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Introduction

Recent developments in the field of biometrics and
cryptography led to the possibility of using
electroencephalographic (EEG) signals as biometric keys
in cryptographic systems, [1]-[6]. Such a system records
the EEG signals, extracts certain features and therefore
they are encoded by means of a fuzzy vault, [2]. An
authentication system based on EEG signals, or “thoughts”
as named in [1], has some potential advantages, like a vast
passwords space, the ease of change of the password and
the resilience to shoulder surfing. All of that is provided if
there is a method to extract that much entropy from the
EEG signals, in a repeatable manner. In order to
accomplish this task and to develop a commercial system
of authentication of this kind, some challenges must be
faced. Among them is the variability of the signals, the
number of the locations of the scalp that need to be
monitored and the features that are appropriate to
accomplish the undertaking. In fact, just some features of
the EEG signals are useful to be transformed in biometric
keys. To extract such features and to be able to avoid
unwanted false detections is not an easy task, since the
signals are highly nonstationary and therefore any method
used for stationary signals needs to be adjusted to fulfill
the requirements of the analysis of nonstationary signals.
Until now, this was usually achieved considering smaller
time intervals and assimilating those signals with the
stationary ones.

This paper aims to show how to reduce the amount of
points for collecting the EEG signals for an authentication
system like the one proposed in [1], based on their
correlation properties, and to highlight additional use of the
method.

There is another reason to further analyze the time
series represented by the EEG signals as nonstationary
signals: to establish the possible correlations with other
data in certain pathologies.

In what follows, we will review the theoretical
background for the algorithm that allows the computing of
the detrended cross-correlation function, while the next
section is devoted to the characterization of the EEG
signals from this point of view. The third deals with the
potential implications of the results as an indicator for the
brain activities specific to a certain mental task and the last
one is committed to the concluding remarks.

Detrended cross-correlation: the algorithm

Cross-correlation is a well-known statistical method
used to establish the degree of correlation between two
(usually time) series. This is done considering that
stationarity characterizes both time series under
investigation. Unfortunately, real time series are hardly
stationary and to cure that, as a rule, short intervals are
considered for analysis. This is not always a valid choice,
especially when the time series need to be seen and
analyzed as a whole. For this reason a method that deals
with nonstationary time series, named detrended cross-
correlation analysis, was introduced by Podobnik and
Stanley, [7]. We shall recall the main points of the
algorithm here, in brief.

The subsequent notations will be used: let {xk} and
{yk} be two time series with k=1,2…N, where N is the
maximum number of samples. The mean and the variance
of the two time series are m1, 1 and m2, 2,
correspondingly. We denote generically by
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the autocorrelation function of the time series {xk} and by
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the cross-correlation function of time series {xk} and {yk}.
We will assume that the autocorrelation functions of {xk}
and {yk} and their cross-correlation function scale as
power laws:
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with p1, p2, pxy(0,1).
Let us now define two “integrated” signals, consisting

of the sum of m successive steps, as follows:
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where m  N. The time series are divided into N-n boxes
and therefore each one covers n+1 elements of the time
series. Let us denote generically such a “box”, which starts
with m index and finishes with m+n, by Bm,n.

Using the samples between i and i+n we shall
perform a least square fit. Supposing that the equations of
the lines obtained for each time series are
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and
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we define the ordinates of the least square fit, S1(m,i) and
S2(m,i) as “local trends”. To detrend the time series, we
characterize as residuals the difference between the initial
choice and the local trends. For each box Bm,n, the
covariance of the residuals may be written as
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Summing over all the boxes we get the detrended
covariance, which quantifies long-range cross correlations
in the presence of nonstationarities:
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It is worth remembering the fact that when just one
time series is used and therefore S1(m)=S2(m), the
detrended covariance reduces to the detrended variance, as
acknowledged in [8].

The data set

The signals that were used in this study were
aquisitioned by means of a 10-20 system of electrodes
placed on human scalp. A Donchin paradigm, [9], was
used to collect the data: the user was presented with a 6 by
6 matrix of characters. Then, the user was asked to focus
his attention on characters in a word that was chosen as a
password; each character of the word appeared in their
initial succession, but in a random manner, as time was
concerned. The rows and columns of this matrix were
successively and randomly intensified at a rate of 5.7 Hz.
and two out of 12 intensifications of rows or columns

contained the desired character (one in a particular row and
one in a particular column). The responses evoked by these
infrequent stimuli are different from those evoked by the
stimuli that did not contain the desired character, and they
are similar to the P300 responses. So an evoked potential is
generated every time the subject of the study encounters a
change in the illumination of a row or column that has a
letter on which, at the request of the investigator, according
to the chosen password, the attention of the subject is
focused.

The designation of the electrodes was the one
introduced by Sharbrough in [10] and is presented in Fig.1,
after the drawing from reference [11].

Fig. 1. The electrodes designation for the 10-20 system

Our study was performed for several time series with
the average length of 8000 samples and it was a very time
consuming task, even for a fast computer. To exemplify
the method and to evidence the main results, a smaller
sample (10% of the time series) was considered due to
clarity and (mostly) graphical reasons. First the detrended
variance was computed and it is worth noticing that the pxx

coefficient, the one that describes the auto-correlations,
showed a large range of variation, from 0.04 for the Pz

electrode to 0.986 for the F8 electrode, as shown in Fig. 2
and Fig. 3.
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Fig. 2. The detrended covariance for the time series
characterizing the Pz electrode: pxx=0.04
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Fig. 3. The detrended covariance for the time series
characterizing the F8 electrode: pxx=0.986
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Due to the odd behavior of the autocorrelation
functions of the above time series, we shall focus our
attention on their cross-correlation properties. First, let us
present the integrated signals for the time series collected
by means of the AFz and Pz electrodes in Fig.4. It may be
seen that both S1 (the thin line) and S2 (the thick line)
follow approximately the same shape, but at different
scales. This is a typical case of series that exhibit power-
law autocorrelations with similar scaling exponents. This
may be interpreted as large variations in a time series may
lead to the same kind of variations in the other one.
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Fig. 4. The integrated signals S1 and S2 for the AFz and Pz

electrodes.

The detrended covariance between the AFz and Pz

time series is shown in Fig. 5. It is worth noticing the fact
that it resembles the one characterizing Pz, from Fig. 2.
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Fig. 5. The detrended covariance between AFz and Pz signals: the
pxy exponent is 0.117

The value of the pxy for the time series represented by
the AFz and Pz signals, indicates an anti-correlation
behavior, that is large values in one series are followed by
smaller ones in the other.

A rather different situation, but nevertheless equally
possible, is the one that is shown in Fig. 6 for the
integrated signals of the F7 and F8 electrodes.
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Fig. 6. The integrated signals S1 and S2 for the F7 and F8

electrodes

The shape of each signal is quite different and as a
consequence, this is evidenced in the profile of the

detrended covariance and the value of the pxy coefficient in
Fig. 7.
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Fig. 7. The detrended covariance between F7 and F8 signals:
the pxy exponent is 0.74

Using the results of the previous analysis in the
authentication method

There are quite a few possibilities to use the results of
the detrended cross-correlation analysis in a system that
aims to implement the one proposed in [1]. First, it may be
of a real help in choosing the right number of electrodes
for the cap; one must bare in mind the need to have as less
electrodes as possible for a practicable commercial system,
since the level of acceptance of the system is closely linked
to the less amount of hardware needed to implement it. If
the signals from two or more electrodes are correlated,
then there is no need to use them all in the feature
extraction process. Furthermore, the possibility to quantify
the long-range cross correlations by means of the pxy

coefficient could be of certain help in the feature extraction
process, in case of doubt.

It is worth noticing the fact that, according to our
study, not all signals of the electrodes present long range
cross correlations, but drawing a “map” of this kind proves
to be a difficult task, due to the great variability of the
signals.

Conclusion

The study proved to be useful in giving some hints to
implement an authenticating system based on
electroencephalographic signals. It showed that the
algorithm used is suitable to detect both kinds of behavior
of the time series represented by different signals collected
from diverse electrodes: cross-correlations and anti-
correlations. The number of the samples that were
analyzed, approximately 8000 for each time series, was
large enough to draw the conclusions, since for that
amount of data the scaling exponents were evaluated with
an error less than 5%.
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The paper presents a study that aims to facilitate the development of an authenticating method, based on biometric signals.
Considering a recently introduced method (2008) called the detrended cross-correlation analysis, the authors showed the long-term
correlations and anti-correlations of different electroencephalographic signals, which could lead to a smaller number of electrodes in
such an authentication method. The correlation coefficient was computed for different pairs of electrodes, for a large number of samples,
leading to an acceptable margin of error. Further work in this field could lead to valuable results in analyzing the EEG signals in
different pathologies. Ill. 7, bibl. 11 (in English; summaries in English, Russian and Lithuanian).

Р. Урсулеан, А. М. Лазар. Анализ биометрических сигналов, используемых в новом опознавательном методе, используя 
нетенденционную взаимную корреляцию // Электроника и электротехника. – Каунас: Технология, 2009. – № 1(89). – C.
55–58.

Представлено исследование, которое стремится облегчить развитие метода подтверждения, основанного на 
биометрических сигналах. Рассматривая недавно внедренный метод (2008), названный анализом взаимной корреляции, авторы 
показали постоянные корреляции и антикорреляции различных электроэнцефалографических сигналов, которые могли 
привести к меньшему числу электродов в таком опознавательном методе. Коэффициент корреляции был вычислен для 
различных пар электродов, для большого количества образцов и имели небольшие ошибки. Далнейшая работа в этом 
направлении может дать ценные результаты анализа сигналов электроэнцефалограммы в различных патологиях. Ил. 7, библ.
11 (на английском языке; рефераты на английском, русском и литовском яз.).

R. Ursulean, A. M. Lazar. Biometrinių signalų, naudojamų kuriant naują tapatumo nustatymo metodą, netendencinga
tarpusavio koreliacinė analizė // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 1(89). – P. 55–58.

Pristatytas tyrimas, kuriuo siekiama palengvinti kurti biometriniais parametrais paremtą tapatumo nustatymo metodą. Autoriai
nagrinėja 2008 metais pristatytą netendencingos (angl. detrended) tarpusavio koreliacinės analizės metodą. Parodyta, kad skirtingų
elektroencefalografinių signalų ilgalaikio periodo koreliacijos ir antikoreliacijos potencialiai gali leisti tapatumo nustatymo metu naudoti
mažiau elektrodų. Esant dideliam matavimų skaičiui gaunamos priimtinos paklaidos. Tolesnis darbas šioje srityje gali duoti vertingų
EEG signalų analizės rezultatų tiriant skirtingas patologijas. Il. 7, bibl. 11 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


