. — Nr. 3(75). — P. 53-56.

Nasumui vertinti naudoti standartinius signaly apdorojimo algoritmus yra patogu, kai reikia palyginti skirtingus iterptinius
mikrovaldiklius, bet to ne visada pakanka atsakyti i klausima, ar konkretus mikrovaldiklis tenkins realaus apdorojimo reikalavimus
nagrin¢jamam uzdaviniui sprgsti. ApraSytas slenkanciojo lango algoritmas, naudojamas pavir§iy optinés kokybés kontrolés
uzdaviniuose. Algoritmo vykdymo greitis buvo patikrintas tiriant tris iprastus 8, 16 ir 32 bity mikrovaldiklius (Atmegal6, MSP430F449
ir STR712F su ARM?7 Serdimi). Buvo tirta skirtingy algoritmo realizavimo C kalba versijy ir kompiliatoriaus optimizavimo nustatymuy
itaka algoritmo vykdymo greiCiui. Pateikta metodika leidzia parinkti geriausia algoritmo realizavima jo vykdymo grei¢io pozitriu.
Atmegal6 mikrovaldiklis grei¢iausiai vykdé slenkanciojo lango algoritma, kai visy lyginamy mikrovaldikliy taktinis daznis buvo lygus
4 MHz. Taciau kiekvienam mikrovaldikliui veikiant maksimaliu leistinu taktiniu dazniu, STR712F mikrovaldiklis pasizyméjo
didziausiu nasumu. Il. 4, bibl. 5 (angly kalba; santraukos angly, rusy ir lietuviy k.).

56

