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Introduction 
 

Fast-to-market feature is a key for product or solution 
success in today‘s highly changing market. Design 
engineer or technical project manager is under constant 
stress to make a fast decision for key components and 
technologies selection. Microcontroller (MC) and its 
firmware development tolls are of the first importance in 
embedded systems design since they influence both 
hardware and especially time consuming firmware 
development. Skills and experience of designers together 
with price are the issues considered first of all. Technical 
requirements of the task are  important as well. Number of 
inputs/outputs, integrated peripherals, memory, etc. can be 
acquired from datasheets. In real-time applications 
performance of MC is a decisive parameter. Specification 
of classical MIPS are seldom sufficient to answer the 
selection questions. Benchmarking is widely used in the 
practice of digital signal and general purpose processors to 
compare their performance. There are organizations and 
companies like Berkeley Design Technology, Inc. [1], 
Embedded Microprocessor Benchmarking Consortium [2] 
that produce paid benchmarking reports to assist designers 
in processor selection. Availability of large number of 
vendors and integration of DSP enabled features pushed 
towards benchmarking initiatives in the embedded MC 
sector also [3-5]. Benchmarking using standard algorithms 
is very convenient to compare different MC but is not 
always enough to answer the question if the particular MC 
will meet real-time requirements of a considered task. 
Thus, starter kits, evaluation boards and simulators are 
convenient to preliminary check the capability of MC to 
handle the task. Prototyping firmware portions can be 
coded in high level language (C most usually) and timing 
parameters roughly estimated.  

In this paper I present case study of very common  8, 
16 and 32 bit MC benchmarking using sliding window 
algorithm. Sliding window algorithm is often used for 
surface visual quality inspection data processing. The 
algorithm involves intensive RAM and ROM memory 
access, bit manipulation instructions and software cycles. 

Kernel of the algorithm is described bellow. The 
benchmark in this case is sampling frequency that can be 
processed in real time. 
 
Sliding window algorithm 
 

The algorithm accepts binary pixels (1 represents fault 
pixel, 0 – fault free pixel) at the input. The goal of the 
algorithm is to check if total sum of fault (black) pixels in 
the rectangular window composed of K columns and L 
lines exceeds preset threshold level Wth. The window then 
constantly shifts forward taking the new line into its scope 
and forgetting the oldest one. See Fig.1 to assist further 
explanation and notations. Physically window slide can be 
implemented by transporting the investigated object by the 
line scan camera. Sum of fault pixels  
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must be updated after acquiring the new line of the object 
surface image. In the equation (1) ijp  is the pixel obtained 
after filtering of raw pixels generated by the line scan 
camera 
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, 0=ijp  otherwise; (2) 

here nis  is the n-th raw pixel in the i-th column, N is the 

size of segment in lines, thS - segment threshold level.  
Estimation of the pixels has to be done in every 

column i. Fig. 2 presents sequence of necessary 
calculations that must be performed by the embedded MC 
upon reception of a new raw line. Critical data path is 
marked with the solid line. It is evident that the bottleneck 
of the algorithm will be experienced upon reception of the 
N-th raw line. Indeed at this moment it has to be: 
1. Updated sum ∑ nis  in every column; 

2. Comparison performed to assign ijp  value 1 or 0; 
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3. Calculated sum of pixels of recent line  (sum of 
averaged pixels of all columns in the recent line); 

4. Updated sum WS , which includes: 
a. subtracting sum of the oldest line, 
b. adding sum of the recent line; 

5. Comparing new WS  over the threshold level. 
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Fig. 1. Sliding window algorithm explanation 

 
Benchmark of the sliding window algorithm in my 

investigation is the possible raw line scanning frequency 
which could be handled by the embedded MC in real time. 
Thus, frequency will be defined by the time necessary to 
perform all critical data path calculations by the embedded 
MC.  

 
Sliding window algorithm implementation 

 
Sliding window algorithm was implemented in high 

level programming language C. Simplified flow diagram 
of the algorithm is presented in the Fig. 1.  

Raw data line of K bit length is the input to the 
algorithm (annotation 1). Packing block (ann. 2) is 
explained later. Blocks 3 and 4 are executed in cycle for 
every column from the first to K-th. Line index (ann.5) is 
used to track if an entire segment (N raw lines) was already 
acquired (ann. 6). Blocks 7 to 9 implement updating of 
sum WndSum of  all pixels in the sliding window after the 
acquisition of new segment. Block 10 simply compares the 
sum value over threshold level and block 11 sets alarm bit 
for the further actions to be taken by the application. Block 
12 clears temporary variables suck as column counters that 
will be used for the next segment processing. 

Despite the common algorithm flow diagram there 
were implemented five versions of the algorithm (see 
Table 1). Even though producing the same output results 
given the same inputs, versions differ in their particular 
coding techniques. It was assumed that each data line is fed 
to the algorithm through 8 bit input port of an embedded 

MC. The length of line was set to K=16 (bit). Therefore, 
two 8 bit data units (in software development literature 
called variables) were seen at the input of the algorithm. 
Algorithms A1, A2 and A5 performed calculations 
manipulating these two separate 8 bit data units, while 
algorithms A3 and A4 packed (ann.2) two 8 bit variables to 
one 16 bit unit at the beginning and then operated with the 
single representation of the line. It was expected that 
embedded MC having internal architecture of 16 or 32  bit 
could exhibit better performance if the program data is 
manually optimized to meet CPU bit size.  

Manual unrolling noted in the 3rd column of the Table 
1 notifies the style of program cycles implementation. 
“No” means that cycles were coded using for cycle 
operator of the C language, while “Yes”  means that for 
cycle operator was substituted by necessary number of 
code lines. For instance, cycle describing 8 assignments 
was manually changed to 8 consecutive assignments.  

The difference between versions A2 and A5 is in that 
A5 uses special Mask array to check particular bit 
positions while A2 uses constants directly inserted in 
source lines.  

To understand all algorithm implementation 
peculiarities source code can be freely obtained from the 
author. 
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Fig. 2. Sliding window algorithm implementation flow diagram 
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Duration of the algorithm execution depends upon 
data. The worst case scenario takes place when all new line 
data bits are equal to 1. In this case all conditional 
statements in the algorithm result in true condition and MC 
needs to execute all operations. Otherwise, if i-th column 
data bit is equal to 0, then MC will skip increment of the 
column particular counter (see blocks 3 and 4 in Fig.2), 
etc. Therefore, internal variables of the algorithm were set 
in the manner to always force MC to follow critical path of 
the algorithm. 
 
Table 1. Sliding Window algorithm implementations 

Version Bit Manual unrolling 
A1 8 No 
A2 8 Yes 
A3 16 No 
A4 16 Yes 
A5 8 Yes (but masks in array) 

 
Experimental setups and tools 
 

Three typical embedded MC with 8, 16 and 32 
architectures were investigated in this work. The hardware 
targets and development tools used are listed in the Table 
2. 

 
Table 2. Embedded MC and tools 
MC Vendor CPU 

bits 
Hardware 
target & tools 

Development 
tools 

Atmega16 Atmel  8 STK500+ 
JTAGICE mkII 

WinAVR 
release 
20050214 and 
AVR studio 4 

MSP430 
F449 

Texas 
Instr. 

16 MSP-FET430 
P440    

IAR EW 
KickStart for 
MSP430 
v.3.20 

STR712F ST Micro- 
electronics 

32 STR712-SK + 
J-Link 

IAR EW 
KickStart 
ARM v.4.40A

 
Algorithm execution duration was measured using 

oscilloscope Tektronix TDS2002 by probing discrete 
output which is toggled each time target MC accomplishes 
the analyzed algorithm version. 

 
Benchmarking results 
 

It is not only architecture and programming style 
define speed of the algorithm execution. Compiler settings 
and program memory type are also of significant 
importance. It is very common that compiler has options to 
enable optimization of C code while translating to 
assembler. Optimization feature usually has several levels 
and can target program size or speed. Optimization enables 
utilization of MC specific addressing modes as well as 
other tips like loop unrolling, function inlining, etc. 
Optimization features are available in both IAR and 
WinAVR compilers. In this research it was evaluated 
algorithm execution speed without compiler optimization 
and with turned on highest optimization level for speed 
(algorithm implementation version marked with asterisk * 
in result tables and figures).  

All analyzed MC execute their programs from internal 
memory. Program of STR712F MC based on the ARM7 
core can be loaded and executed either from RAM or Flash 
memory. Both options were investigated (see Table 3 and 
Fig. 4). Algorithm code execution from RAM was 1.3 to 
1.5 times faster compared to the execution from Flash 
memory (evident from the Table 3).  
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Fig. 3. MC real time frequency F (CPU clock freq. 4 MHz) 

 
Table 3. MC real time frequency, kHz 
Alg. 
Ver. 

Atmega 
16 

MSP430 
F449 

STR712F 
(ARM, 
Flash) 

STR712F 
(ARM, 
RAM 

STR712F 
(Thumb, 
RAM) 

Clock 
freq., 
MHz 

16 4,2 64 64 64 

A1 13 3 20 28 27
A1* 41 5 50 66 62
A2 24 6 30 45 44
A2* 71 6 125 165 121
A3  9 3 17 24 24
A3* 27 4 43 57 53
A4 22 6 30 45 44
A4* 54 7 126 168 117
A5 30 5 24 35 35
A5* 55 7 107 139 90
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Fig. 4. MC real time frequency F (max CPU frequency) 

 
In addition STR712F can operate in ARM mode (32 

bit processor) or so called Thumb mode (16 bit processor). 
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Influence of these two possibilities was also considered 
and results presented. 

Today’s embedded MC internal clock frequency can 
be set by the software. To compare operation of  
considered MC I present results when all MC were set to 
operate from the equal clock frequency 4 MHz (Fig. 3). On 
the other hand, full processing power of the MC is utilized 
when it runs with the highest possible clock frequency. 
Table 3 and Fig. 4 give results when each MC is set to its 
upper clock frequency limit. 
 
Conclusions 
 

Given fixed 4 MHz CPU clock frequency 8 bit MC 
Atmega16 from Atmel Corp. outperformed 16 bit MC 
MSP430F449 from Texas Instruments Inc. and 32 bit 
ARM7 core based STR712F from ST Microelectronics by 
means of described sliding window algorithm execution 
time. The gain is around twice in case of most favorable 
algorithm implementation. However, STR712F features the 
highest throughput if every MC is set to operate at its top CPU 
clock frequency. The highest processable real time sampling 
frequency was up to 160 kHz.  

The sliding window algorithm includes mostly bit 
manipulation instructions, conditional branching, intensive 
data and program memory access, but not high precision 
arithmetic. Due to this, architecture of MC (8, 16 or 32 bit) 
does not influence benchmark significantly. 

Performed embedded MC benchmarking in 
combination with the corresponding development tools can 
be used to select the best algorithm implementation in 
order to optimize execution speed. Considering presented 
sliding window algorithm it can be seen that 
implementation versions A2*, A4* and A5* offer the 
highest  speed despite the MC used (see Fig. 4).  
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Benchmarking using standard signal processing algorithms is very convenient to compare different embedded microcontrollers 
performance but is not always enough to answer the question if the particular microcontrollers will meet real-time requirements of the 
considered task. Sliding window algorithm used in materials surface quality visual inspection is described. Speed of this algorithm 
execution was tested on three common 8, 16 and 32 bit microcontrollers (Atmega16, MSP430F449 and ARM7 core based STR712F). 
Influence of different implementation versions of the algorithm in C language as well as compiler optimization settings upon execution 
speed were investigated. Applied approach enables to select the best algorithm implementation in order to optimize execution speed. 
Atmega16 microcontroller exhibited the fastest operation set 4 MHz clock frequency for all microcontrollers. However, STR712F 
featured the highest throughput if every microcontroller is set to operate at its top CPU clock frequency. Ill. 4, bibl. 5 (in English; 
summaries in English, Russian and Lithuanian). 

 
Ж. Накутис. Оценка производительности встраиваемых микроконтроллеров используя алгоритм скользящего окна  // 
Электроника и электротехника. – Каунас: Технология, 2007. – № 3(75). – C. 53–56. 

Оценка производительности, используя стандартные алгоритмы обработки сигналов является полезным методом 
сравнивания встраиваемых микроконтроллеров, но не всегда достаточным для ответа на вопрос достаточна ли для выполнения 
обработки в реальном времени сигналов конкретной задачи. Описывается алгоритм скользящего окна часто используемый в 
задачах оптического контроля качества поверхностей. Скорость выполнения этого алгоритма была проверена с тремя 
обычными микроконтроллерами 8, 16 и 32 бит (Atmega16, MSP430F449 и STR712F на основе ARM7). Была исследована 
влияние реализации версии алгоритма на С языке и настройки опций оптимизации компилятора. Представленная методика 
может быть использована для выбора лучшей реализации алгоритма с целью оптимизации скорости алгоритма. 
Микроконтроллер Atmega16 превзошел остальных, когда все конкуренты работали на фиксированной тактовой частоте 4 МГз. 
Однако микроконтроллер STR712F быстрее всех выполнял алгоритм, когда все контролеры работали на своих допустимых 
тактовых частотах. Ил. 4, библ. 5 (на английском языке; рефераты на английском, русском и литовском яз.). 

 
Ž. Nakutis. Įterptinių valdiklių našumo vertinimas naudojant slenkančio lango algoritmą // Elektronika ir elektrotechnika. – 
Kaunas: Technologija, 2007. – Nr. 3(75). – P. 53–56. 

Našumui vertinti naudoti standartinius signalų apdorojimo algoritmus yra patogu, kai reikia palyginti skirtingus įterptinius 
mikrovaldiklius, bet to ne visada pakanka atsakyti į klausimą, ar konkretus mikrovaldiklis tenkins realaus apdorojimo reikalavimus 
nagrinėjamam uždaviniui spręsti. Aprašytas slenkančiojo lango algoritmas, naudojamas paviršių optinės kokybės kontrolės 
uždaviniuose. Algoritmo vykdymo greitis buvo patikrintas tiriant tris įprastus 8, 16 ir 32 bitų mikrovaldiklius (Atmega16, MSP430F449 
ir STR712F su ARM7 šerdimi). Buvo tirta skirtingų algoritmo realizavimo C kalba versijų ir kompiliatoriaus optimizavimo nustatymų 
įtaka algoritmo vykdymo greičiui. Pateikta metodika leidžia parinkti geriausią algoritmo realizavimą jo vykdymo greičio požiūriu. 
Atmega16 mikrovaldiklis greičiausiai vykdė slenkančiojo lango algoritmą, kai visų lyginamų mikrovaldiklių taktinis dažnis buvo lygus 
4 MHz. Tačiau kiekvienam mikrovaldikliui veikiant maksimaliu leistinu taktiniu dažniu, STR712F mikrovaldiklis pasižymėjo 
didžiausiu našumu. Il. 4, bibl. 5 (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 


