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Introduction 
 
To widen the frequency range for fully digital 

processing of signals, the original analog signals should be 
digitised in a way ensuring elimination or at least 
suppression of aliasing. The sampling procedure then, 
inevitably, has to be nonuniform and the obtained digital 
signals in this case have to be processed digitally in an 
appropriate way. It is not so easy to succeed at that. 
However, as digital processing of Radio Frequency signals 
is of high practical interest, the problems of this kind have 
drawn a lot of attention and, in result, much has been 
already accomplished in this area. The developed Digital 
Alias-free Signal Processing technology [1] provides 
hardware and software tools that could be effectively used 
in a wide application range. Of course, there are still 
problems and one of them is related to a particular 
disadvantage of nonuniform sampling. Specifically, the 
existing fast algorithms, developed for periodically 
sampled signals, could not be directly used for processing 
nonuniformly sampled signals. The attempts to use FFT 
algorithms for estimation of nonuniformly sampled signal 
parameters in the frequency domain so far have not been 
really successful. The problem of getting better results in 
this area is considered and an iterative approach to its 
solution is suggested. The achievable in the suggested way 
results are illustrated by an example. A pulse train 
characterised by a wideband spectrum is digitised, 
analysed and the obtained results are displayed. They 
confirm the applicability of the proposed method for DFT 
calculations implemented as an iterative FFT procedure 
based on the sampled signal regularization. 

 
Essence of the suggested method 

 
To process nonuniformly sampled signals by using 

algorithms developed for processing of periodically 
sampled signals, so-called zero padding method is 
typically used. According to it, zeroes are inserted into the 
nonuniform signal sample value sequence at the time 
instants where there are no signal sample values so that the 

sampling process is transformed into a periodic one. 
However zero padding is a crude method and its 
application leads to introduction of substantial errors. In 
general, the suggested approach to spectrum analysis and 
waveform reconstruction is based on the idea that a priori 
information has to be used as fully as possible. To realise 
this, the zeroes should be replaced by approximate 
estimates of the signal sample values. That leads to 
dramatic reduction of the mentioned errors. Even better 
results could be obtained if an iterative procedure of 
spectral analysis and waveform reconstruction is used. It is 
based on the substitution of the missing uniform sample 
values at first by zeroes, then the estimated signal values 
are inserted in those places and after that even more 
accurately estimated signal sample values are used. 
Significant improvement of accuracy is obtained in result. 
Let us consider this method for signal spectral analysis and 
waveform reconstruction in some details. 

 
 

Variable threshold DFT iterations 
 
It is essential how the signal value estimation is 

organized. A step-by-step approach to that task is 
suggested. The more powerful signal components are 
estimated first, then the components that are less powerful 
are estimated and so on. Such an approach makes sense as 
the relative errors are smaller for the more powerful 
components. To realize it, threshold levels are introduced. 
The signal components above the threshold are estimated 
first. Then the inverse DFT is carried out and the missing 
sample values are substituted by the corresponding 
instantaneous values of the roughly reconstructed 
waveform. Then the obtained signal sample value 
sequence is used for the repeated DFT. Now it provides 
spectral estimates significantly more accurate. At the next 
step, the threshold level is lowered and the components 
above it are estimated again. The process is continued in 
this way for a given number of cycles. 

At first, the spectral estimates are calculated on the 
basis of DFT as follows: 
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The index in the round brackets (in this case (0)) 
shows the number of iteration. The estimate (3) is used to 
define some initial threshold for further iterative 
operations. 

The first threshold is set up at the level 
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where the initial relative threshold often is chosen at the 
level μ(0) = (0.7…0.9). The signal components exceeding 
the given threshold A(0)(fk) > U0 are estimated at the 
corresponding  frequencies.  

All estimated signal components with power below 
the first threshold level are excluded from the spectrogram 
in the following way: 
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Corrections in spectral peak positions 

At first DFT is performed for frequencies located on 
the frequency grid with the interval between the 
frequencies determined by the signal observation time as 
usual. If all signal components are at frequencies located 
exactly on this grid, DFT provides spectral estimates that 
are accurate enough. However the frequencies of real 
signal components often are shifted in regard to this grid. 
Then the positions of these components on the frequency 
axis have to be estimated more precisely. Otherwise the 
inverse DFT will result in unacceptable waveform 
reconstruction errors.  

At first a crude estimator is determined for the 
location of the maximum of the absolute of the discrete 
Fourier transform A[k] for a number of the frequency 
components: 
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boundary of the frequency range where the search for the 
maximum of the peak is to be performed. δf is the step of 
the search on the frequency axis. Then the methods for 
numerical differentiation are used for precise estimation of 
the frequency at which there is the extreme value of the 
considered discrete function. The precise estimate of the 
maximum frequency is  
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where the correction component ξ is calculated on the 
basis of the following formula: 
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Fourier coefficients are estimated for all of the 
detected frequencies { } Lmfm ,1, = : 
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Waveform reconstruction on the basis of the iterative 
DFT - inverse DFT cycles 

Inverse DFT is performed for all frequencies 
exceeding the mentioned thresholds.  
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where L – is the number of frequencies with non-zero 
spectral amplitudes. 

The reconstructed vector of waveform samples is 
given as 

TTMyTiyyy ]])1[(],...,[...,],0[[ )0()0()0()0( Δ−Δ=
r . (13) 

The actually taken signal sample values are inserted 
in the reconstructed vector of signal waveform sample 
values for sampling instants on the time grid with discrete 
step TΔ : 
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The vector q
r  shows where  is built inside of the 

initial sample vector 
y
r

x
r . The dimension of the vector of the 

uniform time grid is given as 
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The really taken samples are inserted in the 
reconstructed vector xqy

rrr
=)()0(  of the waveform. 

At the beginning of a current iteration cycle, the 
indexes in the round brackets (n) and (n+1) show the 
number of iteration. FFT is performed over the vector 

T
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with the really taken samples again inserted in the 
reconstructed vector xqy n

rrr
=)()( : 
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Then Fourier coefficients: 
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are calculated. 
After that the threshold is set up at the next level  
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where it is inversely proportional to the iteration number 
nnn /)1()( −= μμ  or exponential dependent on the iteration 

number , where n is the number of 
iteration. 

n
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At each iteration, the frequencies with amplitudes 
exceeding the corresponding threshold nn UkY >][)(  are 
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and they are processed in the same way in the next 
iteration cycle. The waveform reconstruction is performed 
as the inverse FFT 
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while the initial samples are inserted in the reconstructed 
vector of the waveform xqy n

rrr
=+ )()1( . 

 
Some experimental results 
 

The described iterative algorithm was applied for 
spectrum analysis and waveform reconstruction of 
wideband signals nonuniformly sampled with use of the 
latest DASP digitiser [2]. Figure 1 illustrates the case of 
analysing a pulse sequence. 
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Fig. 1. 100 MHz pulse sequence analyzing 

The displayed pulse process is the signal analysed 
and reconstructed in this case. Note how wide is the signal 
spectrum. Nevertheless it was processed in an alias-free 
way under the conditions where the mean signal sampling 
rate is equal to 53.469 MHz. The signal analysis bandwidth 
is 0.05-669.3 MHz, that corresponds to equivalent periodic 
sampling rate 1338.6532 MHz. The spectrum clearly 
shows all expected harmonic components of the signal, 
including two aliasings from 700 and 800 MHz harmonic 
components that exceed 669.3 MHz Nyquist’s limit; 
spurious components in fact are not detected. As for the 
reconstructed waveform, it is fully defined by the 
spectrum. 

Figures 2-3 show the analysis results for two-tone test 
signals. Spectrums of these signals are similar to the 
previous one in sense of spurious component absence. 
Figure 3 directly shows that even signal component so 
small as –54 dB can be clearly detected on the background 
of noises. 
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Fig. 2. Two-tone signal analysis when the tones are similar in 
amplitude 
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Fig. 3. Two-tone signal analysis when the tones differ in 
amplitude considerably 

 
Conclusion 
 

1. As can be see from the given experimental results, 
the suggested iterative direct and inverse DFT calculations 
leads to quite good reconstruction of signal waveforms. It 
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3. However, it should be emphasized, that this high 
performance has been achieved in alias-free way in the 
whole frequency range up to 669 MHz.  

has to be emphasized that waveform reconstruction is 
essential as they could be resampled periodically at much 
higher frequencies than used for original data collection. 
After that there are no problems of processing them in a 
classical way by the well-developed regular DSP 
algorithms. 
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