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Introduction

[1] describes the effect of the collapse of Q-factor
(further - collapse) for the digital resonator (DR), obtained
from the analog prototype by wusing a bilinear
transformation (BT). The mentioned side-effect makes
using of DR very problematic in DSP applications for
frequencies, which lie between the Nyquist frequency and
half the Nyquist frequency.

The next figure is taken from [1] to demonstrate the
effect of collapse for the reader unfamiliar with the subject
of the paper.
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Fig. 1. Deformation of magnitude response of DR. "Normal"
magnitude for fy = 0.1, "bypass filter" (Q-collapse) for fy = 0.74,
"narrow band filter" (Q-explosion) for fy = 0.9. Taken from [1]

We have made further investigations related to the
collapse. What is new? First of all, we now understand
why does the collapse appears.

Causes of Collapse

The main cause of the collapse is the method used for
the calculation of bandwidth frequencies. This method is
widely used for calculations of digital filters [2]. If we
have an analog prototype, we can get an associated digital
filter. To compute coefficients for digital filters designers
widely (and usually) use the BT.

The bilinear transformation has many advantages for
lowpass, highpass, bandpass un stopband filters [2]. For
the synthesis of differentiator BT is not useful [2]. A
well-known disadvantage is the warping of frequencies by
arctangent rule. Designers use the recalculation
(pre-warping) of critical frequencies of analog prototype
(for DR — bandwidth frequencies) by tangent rule to
escape the warping of frequencies for the digital filter. The
mentioned solution is well-known. Many engineers use the
mentioned approach for synthesis of DR also.

The transfer function of analog prototype of DR can
be written as [3]:
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where @, =2-7-fy, @ - Z% - resonant frequency

and bandwidth specified by bandwidth frequencies @;, @»
(defined at level 1/N2 of maximal value of magnitude) or
Q-factor.

Well known from the circuit theory are expressions
for bandwidth frequencies (bandedges):
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We should recalculate all critical frequencies before
using the bilinear transformation:
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where transformed frequencies can be expressed as:
o, :4-tan(ﬂ):4-tan(£-fi), i=0,1,2.
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The next step in getting the transfer function of DR is

to perform a well-known substitution of s in the
transformed function (1):
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Formulas (4), (5) are true only for normalized
frequencies (Nyquist frequency is equal to 1). We will not
present here the discrete transfer function for DR because
a reader can find it out in many books and papers about
signal processing (also in [2], [3]).

In the case when the upper bandwidth frequency
reaches the value 1
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the transformed upper bandwidth frequency reaches the
infinite value, but the bandwidth of resonator has
"explosion" and Q-factor fall down to 0. This is because
we have the collapse.

From the condition (5) follows that the collapse
frequency can be calculated as:
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Formula (7) has a good correlation with simulation
results obtained in [1].
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Fig. 2. Normalized collapse frequency in dependence on Q-factor

The transformed bandwidth is negative, if we look

for frequencies above the collapse frequency:
@, —®, <0 ®)

and that causes the instability of DR. This result is obvious
because tangent function for argument values (7/2, 7) is
negative (see (4)). The magnitude from Fig. 1 which

corresponds to (8) is senseless from the practical point of
view, and it is named an "explosion of Q-factor".

Behaviour of Magnitude of DR Near the Collapse

In [1] we demonstrated that for frequencies above the
half the Nyquist frequency, the magnitude of DR has a
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deformation. Simultaneously with the deformation of
magnitude the Q-factor of DR decreases also. That
happens if we calculate bandwidth frequencies using (4).
We cannot explain the behaviour of magnitude of DR
for the range of frequencies below the collapse frequency
so straightforward as in the case of collapse or instability
of DR. We should look at the next figure for better
understanding. The figure shows the magnitude of analog
resonator and the magnitude of DR without collapse.
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Fig. 3. Magnitudes for the collapse-free DR (|H(z)|) and its
analogue prototype (|H(s)|). |H(z)| is obtained by MATLAB
function iirpeak

In Fig. 3 we can see that even the curve of magnitude
for the collapse-free DR has serious deformation. That
follows from the nature of BT. One of the BT properties
ensure the equivalence to zero of the value of magnitude at
Nyquist frequency. That forces the magnitude of DR to be
deformed. We have the shifting of bandwidth frequencies
to left. Here are no alternatives, if we use BT and do not
allow the change of resonant frequency. In [3] we can find
out more sophisticated transformation (an alternative to
BT) that keeps values of both bandwidth frequencies but
needs the additional guard-filter to avoid aliasing.

From Fig. 3 follows that bandedges must be
calculated as:

@y =4-tan(——= @ ‘”) 4. tan( (fi=0p), i=1,2 5 (9)
where J,, o — unknown frequency shifting. We do not
consider here how we should estimate or find out the value
of frequency shifting, and we use ¢ for illustration only.

From the first look, if we have a collapse-free
solution (for example, MATLAB function iirpeak) for the
DR synthesis, we do not need special investigations of
collapse. But, if we look deeper, we see problems with
pre-warping of critical frequencies for digital filters
derived from analog prototypes.

General conclusion is that we must not perform the
pre-warping of critical frequencies blindly. We should
estimate the possibility and the quality of fitting of
magnitude of digital filter to the magnitude of analog
prototype before pre-warping of critical frequencies. If



values of critical frequencies are important, the magnitude
of digital filter must interpolate the magnitude of analog
prototype at critical frequencies. But, if the mentioned
fitting is impossible, we must use more sophisticated
transformation instead of BT.

We have not yet been able to define universal and
exact criteria for "estimation of the possibility and the
quality of fitting of magnitude ..". That needs some
additional investigations. For example, in some
applications of DR the accuracy of resonant frequency and
bandwidth is very important but it is not so much for
bandedge frequencies.

Second Order Sections

It is a well-known approach — the presentation of the
transfer function of IR filters by the chain of second order
section [2]. We can interpret each second order section as
a digital resonator. This can lead to serious consequences,
if we take into account the possibility of collapse for
separate sections of filter.

Here we need additional serious investigations in the
immunity of IIR digital filter design algorithms to the
collapse. It means not only novel filter design algorithms,
but also the preparation of existing algorithms, which
include the BT.

Compensation of Collapse

The [1] recommended two ways for the compensation
of the collapse:
¢ using of well-known zero-pole placement method,
¢ pre-distortion of Q-factor before operating. An
iterative algorithm is used.

Here we suggest the approach that is simpler than
that described in [1]. Our method is based on the different
approach to calculate critical frequencies.

We use the tangent function to calculate the
pre-warped resonant frequency @y, (see (4)). However, for
the calculation of bandwidth frequencies we use some first
terms of Taylor series. As the basepoint we choose the
pre-warped resonant frequency. If we take only one term
of Taylor series, we get relative simple formulas:

oy =y, +(1+(%)2)-(a)1 ),
o (10)
@ =y +(1+(=)) (@~ o),
where pre-warped resonant frequency @y, can be obtained
using (4).

The next figure demonstrates examples of
magnitudes of DR for cases when pre-warped bandwidth
frequencies are calculated by using the different number of
Taylor series.

We see that the difference between bandwidths
obtained by using one or two terms of Taylor series is
insignificant for the practical goal.
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Fig. 4. Comparison of magnitudes of DR for the case of collapse,
for the different number of terms of Taylor series and for the
MATLAB iirpeak

The difference between shapes of magnitudes lies in
the range from several percents (for Q>3) up to 20-30%
(Q=1, f;=0.9). The mentioned difference increases by
increasing the resonant frequency. This means that for the
practical use formulas (10) are more than sufficient. In the
case of three terms we get the increasing of error of
magnitude. This is because transformed bandwidth
frequencies are more close to frequencies calculated by

4).
For Students

We developed the special interactive program to
demonstrate the collapse of DR for our students. The
program demonstrates the behavior of magnitude and the
moving of poles of DR transfer function.

Conclusions

General conclusion is that we must not perform the
pre-warping of critical frequencies blindly if we use BT
for the synthesis of digital filters derived from the analog
prototypes. We must revise the form of magnitude of
analog prototype before pre-warping of critical
frequencies. This means that we must also revise the
values of critical frequencies for analog prototype. But, if
the mentioned revision is impossible, we should use more
sophisticated transformation instead of BT.
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Peanuzauust uudpoBoro pe3oHaTopa ¢ UCHOJIB30BAHUEM aHAJIOIOBOI0 MPOTOTHUIIA U OWIIMHEHHOro mpeoOpa3oBaHus MPUBOIUT K
addexty xomnanca 1o6poTHOCTH pe3oHaTopa. OmUCHIBAaeTCS MPUYMHA KOJUIANCA M NPEACTABIAIOTCS (HOPMYJIBI AJIS ONpeieNeHus
4acTOThl KoJularca. [IpUBOMUTCS Takke yNPOLICHHBI METOA Ul KOMIICHCAMH KoJularca. [JlaBHOE CIICACTBHE YIOMSHYTOTO
a¢dexTa 3TO TO, YTO MPH NEepecyeTe KPHTHYECKUX YaCTOT AaHAIIOTOBBIX MPOTOTHIIOB, MOXKET BOSHHUKHYTb ONACHOCTh HEKOPPEKTHOTO
cunTe3a udpoBsix GuabTpoB. Wi, 5, 6ubin. 3 (Ha aHrIHICKOM si3bIKe; pedepaThl Ha TUTOBCKOM, aHTJIMHCKOM H PYCCKOM 513.).
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