ISSN 1392-1215 ELEKTRONIKA IR ELEKTROTECHNIKA. 2005. Nr. 8(64)

T 170 ELEKTRONIKA

Analysis of Uniform Polar Quantization over Bennett’s Integral
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Introduction

Polar quantization techniques as well as their
applications in areas such as computer holography,
discrete Furrier transform encoding, image processing and
communications have been studied extensively in the
literature. Synthetic Aperture Radars (SARs) images can
be represented in polar format (i.e. magnitude and phase
components). In the case of MSE quantization of a
symmetric two-dimensional source, polar quantization
gives the best result in the field of the implementation [1].
Polar quantization consists of separate but uniform
magnitude and phase N level quantization, so that
rectangular coordinates of the source (x,y) are transformed

into the polar coordinates in form: r=(x’+1%) °,  ¢=tan’
!(v/x) where r represents magnitude and ¢ is phase. In
previous works about polar quantization [1,3] only product

uniform quantization was always considered (N=MxL).
That optimization approximated granular distortion as:
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The optimal uniform polar quantization (OUPQ) is
very similar to the original uniform polar quantization
(UPQ) except the fact that the number of the regions for
the phase angle varies depending on the result of
magnitude quantization. In other words, each concentring
ring in quantization pattern is allowed to have a different
number of partitions in the phase quantizer (P;) when r is
in the i-th magnitude ring. Their implementation remains
simple requiring only two scalar quantizers and lookup
table of the P. One UPQ must satisfy the constraint

L

ZE:N in order to use all of N regions for the
i=1

quantization.

In this paper polar quantizers are designed and
analysed under additional constraint — scalar quantizer is a
uniform one. This restriction has the following advantages
over optimal polar quantization: the implementation is
simple, and no compressor-expander pair is needed. In [5]
is given the analysis of vector quantization in order to
determine the optimal maximal amplitude. In [5] is given
the analyses for asymptotic uniform polar quantization.

Optimisations are done with respect to granular distortion
D, , i.e. the mean-square error (MSE). The goal of this
paper is to find simple equation for distortion by solving
Bennett's integral for uniform polar quantization and
circular symmetric sources (iid Gaussian source). The
analysis for optimal uniform polar quantization and
optimal product polar quantization is done.

Uniform polar quantization

For this analysis we use uniform polar quantizer with
L magnitude levels and P; phase reconstruction levels at

the magnitude reconstruction level m,, /<i<L. First we

portion the magnitude range [0,7;+; ] into magnitude rings
with  L+/  decision levels  r=(rj,...,rz+;) and

(0:}”1<I’2<...<I’L<VL+1 :}’max ) The

magnitude
reconstruction levels m=(m,,...,m;) obviously satisfy
succession (0<m;<m,<..<my). Let us assume that the
total number of reconstruction points N is large enough. In
that case magnitude decision levels and reconstruction

levels are given in turn:

r=(-DA, 1<i<L+1; )

m;=(i—1/2)A, 1<i<L. ®)

Let us consider distortion D as a function of the
vector P=(P;);<<, whose elements are numbers of phase
quantization levels at the each magnitude level. Said in
other words, each concentric ring in quantization pattern is
allowed to have a different number of partitions in the
phase quantizer (P;) when r is in the i-th magnitude ring.
Assuming the representation points are centered in their
respective  cells, magnitude decision levels and
reconstruction levels are given as in equations (2) i (3).
Next, we make a partition of each magnitude ring into P;
phase subpartitions. By denoting adjacent phase decision

levels with ¢; and @,;.,, and the j-th phase reconstruction

level as ¥, for the i-th magnitude ring, /.<j<M,, following
dependence is valid
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Total distortion D is a combination of granular and
overload distortions, D=D,+D,. The granular distortion D,
is given by:
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For this analysis we assume that the input is from a
continuously valued circularly source with unit variance
rectangular coordinate margins and bivariate density

function:
)= p(x*+ 7). (6)

Transforming to polar coordinates, the phase is
uniformly distributed on [0,2n) and the magnitude is
distributed on [0,0) with density function f(r)=27zrp(r).
The magnitude and phase are independent random
variables.

The transformed probability density function for the
Gaussian source is:
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Without losing generality we assume that variance is
o=1.
Suppose that a polar quantizer has many points which are
small and the source density is smooth. In that case
granular distortion D, of one cell is given by:

D, :% | |:r2 +m} = 2rm; cos(¢-y, )J%dm’yﬁ ,(8)

1]

S (my
) =;§:)Rj [rz +m? =2rm, cos(¢—wi,jﬂdrd¢- )

i.j

The total granular distortion for polar quantization is
found in [4]:
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Bennett’s integral for uniform polar quantization

A two-dimensional N-point scalar quantizer is
characterized by a partition S={5,,S,,..,S,} of two-
dimensional Euclidean space R? into N quantization cells
and a code book, noticed as C = {yl,yz,...,yN} , consisting
of N quantization points in two-dimensional Euclidean
space R’. A two-dimensional source vector x={x;,x,} is

quantized into one of the y,'s according to the quantization

nle Q) =y,
dimensional quantizer is log,(N/2). When applied to a

if x €S8, Encoding rate for two-

random vector X ={x;,x,! with probability density function
p(x), quantizer's distorsion is given by:

D(S.C) = % [Ix~ 0| p(xydx: (1)

D(S,C) = Zjux Vi || p(x)dx ; (12)
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where |[x—y;| denotes Euclidian distance
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and p('x ) is the two-dimensional density of x .

Bennett showed that the mean-squared error of a
scalar quantizer (k=1), with many small cells (N large) and
with each y; in the center of its cell may be accurately
approximated as:

D(S,C) =

12N2 j P ——p(x)dx, (14)

where A(x) is a function, called point density, and A(x)A is

the fraction of quantization points in a small interval of
width A surrounding x. The integral without limits denotes
an integral over the entire space. The right-hand side of
previous equation is known as Bennett's integral. Although
originally derived for companders (quantizers consisting of
a compressor mapping, uniform quantizer, and expander
mapping) with A equal to the derivative of the compressor
function can be recognized by other quantizers, and is
applied more generally. Bennett's integral shows how the
distortion depends on the key characteristics of the
quantizer, namely, the number of points N and a point
density A. Tts utility is exemplified by the fact that one
may use it to show that the best quantizers have
1/3

A(x)= p(xzm | (s)

_[ plx) " dx

In following analysis we extend Bennett's integral to
polar quantizer. The goal is to give simple approximate
formula for distortion that shows influence of key
characteristics.

Generally, the normalized moment of inertia is
defined as:

1

j||x y; || dx . (16)

In our case, for two-dimensional N-point scalar
quantization, the above equations become:

L k
D(S,C)= Zzp(mio‘//i,j)'NM(i)'wlz (Si,j)’ (17)

i=1 j=1
where vol(S; ;) denotes the volume of the cell S;; and NM
(i) denotes the normalized moment of inertia of the cell S;;
around the point y; with respect to the distortion and can be
expressed as

(17, - r)7z 2m;A,. 7w
[(S; ;) =rdrdp =~ , 18
vol(S; ;) = rdrdgp 7 P (18)
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NM (i) = ! I((x—xl-)z+(y—yl-)2)a’xdy.(l9)
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After transformation to polar coordinates and
integration over ¢, the equation above can be written as
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NM (i) = L[LA" +MJ ~ i[ PA, +L] = m(r,$) (21)
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where 4, - the width of rings in the case of restricted
uniform polar quantization: A, =r,, /L.

Finally, point density is found as:
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After this approximation, distortion D expressed over
Bennett’s integral becomes:

1 m(r, @)
D(S,C) = — (o) ——rdrdp, (23
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:rmax % erax lr2ﬂ_2
D(S,C) { re {24 e 0 dr. (24)

Solving of Bennett’s integral for optimal uniform polar
quantization

Using the method of Lagrange multipliers with
restriction for the total number of the reconstruction points
N we obtained optimal point density p(7) as

() = Y e 6 (25)
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The distortion can be determined as:

D(S,C)=1, +1,, (26)
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Finally we find distortion as a solution of Bennett's
integral for uniform polar quantizer as:

> 2 >
2 TS _lnax.
D(s,c):i(rﬂ) +1[3;{1e 6] L ] [le 6 ]-(29)
ul L) 2 Nr

We obtain the optimal number of levels after
minimizing distortion D over L (6D /0L =0) :

e \ﬁ (30)
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and we find distortion:
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Fig. 1. Relation between granular distortion D, and total
distortion D, for different values of R, case of OUPQ

From Fig.1 we can make a conclusion that for the
values R >7the overload distortion D, can be

disregarded.
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Fig. 2. In addition to process of determination the optimal value
of 14 ,case of OUPQ

Solving of Bennett's integral for product uniform polar
quantization

For product uniform polar quantization:

p(r)= p(m;) = const = % =M, (33)
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After minimizing equation (10) over M

aD(s.C) _
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we obtain optimal values of M and L:
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The optimal point density for product uniform polar
quantization is found as:

277 (1 §) = % . (39)
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We find the granular distortion as
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Finally, total distortion for product uniform polar
quantization is:

prod _ pyprod
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Fig. 3. Relation between granular distortion D, and total
distortion D, for different values of R, case of PUPQ
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Fig. 4. In adition to process of determination the optimal value of

T'max -case of PUPQ

Table 1. Values of Distortion for different values of R, in cases

of OUPQ and PUPQ
R N Dopt med
4 256 0.00808795 0.010818250
5 1024 0.00225094 0.002897594
6 4096 0.00060305 0.000775516
7 16384 0.00015655 0.000205543
8 65536 0.00004031 0.000054328
Conclusion

The analysis of Bennett's integral is given for uniform
polar quantization for two-dimensional memoryless
Gaussian sources. This paper gives simple and complete
analysis for constructing an optimal uniform polar
quantizer for sources with optimal point density. We
calculated granular distortion and found gain obtained by
using optimal point density. The goal of this paper is
solving quantization problems for uniform polar quantizers
by finding minimal distortion and optimal point density.
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Analizuojamas Beneto integralas, skirtas tolygiam poliniam kvantavimui dvimaciuose nejsimenanciuose Gauso Saltiniuose,
atsizvelgiant | granuliuota iSkraipyma (deformacija) D, ir viduting standarting paklaida. Pateikiamas tikslas — atrasti paprasta
iSkraipymo lygti sprendziant tolygaus polinio kvantavimo Beneto integrala (iid gausiniai Saltiniai). Kvantavimo metodo analizés metu
panaudotas variantiSkumas o>=1. Atlikta optimalaus tolygaus polinio kvantavimo ir optimalaus gaminio analizé. I1. 4, bibl. 5 (angly
kalba; santraukos lietuviy, angly ir rusy k.).
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In this paper the analysis of Bennett's integral is given for uniform polar quantization for two-dimensional memoryless Gaussian
sources with respect to granular distortion D, , i.e. the mean-square error (MSE). The goal of this paper is to find simple equation for
distortion by solving Bennett's integral for uniform polar quantization and circular symmetric sources (iid Gaussian source). During the
quantization method analysis we used variance 6”=1. The analysis for optimal uniform polar quantization and optimal product polar
quantization is done. Ill. 4, bibl. 5 (in English; summaries in Lithuanian, English and Russian).

. A. CrosinoBuy, /I. P. Anexcuu, 3. I'. Ilepuu, A. 3. HoBaHOBUY, AHAJIH3 PABHOMEPHOI0 MOJSIPHOT0 KBAHTHPOBAHUS INPH
noMouy uurerpasia bennera // DnekrpoHuka u jiexkrporexnuka. Kaynac: Texnosorus, 2005. — Ne 8(64). — C. 5-9.

Anammupyercsi uHTerpan beHHera, MCIOIb3yeMbId NpH KBAaHTUPOBAHMM PAaBHOMEPHBIX HETayCCOBBIX CHUTHANIOB. OmpezieneHo
CpeIHEKBAPATHYECKAS MOrPEITHOCTh MPH PEIICHHH STHX 3ajad, korma o°=1. HaliieHs! ONTHMANbHBIC YCIOBHS AHANM3A IS
PaBHOMEPHO! MOJSPHOW MUCKPETU3AIMK MapaMeTpoB mpoaykuuu. Wn.4, 6ubn.5 (Ha aHrmmilckoMm si3bike; pedepaThl Ha JTHUTOBCKOM,
QHIIIMIICKOM M PYCCKOM $3.).



