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Example with a passive phase driver  
 
 It is a classical phase driver circuit with a balanced 
active load (Fig. 1). 

 
 
Fig. 1. Lattice link 21 LL = , 21 CC =  
 
 By active input resistance and in terms of the absence 
of amplifiers it is differed from phase inverter [1]. 
 The circuit's input resistance is also active and is 
equal to characteristic resistance.  
That let us connect a series of such circuits without 
separating voltage repeaters. We can get the respective 
pulse response at the output of each circuit, but the group 
of all responses can be used as basis function family for the 
construction of various filters. There are no losses when 
the signal spreads in the phase driver circuit. These are 
good preconditions. 
 The transfer function of such a four-port network is 
as follows: 
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 To simplify the analysis we can select a time constant 
1=LC  so that the expression (15) can be written for a 

set of N-links: 
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 By carrying out the inverse Laplace transform we get 
a family of pulse responses from each link of the circuit. 
 The pulse response of the first link (N = 1) is matched 
by this expression: 
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which contains Dirac's delta function at zero. Considering 
that a pulse of finite length will function in the input of the 
filter to be synthesized and that it's voltage will be equal to 
0 at the beginning moment, the Dirac's delta function can 
be ignored. In that case the first four pulse responses are as 
follows: 
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 From these we can derive a Gram matrix G, the links 
of which are   

∫
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 The matrix has a simple structure. Choosing only 4 
links for the beginning of a row we get 

 = G
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 It is easy to see how the matrix should be composed 
for any number of links. 
 Because of specific construction of obtained Gram 
matrix (5), the trace of the matrix is increasing rapidly as 
the number of its links grows. Already with only 4 x 4 
diagonal matrix elements the sum of elements of the main 
diagonal is 20. It shows that the chosen basis is not the best 
from the said perspective. 
 The inverse matrix has a simple form (three-diagonal) 
too 
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 The trace is minimal and that is a very important 
prerequisite. 
Since the matrix is three-diagonal the new biorthogonal 
functions are only a combination of the three primary ones. 
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 This shows that the use of the basis Ψk(t) would be 
most purposeful as the trace is minimal and it grows 
linearly together with the number of links. 
 The formula let us ascertain the family of the 
biorthogonal functions easily: 
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 The basis functions of both families are mutually 
orthogonal 
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 That lets us to calculate the expansion quotients of 
the function to be approximated with one of them by the 
other family of functions. By multiplying both sides of the 
equation (7) by the target function and integrating them in 
the limits of existence (where it differs from zero 
significantly) we ascertain the coherence between the 
quotients 
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 Considering the simple expression (10) it is more 
advantageous to calculate the expansion quotients with the 
functions from the ϕ family, thus getting the quotients ak. 
However, these preconditions do not necessarily mean that 
the expansion of the pulse response of the selected filter 
will converge quickly. Limiting the number of links the 
systematic error will occur [3 (14)] as it is stated by the 
Bessels inequality. In concordance with the expression 
(10) the error energy is as follows: 
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where ka  is the expansion quotient of the Nyquist 
function by the biorthogonal functions of the basis. That 
facilitates the calculation, because only integrals must be 
calculated 

 dxxxfa k

t

Nyk )()(
0

0
φ∫=  . 

 The calculation for the raised cosine function 
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with the parameters T=1; α=0.5 td=3 with 10 links gives 
the following quotients: 
[0.516; -0.187; -0.228; 0.174; 0.399; 0.257; -0.059; -0.287; 
-0.306; -0.153]. That lets us to calculate how the 
approximation energy is increasing depending on the 
number of links of the circuit. The horizontal line shows 
the energy of the function to be approximated. We can see 
that with only 10 links it is far from the desired level. The 
inequality (13) clearly shows that the approximation 
energy can only approach the target function’s energy and 
thus the rate of it’s increase can only fall. 
 

 
Fig. 3. The energy of approximation depending on the number of 
links 

.          (5)

.         (6)

        (12)
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The difference between energies is too large and 10 
links are insufficient for the approximation. Each of the 10 
links of the circuit contains 4 oscillation circuits and 
increasing the number of links may be commercially not 
profitable. 

Therefore, the phase driver circuit must be seen as 
less suited for the synthesis of the raised cosine function 
realizing it with separate elements. 
 
An Example of the synthesis of a Filter using Bessel 
function's orthogonality in the interval [0; ∞) 
 
 Links of the LC delay line series can provide an 
example of such a physically realizable basis. 
 By putting together a circuit with a sufficient number 
of LC links (Fig. 2) 
 

 
Fig. 2. LCR – link 
 
and choosing the respective condenser's voltage responses 
to the delta δ -pulse, we get linearly independent pulse 
responses which would serve as the basis for the synthesis 
of a filter henceforth. The presence of resistors not only 
ensures the damping of the signal but also a minimal 
reflection from the load at the terminal. The reflection 
cannot be fully eliminated because the perfectly matched 
load is physically impossible. However, it can be realized 
approximately as a two-port component that contains 
reactive elements [2]. Homogeneous LC-circuit is 
favorable because all of its stage processes can be 
described with Bessel's functions. Pulse responses in the 
form of condenser voltages conform with the 1st type of 
Bessel's functions with the odd indexes that, together with 
the weight function, are orthogonal within the interval [0;  
∞): 
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 Since the condenser’s output pulse responses contain 
damped exponential curves that are caused by losses 
 
 )()/exp()( 0120 tJtth kk ωτω −−= , (14) 
 
Then accordingly to the formula, orthogonality can be 
ensured by choosing the following as the other function 
class: 
 )/()()/exp()12(2)( 0012 ttJtktg ii ωωτ −−= , (15) 
 
each link of which contains an exponential curve with a 
positive step. ω0=2/ LC  and τ=RC=L/r in both formulas. 
The value of integral does not change, if we multiply (10) 
both functions (gi(t)×hk(t)). 

 Since all of the Nyquist functions are limited in time, 
even the fact that gi(t) are increasing absolutely 
( ∞=

∞→
)(lim i

t
g ) does not cause any problems. To ascertain 

the quotients of the Nyquist function's expansion hN(t) by 
functions hk(t,) we must calculate the integrals. 
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 The convergence of integrals theoretically depends on 
the type of the Nyquist function hN(t) The calculation is 
facilitated by the fact that Nyquist's functions are damping 
quickly in both directions and thus we can assume that 
they are perfectly limited. 
 
 An example. Let's assume that we must synthesize a 
filter with a pulse response that is closely similar to the one 
in the [3 Fig. 4]. It matches up to the length of the symbol 
Ts=1 at α=0,5. It is known from the Communication theory 
that the filter’s cutoff frequency sTf 2/)1(0 α+= . But, 
from the circuit we also know the formula for calculating 
the highest frequency that can spread in the LC circuit. 
From this we derive an important parameter of the circuit 
to be synthesized 
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that characterizes the delay per one link of the circuit. 
Placing in the values we see that LC  = 0,4244 time 

unities. Since )/(10 LCf π= , the cyclic frequency in the 

formulas (28-30) is LC/20 =ω . In this example ω0=4, 
7124. 
 The damping of oscillations of basis function hk(t) is 
most affected by the time constant τ, in the choice of which 
we must make a compromise – it is preferable to not to 
diminish the basis function's amplitudes much, yet at the 
same time it is important to prevent intense reflection from 
the load. In this example the time constant is chosen so that 
it is equal to the length of the interval, respectively 10 time 
unities as shown in the   [3 Fig. 4]. Choosing 10 links for 
the circuit the maximal mutual delay of pulse responses is 
4.244 time unities, which comprises the main part of the 
Nyquist function's impulse response. Placing in all the data 
the integral (16) and integrating only in the interval of [0; 
10] for each of the Bessel functions parameters k we get 
the following weight quotients a = [0,0087; 0,0325; -
0,0795; 0,1788; 0,6059; 0,5448; 0,2053; 0,0055; - 0,0269]. 
Suffice to multiply these quotients respectively with hk(t) 

and to sum up the results )(
10

1
thah k

k
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=
=  to get the 

necessary approximation. 
 To verify the accuracy of the approximation it is 
useful to find the expansion of the Nyquist function in the 
biorthogonal basis. Calculating the integrals for this 

purpose  dxxhxhb Nykk )()(
10

0
∫=  we get these results:  

b = [-0.0035; 0.1219; -0.1563; 
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-0.3755; 0.2955; 0.9564; 0.7258; 0.2420; -0.0020; -
0.0298]. Using Bessel's inequality (10) we calculate the 

sum 1709.1
10

1
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=
k

k
k ba  and the integral 

1711.1)(
10

0

2 =∫ dxxhNy . The insignificant difference shows 

that the theoretical model (Bessel function's basis) is suited 
well for the synthesis of the given filter. From the Fig. 4 
we can see that it is enough with 8 links that provide the 
approximation energy E8 = 1,17; the last 2 links do little to 
make it more precise. 

 

 
 
Fig.4. The approximation energy  with Bessel’s functions 
 
 In praxis the use of formulas (28-30) is not 
recommended, because in a real basis circuit there is 
tolerance of elements and the reflection from the terminal 
of the circuit. Actually the pulse responses of the links of 
the circuit are obtained by measurements and there are 
deviations from the norm. Therefore the result acquired by 
using formulas (28-30) will not be satisfying. 
 
The synthesis of a filter by orthogonalizing the line 
segments of the basis functions 
 
 In the theoretical model an ideal matching of line 
with the load is planned and the tolerance of components is 
not taken into account. The real filter is a slight 
perturbation of the ideal model. In praxis both the pulse 
responses and the responses to the unit pulse hk(t) are 
obtained by measurements in a finite interval of time [t1; 
t2]. Assuming that the system should be stable, we can 
conclude that hk(t ≥ t2)=0 un hk(t ≤ t1)=0. 
 If our goal is to find the approximation of the filter's 
pulse response [3 (Fig. 6)] then we have to choose the 
pulse responses hk(t) of the links of the circuit as the basis 
functions. But, if the goal is to find the filters response to 
the unit pulse, then the basis functions must be constructed 
from the reactions of the links of the circuit to these input 
signals. That means that we must use the raised cosine 
function [1 (1)] instead of the impulse response [3 (Fig. 
6)]. 

Calculations must be carried out with formulas [3 (12-
14)]. First we must construct a square matrix Ф with the 
following elements: 
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 Then we calculate the inverse matrix Φ-1 with 
elements ψi,j and form the class of biorthogonal functions 
 
 )()( 1 xhxg −Φ= , (19) 
 
where g(x) and h(x) are the vector functions. Then we must 
find the expansion quotients (spectre) of the filter's pulse 
response by the pulse functions of the links of the basis 
circuits. 
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 We get the approximation of the filter's pulse 
response as a result. 
 

 ).()(
~

1
xhbxh k

K

k
kNy ∑

=
=  (21) 

 

The conditions of numerical experiments 
 
 There are two possibilities to be explored: 1) to 
calculate the optimal adding quotients for each set of 
components (this is a very disadvantageous version from 
the technical point of view, except for the case in which 
the adding quotients are calculated with an adaptive 
algorithm); 
2) to calculate the quotients by the nominal values of the 
components independently from the particular tolerance 
(this is the technological version in which it is more 
advantageous to use more precise components and not 
calculate the quotients for each filter separately). 
The LCR-circuit was presented as a SIMULINK model. 
(Fig.5).  

 
Fig.5. The SIMULINK model of a basis circuit 
 
 State-space matrices are chosen in analogy to [2] but 
at this time they have 10 links instead of 8. The advantage 
of the model is that the reflection from the load in it is 
similar to a real experiment and it is also possible to 
imitate the tolerance of components. A positive difference 
from the physical experiment is that it is possible to study 
the influence of each factor separately and thus ascertain 
the most essential of them. 
It is also possible to compare the effect of a reactive load 
to that of an active load CL /=ρ . Since the signal 
generator "Step" that’s chosen is perfect (Heaviside step), 
then the circuit's reactions to the δ-pulse are on the right 
side of the Fig.6 differentiating the acquired step responses 
(the left side of the Fig.6). 
If the step responses were measured we would only see 
noise on the left side of the Fig. 6, but modeling allows us 
to avoid measuring so far as the construction's parasitic 
parameters don't have any significant influence. 
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Fig. 6. Step and impulse responses of the RLC links 

 
 

 Since the circuit of the reactive load consists of two 
links of the circuit with accordingly calculated parameters 
[2], then the step processes on the respective capacitors 
(dashed characteristics in Fig. 6) are only slightly different 
from the step processes of the capacitors of the identical 
links of the circuit. That lets us to complement the 
expansion basis with these step processes too, which 
increases the accuracy of the approximation. 
 
Synthesis using the pulse responses of the links of the 
basis circuit 
 
 Calculating the expansion quotients of the Nyquist 
function shown in the [3 Fig. 6] we get these results: 
 

a = [-0.0059;  0.0027;  0.0500;  -0.0586;  -0.2023;  
 0.0781;  0.5850;  0.6084;  0.2955;  0.0429], 
b = [0.0109;  -0.0204;  0.1401;  -0.0908;  -0.4035;  
 0.1182;  0.8266;  0.7919;  0.3334;  0.0885]. 

 Summing up the products we get 1710.1
10

1
=∑

=
k

k
k ba . 

So the quality of approximation is not inferior to the case 
with ideal Bessel's functions. Practically the approximation 
is exact. Another important parameter is the trace of the 
matrix: Trace (Ф)=19.2. 
 It characterizes the filter's sensitivity to divergences 
of the weight quotients. Seeing that in praxis the dispersion 
of the divergence of weight quotients cannot be 
ascertained, the trace has only a comparative meaning. One 
can verify it's influence by comparing the synthesis in 
different bases. In this case L=33 and C=5.458e-3 thus 
ρ=77.76 ( CL /=ρ  the value of ρ does not depend on 
the units of measurements of L and C we can assume that 
L=33 µH and C=5.458e-3 µF; we can interpret these 
values also as nH and nF). In this case the limitation of L 
and C is LC = 0.4244 (if we choose to use µH un µF as 
units of measurement then the value 0.4244 must be 
interpreted as 0.4244 µs). 
Opting for active load for the circuit, reflection can be 
detected in the step processes. That leads to errors in the 
approximation, which are more visible on the right side of 
the Fig. 7. 

 
 
Fig.7. The influence of reflection on the accuracy of the 
approximation 
 
 The values of both of the indicators of quality have 

changed: 1690.1
10

1
=∑

=
k

k
k ba  and Trace (Φ)=19.4. The 

value of the systematical error (1.1711-1.1690)/ 
1.1711%=0.18%, and the error can be seen visually in Fig. 
7. In return the change of the Trace (Φ) is so small that its 
effects would be difficult to detect. 
 The error energy in the experiments described below 
is calculated with the following formula:  

dtidealonaproximatiEnerr
t

t
∫ −=
2

1

2)( . 

 Using matched reactive load and components with 
the nominal dispersion of σ=1% in 100 cycles it was 
ascertained that the response energy of the synthesized 
filters response to the unit pulse deflects from the energy 
of the raised cosine function not more than 0.005 %. 
 The use of active matched load almost does not affect 
the result. Even considering the systematical error (which 
dominates in this case) the error is 0.15 %. The systematic 
error which occurs with the use of active load of basis 
circuit suppresses the effect of the difference of Gram 
matrix traces. These experiments show that a parameter 
scattering of components of 1% does not affect the quality 
of the filter considerably. 
 Trimming each filter’s adding quotients we see that 
results are more precise even at a higher tolerance of 
components. In a circuit with tolerance of all elements at a 
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level of dispersion of 10% in 100 cycles with reactive 
matched load the error energy added up to 0.43% of the 
optimal approximation energy. With a matched active load 
the respective error energy was 0.53%. Thus if the filter 
operates in the regime with an adaptive weight quotient 
trimming algorithm a higher parameter tolerance of 
components is admissible (up to 10%). 
 The acquired values characterize the kind of synthesis 
in which the impulse response is approximated at first and 
then the response to the unit pulse is calculated. 
 
The synthesis using responses of the links of basis 
circuit to the unit pulse 
 
 There is also a straight way when the basis circuit’s 
responses to the unit pulse are used to approximate the 
“raised cosine” characteristic. It turns out that in this case 
Trace (Φ) = 7.76 and that has a positive effect on all 
experiments compared to the synthesis of a filter in which 
the impulse responses of the links of the circuit are used as 
the basis. 
 Without parameter tolerance of components and with 
active resistance of the load of basis circuit we get these 
characteristic values: the approximation energy of the 

raised cosine function 8741.0
10

1
=∑

=
k

k
k ba  at the raised 

cosine function energy of 8750.0=RcE  the systematic 
error is (0.8750-0.8741)/0.8750%= 0.1% . 
 Individual trimming. Parameter tolerance of 
components σ=10%. 
 Adjusting each filter’s adding quotients to the 
reactively matched load of the basis circuit in 100 cycles of 
experiment the error energy is only 0.22% of the energy of 
the raised cosine function. If the basis circuit is matched 
with active wave resistance the error energy is 0.25%. 
 Without individual trimming and at the parameter 
scattering of 1% the acquired results show minimal errors. 
With an active load of the basis circuit the error energy 
compared to the raised cosine function’s energy is only 
0.01%, with matched reactive load only 0.005%. These 
values are calculated not considering the systematical 
error, which is greater. 

 Synthesizing the filter by the nominal values of the 
details it is advisable to the quotients of the filter to be 
synthesized using a model (i.e. MATLAB Simulink) 
because in praxis it is impossible to create a filter without 
tolerance of components. One exception could be the high-
frequency region, where the parasitical reactances of 
details and construction must be taken into account. 
 
Conclusion 
 
 The RLC ladder circuit is seen as suitable basis 
circuit for the synthesis of the Nyquist filter. It is more 
advantageous to synthesize filters using the responses of 
the links of the circuit to the unit pulse. It is advisable to 
use the raised cosine function as the target function for the 
approximation. It provides less sensitivity to the parameter 
scattering of the details compared to the use of the impulse 
responses of the links of the circuit when approximating 
the filter’s impulse response. If we approximate the raised 
cosine function with at the roll-off factor of 0.5 it is 
enough with 8 links of the RLC basis circuit. At a lesser 
value of the roll-off factor the number of links must 
increase. 
The use responses of the phase driver circuits for the 
synthesis of filters is unprofitable because it requires a 
relatively high number of links and each of them contains 
4 oscillation circuits. 
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