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Introduction 
 
 The evolution of electronic circuits has been 
drastically advanced during the recent years. Introduction 
of new nano-materials and technologies allows to 
miniaturize devices considerably. As a result, engineers are 
developing much faster, more complex and smarter 
systems. This progress makes them attractive for expanded 
range of applications. A System-on-Chip (SoC) technology 
is considered as a revolutionary approach in electronics. It 
means the packaging of all the necessary electronic circuits 
and parts for a "system" on a single integrated circuit [1]. 
For example, a system-on-chip for a sound-detecting 
device might include an audio receiver, an analog-to-
digital converter (ADC), a digital signal processor, 
necessary memory as well as the input/output logic control 
for a user. Consequently, SoC may contain digital, analog 
and often mixed-signal functions – all on one chip. 
 Most of today's electronics systems are based on 
synchronous paradigm - the work of a whole system is 
ruled by a clock. All the states in a design have to be 
changed at the same time. Since the systems constantly 
become more sophisticated and capacious, it is established 
that 10-30% of their resources (size, power consumption 
etc.) are wasted to circuits, which provide the synchronism 
of the device. Thus, it is relevant to explore other 
paradigms for development of future microelectronics 
based on alternative and innovative solutions. 
 One of the alternative approaches, which was 
introduced in the mid 50s and now receives increasing 
interest, is asynchronous logic. The key benefits of the 
asynchronous system are lower power consumption, 
absence of the clock screw, reduced heat elimination, 
lower EMI, automatic adaptation to physical properties, 
etc. [2]. Asynchronous design is characterized by the 
absence of a global clock, instead of that the system is 
driven by events, which arise during the execution of 
actual task. Such a change of paradigm leads to a drastic 
rearrangement in electronic designs by complete rethinking 
their architecture and signal processing methods. 
 Typically the information obtained from sensors has 
continuous time nature, while modern signal processing 

techniques are based on digital methods. The conversion 
from analog (continuous) to digital (discrete) presentation 
of the source data is being performed by ADC. In systems 
designed according to synchronous paradigm, ADC is 
driven by system clock. If uniform sampling is used the 
ADC clock frequency is determined by Nyquist theorem. If 
non-uniform sampling is involved, the mean sampling 
density can be below the Nyquist rate, however the 
sampling point flow is still derived from the clock. The 
asynchronous systems do not have a clock at all. That leads 
to the question - how to manage the analog-to-digital 
conversion in a case without clock? The asynchronous 
circuits on its merits are event-driven, so also the signal 
sampling process should be organized by events, which are 
got from the information presented in signal. New class of 
ADCs based on signal-dependent sampling schemes has to 
be developed.  
 The three most popular types of signal-dependent 
sampling – zero-crossing [3], reference signal crossing [4] 
and level-crossing [5] are illustrated in Fig. 1. Naturally, 
each of them has its own advantages and limitations, 
however there are some important joint features, which 
have to be taken into account performing the processing of 
signal-dependently sampled data: 
1. in general case the signal samples are spaced non-

uniformly, 
2. it is impossible to determine the sampling time 

instants in advance, 
3. local sampling density depends on local statistical 

characteristics of signal. 
 In this paper the samples obtained by level-crossing 
approach are chosen as an example of input data for digital 
signal processing. However, the developed methods are 
useful also for other cases of signal-dependently sampled 
data.  
 
Non-uniformly spaced data  

 
 The techniques of non-uniform sampling are discussed 
in literature for many years [6]. In most cases the problem 
is stated from the following point of view - how to 
calculate the sampling time instants in a way, which allows 
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to gain some advantages during the processing. The 
suppression of frequency aliasing effect can be quoted as 
an example. In this case the sampling point flow is 
deliberately pseudo-randomized, and it has to satisfy 
certain requirements. The statistical characteristics of such 
a sampling process are independent of input signal. In 
electronic design that leads to the task to clock the 
“classical” ADC at predetermined, non-uniformly spaced 
time instants with high accuracy. 
 The signal-dependent sampling also provides signal 
samples at the non-uniformly spaced time moments. Their 
nature and properties can considerably differ from 
deliberately pseudo-randomized case. Let us discuss, as an 
example, the level-crossing sampling approach. Higher 
frequency in a spectral presentation of signal provides 
faster changes in its waveform. If sampling is organized as 
events of levels crossing that leads to the higher density of 
signal samples (see Fig.1.c). Statistical characteristics of 
obtained sampling point flow directly depend on input 
signal. Furthermore, if a signal waveform has some 
regularity, the event flow of level-crossing sampling has 
the same regularity as well. As a result of this effect, the 
following problem can be stated - the methods developed 
for processing of deliberately non-uniformly sampled data 
can be impracticable for signal-dependently non-uniformly 
sampled data. This situation will be illustrated in the next 
section. 
 
General Discrete Fourier transform 
 
 The classical method for digital signal analysis is a 
pair of Discrete Fourier Transform (DFT). The direct DFT 
allows to obtain the spectral values from N  signal samples 
if they are equidistantly spaced in time: 
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The inverse DFT allows to reconstruct signal values in 
time from signal spectral values at equally spaced 
frequencies: 
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 In practical applications typically exist two 
restrictions – the bandwidth of signal spectrum is limited to 
some higher frequency Ω , and the observation of signal 
waveform is limited to some duration Θ . The discrete 
signal samples )( nn txx = , 1,0 −= Nn  are obtained by 
sampling procedure and they can be located arbitrary along 
the time axis. The general form of DFT, that enables the 
processing of non-equidistantly spaced data, can be 
expressed as: 
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The band-limited nature of the signal provides the 

restriction for m : Ω≤
Θ
m .  

 
 
Fig. 1. Signal-dependent sampling schemes: a) zero-crossing; b) 
reference signal crossing; c) level-crossing 
 
 
 In the uniform sampling case expression (3) conforms 
to the formula (1). If appropriate deliberately non-uniform 
sampling scheme is used, expression (3) provides quite 
good spectral estimation for the cases, where sampling 
density is equal or higher than the Nyquist rate. Moreover, 
it is possible satisfactorily to estimate the spectral content 
of signal even if sampling density is below the Nyquist 
rate. The sampling point flow has to suppress the 
frequency aliasing for that. However, if formula (3) is 
applied to the data acquired by level-crossing sampling, the 
obtained result not always is adequate, despite the fact that 
signal always is oversampled. Let us illustrate this 
statement by a simple example. The mono-harmonic signal 
with frequency 0f  is sampled by 3-bit level-crossing ADC 
(7 levels). The spectral estimate obtained by formula (3) is 
shown in the Fig. 2. In addition to the spectral component 
at the true frequency (~0.0955 Hz) spurious components at 
the higher odd harmonics appear as well. Note, the issue of 
spurious components is not due to the frequency aliasing 
effect connected with insufficient sampling density, but 
due to specifics of signal and non-uniform samples 
obtained by level-crossing approach [5]. It leads to the 
conclusion that specialized enhancement of DFT should be 
derived to process the data acquired in such a way. 
 On the base of the Fourier series we can reconstruct 
the signal waveform from its spectral estimates by the 
following formula 
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Fig. 2. Spectral estimate of sinusoidal signal with 

Θ= /22.120f  ( s. 128=Θ ) sampled by 7 levels-crossings 
 

where 
Θ

=
mfm . Using the information about original 

signal )(tx , we can construct a reconstruction error as 
)(ˆ)()( txtxt −=ε . The initial part of it is illustrated in the 

Fig. 3. The values )( nn tεε =  of reconstruction error at 
the sampling point instants nt  are shown by bold points. 
We can observe that the reconstruction error between 
samples used to be considerable higher than nε  values. If 
sampling is based on the classical scheme, where sampling 
points are determined in advance, there are no restriction to 
the behavior of reconstructed signal between samples. In 
the case of level-crossing sampling the situation differs. 
Each level crossing is defined as an event and 
characterized by signal sample. Between them the 
waveform of reconstructed signal should not cross any 
level. Consequently the reconstruction error has to be 
minimized not only at sampling time instants, but also 
between them with the same accuracy. The minimization 
task 
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can be defined on the understanding that the signal values 
are known only at sampling points and the reconstructed 
signal is described by the expression (4). The minimization 
problem has to be solved with respect to spectral 
estimates }{ mX . 

 
 
Fig. 3. Reconstruction error function (black curve) and zero-order 
interpolation (red piece-wise constant line) of  nε  (bold dots) 

 The solution of (5) can be based on two different 
approaches: 
1) signal samples }{ nx  are interpolated within the time 

interval ] 0[ Θ  and the reconstruction error is 

expressed as ∑−=
m

mm
x tfjXtxt )2exp()(~)()( πε , 

where )(~ tx  is interpolated signal; 
2) error samples nnn xx ˆ−=ε  are interpolated within the 

time interval ] 0[ Θ , and ∑=
m

nmmn tfjXx )2exp(ˆ π . 

 
 
Enhanced DFT based on signal interpolation. 
 

Signal interpolation easily can be done by connecting 
the sample points with polynomials )(tp k

n  of order k , or a 
band-limited interpolation can be performed as a sum of 
time-shifted sinc  functions.  

Let us rewrite (5) taking into account that signal 
samples are interpolated: 
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To find the minimum, all the individual derivatives of 
mX  have to be considered as being equal to zero. We 

obtain 12 +M  linear equations 
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for MMm ,−= . Taking into account that 
Θ

=
mfm , the 

)}2{exp( tfj mπ  is a set of orthogonal functions into 
interval ] 0[ Θ . Thus we can write: 
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The expression (8) is similar with the formula of 
calculation of Fourier series coefficients for signal )(~ tx . 
 If signal samples }{ nx  are interpolated with zero-
order polynomials (like a piece-wise constant line in the 
Fig. 3), we obtain 
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Fig. 4. Spectrum of mono-harmonic test-signal estimated by first-
order signal interpolation algorithm 
 

 
Fig. 5. Spectrum of mono-harmonic test-signal estimated by sinc 
interpolation algorithm 
 
 For piece-wise linear interpolation between the 
samples we can use polynomial nnnn xttp +−= )(1 α , 
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 Another approach is based on interpolation of }{ nx  
with sinc  functions. As the bandwidth of signal is limited 
to Ω , we can write: 
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where Θ<
Ω

= kTKT : ,
2
1 . Amplitudes kc  can be found 

from a linear equation system: 
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 In this case the enhanced discrete Fourier transform 

becomes 
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Note, the last method, besides the DFT complexity of 
calculations, requires the solution of linear system with N  
equations and with 12 +M  unknowns. 
 
Enhancement of Discrete Fourier transform based on 
interpolation of error samples. 
 
 Like the interpolation of signal samples the continues 
time reconstruction error function )(~ tε  can be obtained 
from its values nnn xx ˆ−=ε  at time instants }{ nt . The 
estimates of reconstructed signal are calculated as 

∑=
m

nmmn tfjXx )2exp(ˆ π . The problem (5) in this case 

can be interpreted as minimization of area under the 
function )(~2 tε . If 2

nε  is interpolated by zero–order 
polynomial the minimization task becomes as: 
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 After the derivation the system of linear equations is 
formed 
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 This system rewritten in matrix form is 

ΨΤΦXΨx ⋅⋅= )0(ε ,                         (16) 

where )2exp( nmmn tfj πϕ =  and nmnmn t′∆⋅= ϕψ .  
Solution of (16) can be found as 

1ΤΨΦxΨX −⋅⋅⋅= )()()0(ε ,                      (17) 

where T)(⋅  and 1−⋅)(  denotes the transpose and inverse 
operation of matrix respectively. 
 The first-order polynomial interpolation of error 
function samples provides the following minimization 
task: 
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It looks like a sum of two zero-order interpolation 
problems. The solution in this case is similar to the 
previous one expressed as (17): 
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−
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where x,Ψ,Φ ′′′   and x,Ψ,Φ ′′′′′′   matrices are formed from 
xΨ,Φ,   by using indexes 2,0 −= Nn  and 1,1 −= Nn  

respectively. 
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Fig. 6. Spectrum of mono-harmonic test-signal estimated by zero-
order reconstruction error interpolation algorithm 
 

 
 

Fig. 7. Spectrum of mono-harmonic test-signal estimated by 
signal-dependent transformation 
 
Simulation results 
 
 The performance of described algorithms has been 
investigated by computer simulations. The above 
mentioned single-tone sinusoid has been used as a test-
signal. The input data are acquired from sec][128=Θ  long 
observation as events of 7 levels-crossings. The frequency 
of test-signal is ]Hz[0955.0/22.12 ≈Θ  that does not lie on 
the frequency grid of Fourier series. The number of 
acquired samples is 172=N . 
 The spectral estimate obtained by General DFT 
(expression (3)) and illustrated in Fig. 2 can be used as a 
reference, which allows identifying the improvement of 
processing, when enhanced methods are exploited. The 
Fig. 4 shows spectral result obtained by first-order signal 
interpolation algorithm (expression (10)). Although the 
amplitudes of higher spurious harmonics are decreased for 
about 5dB, they are still considerable. The complexity of 
this algorithm is few times higher then DFT. The zero-
order signal interpolation gives slightly worse result. 
 The band-limited interpolation with sinc functions 
(expression (13)) provides improved spectral presentation 
of test signal, which is shown in the Fig. 5. The spurious 
harmonics are suppressed. The drawback of this algorithm 
is that beside the DFT calculation it requires the solution of 
the linear equation system as well. 
 The similar mathematical complexity is also for 
methods, which use reconstruction error interpolation by 

zero- or first-order polynomials. The results obtained in 
both cases are quite similar, and therefore we present here 
only the simplest case – zero-order error interpolation, in 
the Fig. 6. 
 The common feature of all presented algorithms is 
spectral analysis on the grid of Fourier frequencies 

Θ= /mfm . For the expressions (9) and (10) the 
motivation is to build the orthogonal basis of 
transformation. The expressions (17) and (19) can be 
considered as unorthogonal transformations. That allows to 
use also frequency grid with higher density, which can 
improve spectral resolution. However, the necessity to 
solve the equations system limits the grid – the number of 
analysis frequencies has to be equal or less than the 
number of samples. Note, the number of samples in signal-
dependent sampling case is not known in advance, because 
it depends on actual signal properties. The method which 
overcomes this problem is so called signal-dependent 
Fourier transform described in [7]. The frequency grid of 
this algorithm is independent on number of samples and 
provides high spectral resolution. The Fig. 7 demonstrates 
the spectral estimate obtained by this method, where 
analysis grid is four times frequenter than in the DFT case. 
 The quality of simulated algorithms can be 
characterized by integral value of squared reconstruction 
error. The estimated values, averaged over different signal 
phases, are summarized in the Table 1. It shows that all 
methods decrease the reconstruction error in comparison 
with GDFT. The obtained improvement can vary from 
insignificant to several thousand times. 
 
Conclusions 
 

One of the basic tools in digital signal processing is 
the Discrete Fourier Transform. In this paper we presented  
several enhancements of DFT to make it convenient for 
analysis of signal-dependently sampled data, particularly 
paying attention to the level-crossing sampling. In this case 
the samples are not only spaced non-uniformly in time, but 
also its distribution depends on signal properties. The 
periodical signal provides regularities into sampling point 
flow, which leads to the appearance of spurious 
components (harmonics) in the spectrum estimated on the 
bases of conventional DFT analysis.  

The level-crossing sampling technique determines not 
only signal value at sampling time instance, but also the 
rule, that signal values between two samples should not 
cross any quantization level. This condition can be taken 
into account during development of processing methods. 
The proposed idea is to minimize the error between 
original and reconstructed by Fourier series signals not 
only at sampling time instants, but also between them with 
the same accuracy. The problem lies in the fact that we 
know original signal values only at sampling instants. Two 
different approaches are considered. The first one is based 
on obtaining continues time signal by interpolation of 
known signal samples. The expressions for enhanced DFT 
calculation are proposed for zero-order and first order 
polynomial interpolation as well as for band-limited 
interpolation with sinc  functions. The second approach to 
minimize continues time reconstruction error is based on  
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Table 1. Estimated reconstruction errors for different methods 
  

Method GDFT 
Zero-order 

xn 
interpolation 

First-order 
xn 

interpolation 

xn interpolation 
with sinc  

Zero-order 
nε  

interpolation 

First-order 
nε  

interpolation 

Signal-dependent 
DFT-like method 

∫
Θ

0

2 )( dttε  835 811 803 3.00 2.35 2.29 0.07 

 
 
interpolation of error samples. The expressions for 
calculation of spectral coefficients are proposed for zero-
order and first-order polynomial interpolation. Simulation 
results show the improvement of data processing if 
enhanced algorithms are used instead of classical 
General DFT. It should be mentioned that better results are 
achieved by algorithms, which require performing more 
mathematical operations. The best result can be reached by 
the signal-dependent DFT-like method, however the high 
computing complexity makes it unpractical for real-time 
applications. 
 
References 

 
1. Proceedings of the 5th IEEE International Workshop on 

System-on-Chip for Real-Time Applications (IWSOC 
2005), 20-24 July 2005., Banff, Alberta, Canada. IEEE 
Computer Society 2005, ISBN 0-7695-2403-6. 

2. Hauck S. Asynchronous Design Methodologies: An 
Overview // Proceedings of the IEEE, Vol. 83, No. 1, pp. 
69-93, January, 1995. 

3. Logan B. Information in zero crossings of bandpass signals 

// Bell Sys. Tech. J. – 1977. – 56.– P. 487–510. 
4. Nazario MA. Saloma C. Signal recovery in sinusoid-

crossing sampling by use of the minimum-negativity 
constraint // Applied Optics. – 1988. – 37(14). – P. 2953–
2963.  

5. Aeschlimann F., Allier E., Fesquet L., Renaudin M. 
Spectral analysis of level-crossing sampling scheme // Proc. 
of the 2005 International Conference on Sampling Theory 
and Application (SampTA 2005).– Samsun, Turkey (publ. 
on CD), July 10-15, 2005. 

6. Marvasti F. A. A unified approach  to zero-crossings and 
nonuniform sampling / Department of Electrical 
Engineering, Illinois Insitute of Technology, Chicago, 
USA, 1987. 

7. Greitans M. Spectral analysis based on signal dependent 
transformation // The 2005 International Workshop on 
Spectral Methods and Multirate Signal Processing, 
(SMMSP 2005).–  Riga, Latvia, June 20-22, 2005.– P. 179–
184. 

 
 

Presented for publication 2006 02 10 
 

 
M. Greitans, I. Homjakovs. Enhanced Digital Signal Processing of Signal-Dependently Sampled Signals // Electronics and 
Electrical Engineering. – Kaunas: Technologija, 2006. – No. 4(68).– P. 9–14. 

Asynchronous circuits receive now an increasing interest. Their promising advantages can play a significant role in future 
electronics' development. One of the factors, which delay the wide spread of the clock-less systems, is incompatibility with classical 
clock-driven analog to digital converters and processing algorithms. The new ADC approaches, which are based on signal-dependent 
sampling, are required, as well as convenient processing methods have to be developed. The paper presents the enhanced DFT-like 
algorithms derived from the idea to minimize the signal reconstruction error not only at sampling points, but also between them with the 
same accuracy. Two approaches for creating continuous time error function from its discrete values are investigated: 1) interpolation of 
signal samples; 2) interpolation of error samples. Level-crossing sampling has been used as an example for signal digitizing. Achieved 
advantages are demonstrated by simulations. Ill.7, bibl. 7 (in English; summaries in English, Russian and Lithuanian). 

 
 

М. Грейтанс, И. Хомяковс. Усовершенствованная цифровая обработка дискретизованных по уровню сигналов // 
Электроника и электротехника. – Каунас: Технология, 2006. – № 4(68). – С. 9–14. 

В настоящее время все больше внимания уделяется асинхронным системам. Однако для асинхронных систем обработки 
сигналов существует потребность в новых видах аналого-цифрового преобразования и соответствущих им алгоритмах 
обработки. Рассматривается подход к аналого-цифровому преобразованию сигналов, основанный на их дискретизации по 
уровню, и предлагаются усовершенствованные, ДФТ-подобные алгоритмы, позволяющие значительно уменьшить 
погрешность результатов цифрового анализа сигналов. Ил.7, библ. 7 (на английском языке; рефераты на английском, русском 
и литовском яз.). 
 
 
M. Greitans, I. Homjakovs. Patobulintas adaptyviai diskretizuotų signalų skaitmeninis apdorojimas // Elektronika ir 
Elektrotechnika.– Kaunas: Technologija, 2006. – Nr. 4(68). – P. 9–14. 

Vis didesnį susidomėjimą kelia asinchroniniai grandynai. Dėl daug žadančių privalumų jie gali vaidinti reikšmingą vaidmenį 
ateityje, tobulinant elektroniką. Vienas iš veiksnių, lėtinančių platų sistemų, nenaudojančių taktinio dažnio, paplitimą, yra jų 
nesuderinamumas su klasikiniais taktinio signalo valdomais analoginiais-kodiniais keitikliais ir apdorojimo algoritmais. Reikalingi 
naujų tipų keitikliai, kurių veikimas būtų grindžiamas adaptyviu (nuo signalo priklausančiu) diskretizavimu, taip pat turi būti sukurti 
patogūs apdorojimo metodai. Pateikiami patobulinti DFT algoritmai, kurie sukurti remiantis idėja minimizuoti signalo atkūrimo 
paklaidą ne tik diskretizavimo taškuose, bet ir tarp jų, tuo pačiu tikslumu. Nagrinėti du metodai, skirti tolygiai laikinei klaidos funkcijai 
sukurti iš jos diskretinių verčių: 1) diskretinių signalo verčių interpoliavimas; 2) diskretinių klaidos verčių interpoliavimas. Lygio 
kirtimo diskretizavimo būdas naudotas signalui skaitmenizuoti. Pasiekti patobulinimai demonstruojami naudojant modelius. Il. 7, bibl. 7 
(anglų kalba; santraukos anglų, rusų ir lietuvių k.). 


