ELECTRONICS AND ELECTRICAL ENGINEERING

ISSN 1392 - 1215

2007. No. 3(75)

ELEKTRONIKA IR ELEKTROTECHNIKA

SIGNAL TECHNOLOGY

Ti121

SIGNALY TECHNOLOGIJA

Verifiable Template Development for HDL- Descriptions

Y. Syrevitch, D. Zinchenko

DA dep., KhNURE, Kharkov, 61726, UKRAINE, e-mails: syr_Jane@rambler.ru; darijaz@ukr.net

Introduction

In modern CAD tools the basic way of device
description is usage of hardware description languages, i.e.
VHDL or Verilog, which allow making SOC design
process faster. World companies — vendors of digital
circuits, are forced to decrease their time-to-market.
According to vendors’ evaluations, verification (functional
as well) takes up to 80% of labor expenditures in the
design cycle. There is a big demand for tools of functional
verification of devices models on a step of their description
in hardware description language (HDL) on behavioral
level. Verification systems, used in the world (HDL Score,
Verix™, Hammer 100, SpyGlass, Questa AFV), do not
work on behavioral level. So creation of functional
verification system is an issue of the day. To obtain good
effectiveness of verification, it is necessary to have
information about VHDL description type and its
capability to be verified. Requirements of design-for-
verification can be divided into several big groups.

Problem statement. It is necessary to formalize
verification strategy, proposed in [2, 5], and to develop a
template of HDL-model of digital device, which will fit
verification objectives (similarly to design-for-test rules).

Verification Strategy on a Base on Graph Model and
Path Sensitization Method

The proposed strategy is based on origin HDL-model
transformation into graph model, which is a composition of
two graphs. First - information - describes dataflow and
their conversion (similarly to an operational automaton in
classical composite model with microprogram handle)
without the registration of conditional branches. The
second graph is developed as a network of conditions. The
dataflow I-graph contains vertexes of 2 types: operands
and functions. Arcs connect vertexes in the following
manner: a source vertex is connected to a functional
vertex, and then the arc goes out of the functional vertex
and comes into a destination vertex. The arcs, which come
into destination vertexes, can be conditional or non-
conditional. Conditional arcs correspond to the operators,
which are inside conditional expressions of VHDL.

49

Conditional arcs contain labels, which code conditions of
arc transition operation. In its turn, the second graph (a
control one) contains conditional constructions from the
origin device description. Each predicate in the condition is
modeled as a subgraph, which has a specific label [7].
Functional elements (FE) are multibit logic and arithmetic
functions, which correspond to VHDL operators.

Principles of structural testing are used for functional
verification. These principles are based on path sensitiza-
tion in a device model. One of the necessary definitions in
the proposed strategy is the definition of distinguishing
sequences. Distinguishing sequences (DS) are those, when
being driven onto different functions they will give diffe-
rent outputs for same inputs. DS allows finding errors, con-
nected with VHDL OPERATION SUBSTITUTION [2].

The main proved theorem says, that to identify all
functional elements in [-graph it is necessary and enough
to activate all paths in a graph which cover it, starting from
the 1* rank to graph outputs or control points. Thus, it is
possible to make a conclusion, that identification of all FEs
in VHDL-model checks data processing mechanism.
Assembly of tested data processing mechanisms presents
verifying model to specification correspondence. On the
assumption of formed and proved lemmas, statements, and
theorems, general verification strategy, based on functional
elements sensitization, starting from 1*-rank element. It
consists of the following steps [5].

1. Activation of the i FE of 1* rank is carried out.
Distinguishing sequences are driven directly from external
inputs of a graph model. External inputs (outputs) of I-
graph are operand vertexes, which are ports in HDL-
model.

2. Sensitized path is build from activated FE to
either external outputs in a graph (output ports in HDL-
models) or a control point.

3. Activation is finished, if set operand vertex is
reached or path sensitization is impossible.

4. Steps 1-4 repeat for all FEs of the 1 rank.

5. After finishing the 1* rank FEs activation next k™

FE of the p**-rank (p>1,X=1:1), which do not belong to
any already sensitized paths, is activated.

6. Activation is carrying out until all FEs are
activated.

Classification of digital devices by types of their
language descriptions

HDLs allow describing devices of different
complexity and purpose. Quality of verification depends
on device type and possibility of etalon restoration. Types
of device description s can be divided into:

1. Simple:

— Descriptions of logic and arithmetic combina-
tional devices — Boolean equations, encoders /decoders,
multiplexers, adders/ subtractors, comparator, parity
control, shifters, multipliers/dividers, etc;

— Descriptions of sequential devices — flip-flops,
counters, registers, memory (RAM, ROM);

— Descriptions of state machines — «pure» state
machines (Mealy, Moore) in a case, when “automata”
template is used.

2. Complex:

— Descriptions of devices with microprogramming
control (ALU, microprocessor);

— Descriptions of algorithmic devices, which realize
algebraic, trigonometric or transformations;

— hardware-oriented descriptions with usage of
libraries, specified for chosen hardware implementation;

— Descriptions of interfaces (UART, adapter unit
and transmitters/receivers without data transformations);

— Descriptions of compositional devices (operatio-
nal device with inseparable and valuable data processing
part);

— Non-template descriptions — devices, which can-
not be put to any group or they contain parts of
descriptions of different.

Verification strategy
description types

adjustment depending on

Quality of verification for different descriptions
depends on the end aim of the verification. For type 1
(simple descriptions) it is necessary to check separate
components and functions. For type 2 (complex
descriptions) verification checks “explicit” and “implicit”
modes of work.

Let’s consider in details:

1. Descriptions of logic and arithmetic combinatio-
nal devices — proposed strategy allows to check modes of
device work on a base of correct usage of the operators.

2. Descriptions of sequential devices — proposed
strategy allows to check conditions of work enable and
device functionality as well.

3. Descriptions of state machines — proposed
strategy allows, from one side, to carry out standard
method of automata check (vertex and transitions pass),
and from the other side, to execute diagnostic procedures.

4. Descriptions of devices with microprogramming
control — proposed strategy allows to check correspon-
dence between modes inside the code, and modes from the
specification.

5. Descriptions of algorithmic devices — not all
possible values are driven onto input signals, but only
those, which check given modes. Besides, proposed
strategy is used for diagnostic procedures.

50

6. Hardware-oriented descriptions — assume that
hardware-oriented libraries do not contain mistakes inside.
So after their activation of all libraries, it is necessary to
operate in correspondence with its main type.

7. Descriptions of interfaces - proposed strategy
allows to check control part (conditions of exchange algo-
rithm forming). However proposed strategy does not check
timing parameters.

8. Descriptions of compositional devices — proposed
strategy allows to check control part (conditions of modes
forming) and operational (operators in modes).

9. Non-template descriptions — it is necessary to set
if possible, standard types of descriptions and to apply
them correspondingly.

Let’s give ground to some of the statements.

Descriptions of logic and arithmetic combinational
and sequential devices (close to hardware realization)
usually use operators of concurrent signal assignment or
simple constructions, such as processes with a set of
assignment and conditions checking. Thus, having checked
separate elements-operators, it if possible to say, that all
specification is checked.

Models of finite state machines, described according
to a template, contain operators (for calculating
notification signals) either on arcs or in states. Thus, the
strategy that checks operators will check conditions of arcs
and outputs forming. It coincides with arcs and states
traversal.

In description of devices with microprogram control
there is a block of microcommand analysis, and blocks,
which implement calculations, the proposed strategy
allows checking correspondence between modes in a code
and modes in specification.

Descriptions of algorithmic devices contain arbitrary
written code without templates, where it is impossible to
select parts, close to hardware. However there is a benefit
in this case: in algorithmic devices it is possible to obtain
etalon reactions for any input value. Thus it is possible to
use specification mode check.

For proof of approach for algorithmic descriptions,
given in paragraph 5, let’s formulate the following
statement.

Statement. If a function, implemented by a behavioral
model of a certain device, is continuous on all possible
values of input signals, then within these possible values
the model behaves unambiguously and correspondingly to
the calculated range space of the function. The proof was
based on Bolcano-Koshi theorem and its extension.

Corollary. Number of points at continuous function
test doesn’t depend on all possible values of input stimuli.
Verification strategy usage for continuous function model
results in a set of vectors, which checks, the model
concerning chosen design error.

A description of interfaces contains a mixture of
styles and ways of description, but it is possible to mark
blocks, responsible for control (mode selection) and for
operations (data processing inside a mode).
Correspondingly, having checked an informational graph
(and connected with it control graph, as well), all modes
from the specification are checked.

Requirements an a Template for Digital Device
Verifiable Description

Consider a problem of template formulating. These
templates can be used for creating HDL-models, fit to
verification. There is a task of principles development,
which will allow creating verifiable language models

The growth of number of computers during last 20-30
years is accompanied by continuous increasing of
functional possibilities and further complication of element
base structure. The necessity in researches of principally
new possibilities of qualitative solutions of testing
problems has appeared [6]. Methods of design-for-test
appeared to be these new possibilities. DFT is, in general
case, a way of logic circuit design that provides availability
of a circuit to be tested and controlled. Non-testable circuit
cannot be either tested adequately, or, if possible, testing
will take a lot of time for creating and driving tests [6].
Similar with describing a system as a code. Non-verifiable
HDL-model is a code, which is tested with unacceptably
long test (time for testing increases); time for test
generation is big and/or it needs a complicated algorithm;
test quality is unacceptably low (especially for hierarchical
models, models with big number of non-functional code
and/or with big amount of atypical approaches of
programming).

Thus either it is impossible to verify adequately , or if
possible, it takes a lot of time for test generation and
testing itself. Requirements of design-for-verification can
be divided into several big groups. We added
requirements, directed to increasing of effectiveness of the
proposed strategy.

1. Structural organization requirements:

— in describing devices with microprogram control
it is necessary to organized concurrent analysis of
microcommand fields;

— in state machine description, it is necessary to use
one-, two-, or three-process templates (along with using IF
and CASE operators) .

— in describing algorithmic unit, it is important to
use, as minimum, three blocks — a block of processing
input signals, a block of algorithm processing, and a block
of output values correction, etc.

2. General software and functionally specific
organization requirements. Good style of programming is:
a program is written structurally, is readable, with correct
usage of all language’s resources and with all lists of full
texts.

3. VHDL verification requirements.

— Do not use long if-then-else constructions, use
case operator instead (it decreases the depth of C-graph
“spinup”).

— Do not use default (or initialized) values. Use
reset for initializing variables and signals (it increases
“flexibility” of I-graph).

Use additional signals with out mode for reading
output values instead of using buffer mode (it decreases
number of feedbacks in I-graph).

— Do not write long lines of a code. Write one
operator per line. Use no more that 50 operators per each
block of statements (it eases I-graph creation).

51

Nested constructions should have no more than
triple depth (it eases creation of C-graph).

Use addressing to a vector range instead of
subtype usage. Do not indicate vector dimension, when
using the full one (it allows to avoid operand vertexes
fragmentation).

4. Observability requirements. In order to increase
code observability, it is desirable to use additional signals
with type out in a way to produce values on them in the
end of a process.

5. Interpretability requirements. Output values
should be understandable and easily interpretive by a
coder, an engineer, and a verifier. In a case, when
implementation was not a loan translation, for values,
calculated in a code, it is necessary to find corresponding
dependencies in a specification.

Thus, we have formulated expanded requirements for
models descriptions.

Implementation

Here are the results of diagnostic experiment for 3
types of devices [5]: control device b06 from ITC
benchmark library, sectional microprocessor KP1804BCl,
and sequential device s27 from ISCAS’95 benchmark
library. Fig. 1 shows histograms of test length dependence
from test type. In the figure: 1 — test with all possible
values (2"x2", where n — number of input bits, m — number
of memory elements); 2 — program code test (2"); 3 —
specification modes test (2"xM, where n — number of input
bits, M — number of modes). As it is shown in the
histogram, not in all cases the proposed strategy gives
valuable decreasing of test length, however, even giving
little growth of quantity, tests on a base of path
sensitization give 100% of errors coverage (design errors
of “Operator Substitution” type).

number af _
paltems 100% ST% 80% 100%
33

(S]
9T D5 3

]
=

type
*] = 3 of test

— 927 — B06 — KPIS04BCI

Fig. 1. Dependence of test length from the type of testing for S27,
KP1804BC1, B06

Analysis was done on a base of path sensitization and
with accounting verifiability of a model.

Conclusions

Scientific novelty and practical usefulness of the
obtained results consist in:

1. Classification of digital devices by types of their
VHDL-descriptions is carried out to more effective
execution of verification;

2. Adjustments of path sensitization verification 4. Tasiran S., Keutzer K. Coverage Metrics For Functional
strategy are done; Validation Of Hardware Designs // IEEE Design & Test Of
3. A list of requirements for HDL-model is Computers.— July-August 2001.— P. 36-45.

. . 5. Shkil A., Syrevitch Yev., Karasev A., Cheglikov D. Test
h I h sof s DY)) 4
Is)lzzrc)?gs(i’ri:ezg includes both software requirements and Verification of Behavioral HDL-models // ASU and pribory

avtomatiki. — 2006. —Vol. 134. —-C. 4-12.
6. Bennets R. Boundary-Scan // Asset Intertech.—2000.— 130 p.

References 7. Kryvulya G., Syrevitch Yev., Karasyov A., Cheglikov D.

Internal Model Algorithms For Digital Design Verification

1. Bergeron J. Writing Testbenches: Functional Verification of VHDL Descriptions / Proc. of the Intern. Conf.
Of HDL Models // Kluwer Publishers, 2003. — 354 p. CADSM.—2005. — Lviv-Polyana, UKRAINE. — P. 369-372.

2. Syrevitch Yev., Karasyov A., Mehana S.S. Functional

verification quality metrics at HDL-models verification //

Radioelectronic systems. —2006. — Vol. 6. — C. 153-157. Submitted for publication 2006 12 29
3. Harry D. Foster, Adam C. Krolnik, David J. Lacey

Assertion-Based Design // Kluwer Publishers, USA. — 363 p.

Y. Syrevitch, D. Zinchenko. Verifiable Template Development for HDL- Descriptions // Electronics and Electrical Engineering.
— Kaunas: Technologija, 2007. — No. 3(75). — P. 49-52.

Classification of digital devices by types of their language descriptions is introduced. Also, a template of HDL-model of digital
device, which will fit verification objectives in a case of using path sensitization methods, is considered. The proposed strategy starts
from origin HDL-model transformation into a graph model, which is a composition of two graphs. To identify all functional elements in
an informational graph it is necessary and enough to activate all paths in a graph which cover it, starting from the 1* rank to graph
outputs or control points. Usage of a template allows building a graph model of HDL-description and further verification easier.
Adjustments of path sensitization verification strategy are done. Dependence of test length from the type of testing for S27,
KP1804BC1, and B06 benchmarks is analyzed. Ill. 1, bibl. 7 (in English; summaries in English, Russian and Lithuanian).

E. CoipeBny, /. 3unuenko. Pazpadorka mabsona HDL-onucanuii, yaoBiaeTrBopsiioniero TpeboBanusivM Bepuduuupyemoctu //
DJIeKTPOHUKA U djekTpoTexHuka. — Kaynac: Texnonorus, 2007. —Ne 3(75). — C. 49-52.

IMpennaraercs kinaccudukanys HMPPOBLIX YCTPOHCTB B 3aBUCHMOCTH OT THIIA MX S3BIKOBOTO omucanus npu Bepuduxarmu. Taxke
npemnaraercss mabnoH HDL-monmenmn mmdpoBoro ycrpoiicTBa, YHOBIETBOPAIOUIETO TpPeOOBAHUSAM BEPUPHIUPYEMOCTH TIPH
WCIIOJIb30BAHUHM METOJIOB aKTWBM3ammu myTeil. [Ipemnaraemas crpaterust HaumHaeTcs ¢ npeobpaszosanus HDL-monenu B rpadosyio,
HPEICTABIISIONIYI0 KOMITO3HINIO NBYX TrpadoB. s mneHTHUKAINH BCeX (yHKIHOHANBHBIX 3JEMEHTOB B MH(GOPMALMOHHOM Tpade
HEOOXOJMMO U JOCTaTOYHO aKTUBH3HMPOBATH BCE ITyTU B rpade, KOTOphIE ero IMOKPHIBAIOT, HAUMHAS C IIEPBOTO PAaHTa M [0 BBIXOIOB
rpada WIM KOHTPOJBHBIX To4eK. lcronb3oBaHue MMIabiIoHA MO3BOJISET OOJErYUTh M YNPOCTUTH NOCTpoeHHe rpadoBoil Monenu u
JaNbHEHIIyI0 Bepu(UKaluio. BeinogHeHo yTouHeHHe cTpaTeruy BepH(UKALM Ha OCHOBE aKTHBH3ALWH IyTeH B rpad)OBOH MOIEIH.
AHanu3upyercsl 3aBUCUMOCTb [UIMHBI T€CTa OT TUMa TecTupoBaHus mnd cucteM TectoB S27, KP1804BC1 u B06. Un. 1, 6ubn. 7 (va
AHTJIMHCKOM s3bIKe; pedepaThl Ha aHTTIMHCKOM, PYCCKOM M JTUTOBCKOM 513.).

J. Syrevié¢, D. Zin€enko. Verifikuojamy HDL apraSy §ablony kiirimas // Elektronika ir elektrotechnika. — Kaunas: Technologija,
2007. — Nr. 3(75).— P. 49-52.

Pasitilyta skaitmeniniy jtaisy klasifikacija pagal ju kalbinius verifikavimo aprasus. Taip pat pasililytas skaitmeninio jtaiso HDL
modelio $ablonas, tenkinantis verifikuojamumo reikalavimus, kai taikomi keliy aktyvinimo metodai. Sitiloma strategija prasideda nuo
pradinio HDL modelio transformavimo | grafy modeli, kuri sudaro dviejy grafy kompozicija. Norint identifikuoti visus funkcinius
informacinio grafo elementus, batina ir pakanka suaktyvinti visus grafa sudarancius kelius, pradedant nuo pirmojo rango ir baigiant
grafo i§¢jimais arba kontroliniais taskais. Naudojant $ablonus, galima palengvinti ir supaprastinti grafy modelio sudaryma ir tolesni
verifikavima. Patikslinta keliy aktyvinimu pagrista verifikavimo strategija patikslinimas. Analizuojama S27, KP1804BCl1 ir B06 itaisy
testy trukmés priklausomybé nuo testo tipo. Il. 1, bibl. 7 (angly kalba; santraukos angly, rusy ir lietuviy k.).

52

