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1Abstract—Two stage quantization is a well-known but still
very popular model for signal processing. However, in a
number of occasions we have information about a discrete
entrance and we do not know the nature of the continuous
signal which preceded it. Hence, information source is
commonly modelled by using Laplacian or Gaussian
distribution but designed quantizers often do not match entire
signal range. A typical analysis for discretized input signal does
not consider the changes of the continuous signal variance. The
aims of this paper are providing an improved analysis by
introducing a novel measure CDSVR, designing the second
stage quantizer, as well as estimating system performance for
mismatched variances. This way, we discuss the influence of
A/D conversion on the signal variance and propose an improved
model for performance estimation.

Index Terms—Mismatch quantization, Modelling, Laplacian
source, Two stage quantizer.

I. INTRODUCTION

Mismatch quantization has become very popular in recent
years and its importance and appliance was researched in a
number of papers [1]–[6]. It is generally considered that two
stage quantization model is such that first quantizer has a
smaller number of quantization levels in comparison to the
second quantizer (i.e. required number of bits for
transmission is higher for the second quantizer). This way,
first quantizer determines the region and the second one
determines the level within it [7]–[9]. The kind of two stage
quantizer designed in this way is used for standard G. 711
[7]. On the other hand, the model that we discuss consists of
two interconnected quantizers and it is performed in [8]. In
[8] was concluded that such two stage quantization model
should be designed so that second quantizer is described
with at least 4 bits lower number of levels in comparison to
the first quantizer. However, some systems (e.g. systems for
image processing) have to be designed so that second
quantizer does not meet this requirement. Here we propose
an improved quantization model and performance estimation
that will take into account aforementioned problem.
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In this paper we analyse two interconnected quantizers
with a different number of quantization levels. The first
quantizer performs analog-to-digital (A/D) conversion with a
large number of quantization levels [9], [10]. Its entrance
deals with continuous signal that can take any real value
from the infinite interval (-∞, ∞). We decided to choose
fixed uniform quantizer for this task, since it has a low
complexity but it still provides a high quality of
reconstructed signal for high number of quantization levels.
Furthermore, the second quantizer performs nonuniform
quantization since it provides high quality for additional data
compression with a small number of quantization levels. The
output signal of the first quantizer represents the input signal
at the second quantizer’s entrance whereas the input samples
at the both first and second quantizer’s entrance are
modelled with Laplacian distribution.

Let’s denote the first N1-level quantizer with Q1 and
second N2-level quantizer with Q2 (N1 > N2). Quantizer Q2 is
intended to perform additional compression of previously
discretized samples of limited amplitude [11]. In previous
studies, we calculated theoretical results based on
characteristics of continuous input signal. That way, we have
obtained theoretical values of system’s performance that
have a small deviation in comparison to the experimental
results. This study is aimed to determine how changes of
signal characteristics, after A/D conversion, affect the
performance of the whole system.

The paper is organized as follows. In Section II will be
described two stage quantization system model – it will be
shown design of the both fixed uniform and fixed
nonuniform quantizers, as well as measures of the system’s
performance. Moreover, it will be introduced a novel
measure that deals with variances of continuous and
discretized signal. Next, numerical and graphical results will
be shown in Section III. In the end, conclusions and ideas
for future work will be presented in Section IV.

II. SYSTEM MODEL

This section’s aim is to describe mismatch quantization
model by using aforementioned quantizers (Q1 and Q2) and
to propose improved modelling that will provide higher
accuracy. The improved model deals with a variance of
discretized signal instead of continuous variance.
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As it was said above, we discuss Laplacian information
source with a memoryless property and a zero mean value

 
21 exp ,

2 x

x
p x



 
   

 
(1)

where is  standard deviation of the input signal. Primarily
we have chosen Laplacian source since it is commonly used
in systems for image processing.

Observed system model consists of two stages. In the first
stage fixed uniform quantizer Q1 converts analog signal to
discrete samples, whereas Q2 performs additional data
compression by using nonuniform quantization in the second
stage. Thereby, decision thresholds and representational
levels of Q1 can be defined with [11]
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where 1,..., / 2i N . In (2) and (3) xmax denotes the
maximal value of continuous signal amplitude which
depends on the input signal range. Its optimal values,
depending on the number of quantization levels, can be find
in [11]. These two expressions define the positive range of
fixed uniform quantizer. Since the quantizer is symmetric, in
future consideration we will observe just the positive range.

In order to estimate a difference between continuous
signal variance of original signal and variance of discretized
signal obtained after processing with Q1 we introduce a
novel measure: continuous – to – discrete – signal – variance
ratio (CDSVR). It is defined with
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In previous equation x
2 represents the variance of

continuous signal whereas y
2 is the variance of discretized

signal, obtained after processing with Q1. These two
parameters can be defined with [9]:
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where reff
2 is the referent variance. Furthermore, Pi are

probabilities of discrete input levels of the second quantizer
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where is x  for calculating y
2 in (6).

Design of the nonuniform quantizer Q2 is done in two
steps. Firstly, we design the optimal compandor with N2

quantization levels for the unit standard deviation (σ = 1).
After that we discuss range variations by introducing the
parameter of proportionality k. Compandor’s compressor
function maps the range (-, ) to (-1, 1) and it can be
defined with [12]
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Its decision thresholds and representational levels
obtained in this way are defined with [12]:
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where is 22 2/ NiN  . Since that this type of quantizer is
symmetric, it is valid
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where 20 / 2i N  .
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where 2/1 2Nj  . In (9)–(10) parameter tmax denotes the
maximal amplitude of the optimal companding quantizer for
the unit variance and its values, depending on the number of
quantization levels, can be find in [12]. Finally, decision
thresholds and representational levels of nonuniform
quantizer Q2 are

' ,i it t k  (13)

where 2 2 / 2N i N  .

' ,j j k   (14)

where 21 j N  . Since the compression process performed
in this way enters some information lost, we measure
granular and overload distortion that can be defined with
[13]–[15]:
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In (15) parameter ri denotes the number of input levels
mapped with i whereas yij are output levels of Q1.
Furthermore, 2max N  in (16) whereas parameter s

represents the number of output levels from Q1 that are not
within designed input range of Q2.

In the end, total distortion is equal to

.ogt DDD  (17)

Beside CDSVR, overall system performance will be
measured by using SQNR that represents a common measure
of performance [12], [14]
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Numerical results will be calculated for the standard
model (SQNR(x

2)) as well as for the proposed model
(SQNR(y

2)).

III. NUMERICAL RESULTS

In Fig. 1 is shown CDSVR in function of x
2. Observing

Fig. 1 we can conclude that values of y
2 do not match

corresponding values of x
2. Their difference, or in another

words a CDSVR value, increases with increasing the
continuous variance of input signal x

2. This means that our
quantizer is a kind of a mismatch quantizer, since our
signal’s variance is varying. As a result, design of the second
quantizer is not appropriate (it is designed for the unit
standard deviation).

Fig. 1. Continuous-to-discrete-signal-variance ratio (CDSVR).

However, a CDSVR value is lower for a higher number of
representational levels N1, that can be regarded as a reducing
the loss of information occurred due to A/D conversion
using Q1. Consequently, we can expect that proposed
modelling that uses y

2 will achieve higher SQNR
(SQNR(y

2)), as it was confirmed experimentally [15].
In Fig. 2 and Fig. 3 the overall SQNR depending on

various values of N1 in function of x
2 is shown. SQNR value

is calculated in two ways – using the continuous variance of
the input signal x

2 (SQNR(x
2)) and using the variance of

discretized signal y
2 (SQNR(y

2)).
It can be noticed that system’s performance calculated in

both ways have good matching in the range of small
variances (x

2 < 5 [dB]). With increasing the variance x
2

there is a larger difference of calculated values of SQNR and
system shows better performance in the case when we take
into consideration information loss occurred due to A/D
conversion while processing with Q1 (SQNR(y

2)).
In Fig. 4 and Fig. 5 SQNR depending on parameter of

proportionality k for fixed N1 and various numbers of
representational levels N2 is shown.

Fig. 2. SQNR for N1 = 256 and various representational levels of the
second quantizer.

Fig. 3. SQNR for N1 = 512 and various representational levels of the
second quantizer.

It can be seen that peaks of the curves are shifted left but
their values remain approximately the same by changing the
value of parameter k. In the range of small variances it can
be noticed that SQNR is slower increasing by incrementing
the value of parameter k (for the same x

2 it is obtained
higher SQNR for lower k).

On the other hand, for x
2 >5 [dB], SQNR value decreases

by decreasing parameter k. Changing this parameter affects
the both SQNR(x

2) and SQNR(y
2) in the same way.
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Fig. 4. SQNR for various values of parameter k (N1 = 256; N2 = 16).

Fig. 5. SQNR for various values of parameter k (N1 = 256; N2 = 32).

In Table I average SQNR (SQNR(x
2) and SQNR(y

2)) for
various values of parameter k is shown.

TABLE I. AVERAGE SQNR FOR VARIOUS VALUES OF THE BOTH
PARAMETER K AND N2 (N1 = 256).

N2=16 N2=32

k SQNRav(x2)
[dB]

SQNRav(y2)
[dB]

SQNRav(x2)
[dB]

SQNRav(y2)
[dB]

1 11.00236 12.60121 15.60852 17.66160
0.9 11.04911 12.55164 15.74937 17.67307
0.8 11.10471 12.49266 15.72813 17.49095
0.7 11.10435 12.35924 15.37577 16.98225

Obtained average values refer to corresponding
graphically presented results in Fig. 4 and Fig. 5 for the
range x

2  [-20 dB, 20 dB]. It can be concluded that in the
aforementioned range, varying the parameter k does not have
a significant influence on the overall SQNRav of the observed
system.

Table II shows average SQNR (SQNRav(x
2) and

SQNRav(y
2)) for various sub-ranges of input continuous

variance (x
2) in function of parameter k. We can conclude

that parameter k affects overall SQNRav in all sub-ranges and
its impact increases with decreasing the width of the range.

IV. CONCLUSIONS

In this paper we discuss limitations of two stage
quantization modelling that uses just a variance of
continuous signal (x

2). Moreover, we introduce a new
measure of system’s performance (CDSVR). Obtained
results show that aforementioned modelling does not provide
a real estimation of SQNR for input variances x

2 > 5 [dB].
Consequently, modelling should deal with a variance of
discretized signal (y

2) for higher accuracy. In the end, we
observe the impact of the input range choice (i.e. parameter
k influence) on the system’s performance.

Future work will be focused on applying the model to
systems used for image processing. Also, we will research
the difference of mismatch and proposed modelling for
estimation of peak signal-to-quantization-noise ratio
(PSQNR) and average bit-rate (Rb).
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TABLE II. AVERAGE SQNR FOR DIFFERENT SUB-RANGES OF INPUT SIGNAL VARIANCE IN THE FUNCTION OF PARAMETER K (N1 = 256;
N2 = 32).

x2[-10,20] dB x2[-20,10] dB x2[-10,10] dB
k SQNRav(x2) [dB] SQNRav(y2) [dB] SQNRav(x2) [dB] SQNRav(y2) [dB] SQNRav(x2) [dB] SQNRav(y2) [dB]
1 16.39667 19.09979 18.09774 18.44468 20.44655 20.94060

0.9 16.11152 18.64390 18.53039 18.88257 20.38928 20.89165
0.8 15.63079 17.95074 18.75263 19.09579 20.04918 20.53874
0.7 14.99498 17.10880 18.53101 18.86237 19.47140 19.94448

x2[-5,15] dB x2[-15,5] dB x2[-5,5] dB
SQNRav(x2) [dB] SQNRav(y2) [dB] SQNRav(x2) [dB] SQNRav(y2) [dB] SQNRav(x2) [dB] SQNRav(y2) [dB]

1 18.25484 20.04838 20.09190 20.13460 22.70497 22.77518
0.9 17.70619 19.42230 20.67117 20.72220 22.68575 22.77255
0.8 16.92263 18.51965 20.98754 21.04420 22.30115 22.39910
0.7 16.00386 17.48337 20.86813 20.93039 21.62943 21.73864
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