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Introduction 
 

[1] describes the effect of the collapse of Q-factor 
(further - collapse) for the digital resonator (DR), obtained 
from the analog prototype by using a bilinear 
transformation (BT). The mentioned side-effect makes 
using of DR very problematic in DSP applications for 
frequencies, which lie between the Nyquist frequency and 
half the Nyquist frequency. 

The next figure is taken from [1] to demonstrate the 
effect of collapse for the reader unfamiliar with the subject 
of the paper. 

 
 

Fig. 1. Deformation of magnitude response of DR. "Normal" 
magnitude for f0 = 0.1, "bypass filter" (Q-collapse) for f0 = 0.74, 
"narrow band filter" (Q-explosion) for f0 = 0.9. Taken from [1] 

 
We have made further investigations related to the 

collapse. What is new? First of all, we now understand 
why does the collapse appears. 

 
Causes of Collapse 
 

The main cause of the collapse is the method used for 
the calculation of bandwidth frequencies. This method is 
widely used for calculations of digital filters [2]. If we 
have an analog prototype, we can get an associated digital 
filter. To compute coefficients for digital filters designers 
widely (and usually) use the BT. 

The bilinear transformation has many advantages for 
lowpass, highpass, bandpass un stopband filters [2]. For 
the synthesis of differentiator BT is not useful [2]. A 
well-known disadvantage is the warping of frequencies by 
arctangent rule. Designers use the recalculation 
(pre-warping) of critical frequencies of analog prototype 
(for DR – bandwidth frequencies) by tangent rule to 
escape the warping of frequencies for the digital filter. The 
mentioned solution is well-known. Many engineers use the 
mentioned approach for synthesis of DR also. 

The transfer function of analog prototype of DR can 
be written as [3]: 
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and bandwidth specified by bandwidth frequencies ω1, ω2 
(defined at level 1/√2 of maximal value of magnitude) or 
Q-factor. 

Well known from the circuit theory are expressions 
for bandwidth frequencies (bandedges): 
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We should recalculate all critical frequencies before 
using the bilinear transformation: 
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where transformed frequencies can be expressed as: 
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The next step in getting the transfer function of DR is 
to perform a well-known substitution of s in the 
transformed function (1): 
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Formulas (4), (5) are true only for normalized 
frequencies (Nyquist frequency is equal to 1). We will not 
present here the discrete transfer function for DR because 
a reader can find it out in many books and papers about 
signal processing (also in [2], [3]). 

In the case when the upper bandwidth frequency 
reaches the value 1 
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the transformed upper bandwidth frequency reaches the 
infinite value, but the bandwidth of resonator has 
"explosion" and Q-factor fall down to 0. This is because 
we have the collapse. 

From the condition (5) follows that the collapse 
frequency can be calculated as: 
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 Formula (7) has a good correlation with simulation 
results obtained in [1]. 
 

 
Fig. 2. Normalized collapse frequency in dependence on Q-factor 

 
The transformed bandwidth is negative, if we look 

for frequencies above the collapse frequency: 

 012 <− tt ωω  (8) 

and that causes the instability of DR. This result is obvious 
because tangent function for argument values (π/2, π) is 
negative (see (4)). The magnitude from Fig. 1 which 
corresponds to (8) is senseless from the practical point of 
view, and it is named an "explosion of Q-factor".  
 
Behaviour of Magnitude of DR Near the Collapse  
 

In [1] we demonstrated that for frequencies above the 
half the Nyquist frequency, the magnitude of DR has a 

deformation. Simultaneously with the deformation of 
magnitude the Q-factor of DR decreases also. That 
happens if we calculate bandwidth frequencies using (4). 

We cannot explain the behaviour of magnitude of DR 
for the range of frequencies below the collapse frequency 
so straightforward as in the case of collapse or instability 
of DR. We should look at the next figure for better 
understanding. The figure shows the magnitude of analog 
resonator and the magnitude of DR without collapse. 

 
 
Fig. 3. Magnitudes for the collapse-free DR (|H(z)|) and its 
analogue prototype (|H(s)|). |H(z)| is obtained by MATLAB 
function iirpeak 
 

In Fig. 3 we can see that even the curve of magnitude 
for the collapse-free DR has serious deformation. That 
follows from the nature of BT. One of the BT properties 
ensure the equivalence to zero of the value of magnitude at 
Nyquist frequency. That forces the magnitude of DR to be 
deformed. We have the shifting of bandwidth frequencies 
to left. Here are no alternatives, if we use BT and do not 
allow the change of resonant frequency. In [3] we can find 
out more sophisticated transformation (an alternative to 
BT) that keeps values of both bandwidth frequencies but 
needs the additional guard-filter to avoid aliasing. 

From Fig. 3 follows that bandedges must be 
calculated as: 
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where δω, δf – unknown frequency shifting. We do not 
consider here how we should estimate or find out the value 
of frequency shifting, and we use δ for illustration only. 

From the first look, if we have a collapse-free 
solution (for example, MATLAB function iirpeak) for the 
DR synthesis, we do not need special investigations of 
collapse. But, if we look deeper, we see problems with 
pre-warping of critical frequencies for digital filters 
derived from analog prototypes. 

General conclusion is that we must not perform the 
pre-warping of critical frequencies blindly. We should 
estimate the possibility and the quality of fitting of 
magnitude of digital filter to the magnitude of analog 
prototype before pre-warping of critical frequencies. If 
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values of critical frequencies are important, the magnitude 
of digital filter must interpolate the magnitude of analog 
prototype at critical frequencies. But, if the mentioned 
fitting is impossible, we must use more sophisticated 
transformation instead of BT. 

We have not yet been able to define universal and 
exact criteria for "estimation of the possibility and the 
quality of fitting of magnitude ...". That needs some 
additional investigations. For example, in some 
applications of DR the accuracy of resonant frequency and 
bandwidth is very important but it is not so much for 
bandedge frequencies. 

 
Second Order Sections 
 

It is a well-known approach – the presentation of the 
transfer function of IIR filters by the chain of second order 
section [2]. We can interpret each second order section as 
a digital resonator. This can lead to serious consequences, 
if we take into account the possibility of collapse for 
separate sections of filter. 

Here we need additional serious investigations in the 
immunity of IIR digital filter design algorithms to the 
collapse. It means not only novel filter design algorithms, 
but also the preparation of existing algorithms, which 
include the BT. 

 
Compensation of Collapse 
 

The [1] recommended two ways for the compensation 
of the collapse: 
♦ using of well-known zero-pole placement method; 
♦ pre-distortion of Q-factor before operating. An 

iterative algorithm is used. 
Here we suggest the approach that is simpler than 

that described in [1]. Our method is based on the different 
approach to calculate critical frequencies. 

We use the tangent function to calculate the 
pre-warped resonant frequency ω0t (see (4)). However, for 
the calculation of bandwidth frequencies we use some first 
terms of Taylor series. As the basepoint we choose the 
pre-warped resonant frequency. If we take only one term 
of Taylor series, we get relative simple formulas: 
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where pre-warped resonant frequency ω0t can be obtained 
using (4). 

The next figure demonstrates examples of 
magnitudes of DR for cases when pre-warped bandwidth 
frequencies are calculated by using the different number of 
Taylor series.  

We see that the difference between bandwidths 
obtained by using one or two terms of Taylor series is 
insignificant for the practical goal. 

 
 
 

Fig. 4. Comparison of magnitudes of DR for the case of collapse, 
for the different number of terms of Taylor series and for the 
MATLAB iirpeak 

 
The difference between shapes of magnitudes lies in 

the range from several percents (for Q>3) up to 20-30% 
(Q=1, f0=0.9). The mentioned difference increases by 
increasing the resonant frequency. This means that for the 
practical use formulas (10) are more than sufficient. In the 
case of three terms we get the increasing of error of 
magnitude. This is because transformed bandwidth 
frequencies are more close to frequencies calculated by 
(4). 

 
For Students 
 

We developed the special interactive program to 
demonstrate the collapse of DR for our students. The 
program demonstrates the behavior of magnitude and the 
moving of poles of DR transfer function. 

Conclusions 

General conclusion is that we must not perform the 
pre-warping of critical frequencies blindly if we use BT 
for the synthesis of digital filters derived from the analog 
prototypes. We must revise the form of magnitude of 
analog prototype before pre-warping of critical 
frequencies. This means that we must also revise the 
values of critical frequencies for analog prototype. But, if 
the mentioned revision is impossible, we should use more 
sophisticated transformation instead of BT. 

 
References 
 
1. Misans P., Hauka A. et.al. Compensation of Collapse of Q-

factor for DSP-based Tuneable Digital Resonator 
// 42-nd International RTU Conference, RTUCET01‘2001, 
Riga, October 12. - Scientific Proc. of Riga Technical 
University, Telecommunications and Electronics, Riga, 
2001. - P. 111-114. 

2. Cunningham E. P. Digital Filtering. An Introduction.  
- Houghton Mifflin Company, Boston, Toronto, 1992. 



12 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The interactive tool for the demonstration of collapse effect 
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