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Introduction

Medical images are often treated as images having
low contrast properties. While this is very important fact, it
follows that images can be characterized by self-similarity
feature also. Self-similarity refers to images that have sev-
eral parts looking as the whole image. In mathematics
self-similar geometrical objects are known as fractals. This
feature can characterize all images which exist in nature,
medical ones also [1]. Thus, it can be applied fractal-based
approach for image analysis of such type. This is reason
which makes fractal-based approach such attractive for
analysis of medical images. This approach can be re-
quested also because of the low contrast characteristic of
the grayscale medical images. Object of interest are gray-
scale medical images of human liver. Then, this document
is based on references [1-3] and it attempts to investigate
exploitation possibility of self-similarity feature in medical
images for discrimination of different tissues in image.
This can be referred to segmentation task also. The main
task behind this article is investigation of relevance of mul-
tifractal mathematical model for discrimination of different
tissues of human liver.

Fractal is ideal case existing in mathematics. Unfor-
tunately, the objects existing in nature have similar inner
structure at different scales only in particular range of
zooming scales. While fractals in real images are rare case,
a multifractal term is introduced and applied in case of real
images. This article refers to the image as texture consist-
ing and texture analysis itself is fractal-based. A correla-
tion between texture coarseness and fractal dimension of a
texture is base for this approach.

There are a few articles that show an interest on ap-
plications of fractal theory on medical images. [1] explains
mathematical concept of multifractal theory for segmenta-
tion task and exploits it on magnetic resonance imaging
images of human brain. [3] proposes the method of self-
similarity analysis applied to 2D breast cancer imaging.

Several works have dealt with human liver region
segmentation problem. There are studies based on histo-
gram analysis [4], active contours [5]. These works en-
counter the same problem, while these works exploits gray

level intensity alone. This is because of nearby organs hav-
ing similar gray level intensity by which liver are sur-
rounded. This makes difficult to segment liver region di-
rectly. Indeed the problem is solved by applying few pre-
processing methods consecutively.

Multifractal analysis basics

Suppose the image under investigation has size M×N,
then an image function can be described this way
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where f(m, n) – specifies the intensity of pixel (m, n),
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The coast length example is frequently used to ex-
plain the fractal concept [6]. Suppose the measurement of
coast length is taken repeatedly by applying a ruler of dif-
ferent length each time. It is apparent that decrease of ruler
length produces increased length of coast under measure-
ment. A relation between the measured coast length and
the ruler length can be understand as estimate of the coast-
line's geometrical properties such as roughness for exam-
ple. This functional relationship can be expressed ap-

proximately in mathematical form by     d
d NAB  or

after few minor changes by
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where N(ε) – is the minimum number of plane elements of

size ε required to cover the set nRA  , ε – the ruler
length, c – mathematical constant. After few mathematical
procedures, Eq. 3 can be replaced with an equivalent for-
mula
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This formula is main tool used in this research and is
used in different mathematical form following the frame-
work described below. This formula is referred to Haus-
dorf dimension also. More information for this in detail
can be found in [7]. Usually, the framework for image
analysis in multifractal theory terms is proposed as fol-
lows. Firstly, the coarse Hölder exponent is calculated
which describes the point-wise singularity of the object.
Secondly, the multifractal spectrum is calculated, which is
derived as distribution of Hölder exponent, denoted as α.
While these quantities are estimated in discrete space be-
cause of discrete nature of digital image, the limit in Eq. 4
is not possible to estimate directly. Indeed the coarse
Hölder exponent is estimated as follows
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where μi(m, n) is the quantity of measure in

  ,2,1,0,12,  ppgggii sized neighbour-

hoods centered around each pixel of image. The limit of
αi(m, n) is estimated then from bi-logarithmic graph
ln(μi(m, n)) vs. ln(i) in sense of linear regression. After
this procedure applied to whole image, the so called
α-image is obtained.

To calculate the distribution of α-image, pooled α
values are discretized as follows

  ,,,3,2,1,1min Rrr rr   (6)

where, R is the number of subranges in [αmin, αmax]. Divi-
sion Δαr were used uniform as follows

  ./minmax Rrr   (7)

Then the α-image is thresholded continuously in each
subrange r leaving only those “active pixels” which lie in
subrange [αr, αr+Δα]. Then the dimension f(αr) of thresh-
olded α-image is calculated for each subrange according
to formula
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where Nj(αr) is number of boxes containing at least one
α-value belonging to the subrange [αr, αr+Δα] when
α-image is covered with regular grid of boxes having
size j. Nj(αr) is calculated repeatedly for different size of
boxes j = {1, 2, 3,…} and fj(αr) is then estimated from bi-
logarithmic graph ln(Nj(αr)) vs. -ln(j) in sense of linear
regression. After examination of whole α-image, the
f(α)-image is obtained by replacing the “active pixels” in
each subrange [αr, αr+Δα] with related value of f(α).

As depicted in [1], Eq. 5 merely describes relation of
two quantities: the number of non-empty boxes and their
dimension. It follows that each subset of pixels is defined
only by two states i.e. black and white. Such an approach
for calculation of fractal dimension can't lead to a reason-
able result. Reasonable effect can be achieved using more
general quantities, which are known as measures in ma-
thematics. This article exploits four mostly used measures:
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where μi(m, n) – indicates capacity measures. g(k, l) – indi-
cates gray-scale intensity values of pixels (k, l) belonging
to the set of neighborhoods Ω having size i. g(k, l) does not
take zero value in case of measure. All of them give differ-
ent information on the singularities encountered.

Methodology

The aim is to prove if different kind of tissues can be dis-
tinguished using multifractal spectra. The spectrum is ob-
tained for three different types of tissue: normal liver tissue
(sample 1), tumor tissue (sample 2), and adjacent to the
liver tissue (sample 3) (Fig. 1 and 3, first row). Samples of
size 64×64 representing these tissues are taken from CT
images. Fig. 2 presents the results for samples taken from
the first original CT image and Fig. 4 depicts results taken
from the second original CT image. We need to adjust
some of the parameters to apply implemented method on
real images. The sum-measure is used and the square shape
like for sliding window is used. We choose to replicate the
image across its outer borders to deal padding problem
with. Neighbourhood sizes for images of size 64×64 are i =
{1, 3, 7, 15, 31} while R value used to discretize α into
subranges is equal to 12. The number of subintervals R
should also be properly chosen because it has an impact to
the accuracy of the multifractal spectrum. Bigger number
of subintervals gives erratic spectrum and smaller number
of subintervals gives smoother spectrum. While spectra
should preserve its smooth shape, it should have high
enough resolution also. Sizes of boxes for box-dimension
are j = {2, 4, 8, 16, 32, 64} that is natural series with ele-
ments increasing by power of two.

Results

According to [1], the graph of f(α) is continuous func-
tion of α and has the parabolic shape which is typical for a
number of subjects existing in nature. Medical images re-
side in this group also. Usually, the peak of the graph is
near α = 2 for two-dimensional signals. The α-value holds
local information of the image. Each pixel of the image is
defined by its own coarse Hölder exponent α. Subsets of
image space S having similar α-value, have the same scal-
ing behaviour and share similar qualities. These, in context
of segmentation, define meaningful objects which reside in
the image. The objects in fractal-based image segmentation
task are boundaries of an object. The subsets consisting of
the pixels having α ≈ 2 make homogeneous regions, the
measure is regular. The subsets consisting of the pixels
having α << 2 or α >> 2 indicates that pixel has irregular
measure. This means, that such pixel is included in subset
with high gradient or subset which can be interpreted as
discontinuous signal. Here can be found singularities such
as lines, step-edges, and corners.
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However, only local interpretation of α-value is not
always sufficient to get reasonable results. Indeed, it is
used interpretation of f(α)-value along with mentioned one
i.e. α-value. Value f(α) holds global information of the
image.

Using statements described above, let us compare the
spectra in Fig. 2. Comparison of these spectra gives fol-
lowing findings. The peaks of the spectra are at three dif-
ferent α-values. Sample 1 has the peak at α = 1.9993, sam-
ple 2 has the peak at α = 1.9922, and sample 3 has the peak
at α = 2.0123. This shows us that samples under investiga-
tion belong to three different types of tissue. The peak val-
ue of f(α) is approximately 0.7 that according to the state-
ments above gives no meaningful information about the
samples. Similar pattern can be seen behind Fig. 4 also.
Samples from 1 to 3 have the peaks at α = 1.9928, α =
1.9873, α = 1.9685 values respectively. Recall, that sam-
ples depicted in his figure are taken from another slice be-
longing to the same pool of CT images. To have stronger

evidence, statistics is shown in Table 1. It is seen that these
data are consistent with the numbers taken from Fig. 2 and
Fig. 4.

Table 1. Statistics made on three different α-values of interest.
30 different samples are used to calculate the mean.

Statistical
description

Sample 1
(liver)

Sample 2
(tumour)

Sample 3
(abdomen)

Mean 1.9994 1.9974 1.9918
Std. 0.0054153 0.0069620 0.019258

Result produced by multifractal segmentation me-
thod applied on medical liver image (Fig. 5(a)) is pre-
sented in Fig. 5(b). Segmented image was produced by
estimating minimum measure (Eq. 9) of negative image,
then thresholding this image. Anisotropic diffusion was
taken as a preprocessing step to contract the light intensity
dispersion of the parenchyma which results in enhanced
contrast of the image.

(a) (b) (c) (a) (b) (c)

Fig. 1. Three types of the tissue under investigation for three
samples, first row: a) liver – sample 1, b) tumour – sample 2, c)
surrounding tissues i.e. abdomen – sample 3. α-images, second
row. f(α)-images, third row

Fig. 3. Three types of the tissue under investigation for three
samples, first row: a) liver – sample 1, b) tumour – sample 2, c)
surrounding tissues i.e. abdomen – sample 3. α-images, second
row. f(α)-images, third row. Samples are taken from another
slice of pool of CT images

Fig. 2. Multifractal spectra of the tissues under investigation for
three samples taken from some slice of pool of CT images

Fig. 4. Multifractal spectra of the tissues under investigation
for three samples taken from another slice of pool of CT im-
ages
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(a) (b)
Fig. 5. Original image with thresholded image: a) original image,

b) segmentation result

Conclusions

The most appropriate set of settings to the problem
under interest are: sum-measure, replicate padding, neigh-
bourhood sizes suitable for images of size 64×64 are i =
{1, 3, 7, 15, 31}, number of subranges for images of size
64×64 is equal to R = 12, sizes of boxes for box-dimension
suitable for images of size 64×64 j = {2, 4, 8, 16, 32, 64}.

Spectra f(α) of all three investigated tissue have the
maximum at different α-values (Fig. 2 and 4) what sug-
gests that multifractal theory can be valuable tool to de-
scribe human's liver tissues in CT images. However, these
α-values are very close each other that can be due to esti-
mation inaccuracy of α-value or because of inefficient res-

olution of spectra. Presentation of segmentation results is
also given (Fig. 5(b)).
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Images of human liver taken from computed tomography are considered. These images are analysed as self-similar sets. To accom-
plish this analysis, the multifractal mathematical model is applied. The main task behind this article is investigation of relevance
of multifractal mathematical model for discrimination of different tissues of human liver. Indeed, we need to show that a mul-
tifractal spectrum allows us to distinct different types of tissues. This allows us to suggest application of multifractal model for image
segmentation task. Using multifractal spectra was shown that three different types of tissues can be identified. Types of tissues under
investigation were: liver, tumour, and surrounding tissues i.e. abdomen. Ill. 5, bibl. 7 (in English; summaries in English, Russian and
Lithuanian).
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человека //  Электроника и электротехника. – Каунас: Технология, 2009. – № 2(90). – С. 35–38.

Анализируются изображения компьютерной томографии, отображающие печень человека. Эти изображения 
анализируются как самоподобные множества, применяя математическую модель мультифракталов. Исследование 
концентрируется на проверку годности математической модели фракталов для отделения друг от друга различных тканей
печени и соседних для них тканей. Для того показано, что фрактальная гистограмма позволяет отделить друг от друга эти 
ткани. Это также позволяет думать о возможности применить данную модель для сегментации исследуемых тканей.
Проанализовав три различные ткани, выяснилось, что это может быть сделано воспользуясь фрактальной гистограммой. 
Исследуемые ткани есть: печень, навик и соседняя для печени ткань. Ил. 5, библ. 7 (на английском языке; рефераты на 
английском, русском и литовском яз.).

K. Bartnykas, A. Ušinskas. Į save panašių aibių taikymas žmogaus kepenų atvaizdams segmentuoti // Elektronika ir elektro-
technika. – Kaunas: Technologija, 2009. – Nr. 2(90). – P. 35–38.

Žmogaus kepenų kompiuterinės tomogramos atvaizdai analizuojami kaip į save panašios aibės. Šiai analizei atlikti taikomas multif-
raktalų matematinis modelis. Tyrimu siekiama išsiaiškinti, ar, taikant fraktalų matematinį modelį, įmanoma atskirti skirtingus kepenų
audinius. Tam taikoma fraktalinė histograma ir, jeigu ji padeda atskirti nagrinėjamų tipų audinius, tai leidžia manyti, kad, naudojant
taikomą metodą, taip pat galima šių tipų audinius segmentuoti. Naudojant fraktalinę histogramą, galima atskirti trijų nagrinėtų tipų au-
dinius: kepenų navikus, kepenims gretimus audinius. Il. 5, bibl. 7 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).


