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Introduction

Considerable attention has been focused on the design
of optimal quantizers for sources encountered in image,
speech, and other compression applications. Sources
having exponential and Laplacian probability density
function are commonly in use [1] and the methods for
designing quantizers for these sources are very similar. The
problem of determining maximal amplitude of the input
signal e.g. problem of determining granular region, which
is very important and was considered in [2] and [3], is
obviated using the logic presented in this paper. The
method that is the most commonly in use for construction
of scalar quantizers is Lloyd-Max’s method. The problem
of finding the sets of optimum parameters in [4] is settled
by introducing the Lambert W function and some
approximations. Approximation method suggested in this
paper is simpler than well known Lloyd-Max’s method [5].
Therefore, in this paper the goal is to evaluate the
necessary parameters for construction of scalar quantizers
for exponential sources on the most easily way. First of all
we consider scalar quantization, in which each input
random variable is separately mapped to its output
approximation. After that we focalize on scalar quantizers
for exponential sources. We suggest one very fast and
simple approximation method for solving transcendental
equations. This method enables obtaining nearly accurate
parameter’s values which are necessary for designing of
scalar quantizers.

Scalar quantization

Consider an input random variable x having a
probability density function (pdf) s(x) which is greater

than zero over (0, o) and zero elsewhere. First, we
consider only a one-sided pdf for convenience, without
loss of generality to the similar problem posed for other

regions of support. Let an 7 -level quantizer Q" (-) be
defined in terms of a set of m—1 positive step sizes
{ai};’:’ll (definingr, =0) and a set of n nonnegative
distances from the representative levels to the nether

decision thresholds {5, }::01 as shown in Fig. 1. and Fig. 2.
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Let n+1 decision thresholds of the quantizer {ti(”) }:; , are
given by [4]:

n—1
ti(n) = Z a ;s i=0,.,n (1)
j=i

and we define tl.(:,z =0. Let n output values of the

. . () -1 .
quantizer (representative levels) |y, (._, are given by

i(") — t.(n)

i+1

y +0,. )

The 7 -level scalar quantizer Q(”) () is defined as a
functional mapping of an input value x >0 onto an
output representation Q" (x), such that
(n)

1

0" (x)=y," for 1, < x <t 3)

Note that the iindex subscript decreases to the right
of the zero-input location, and that the quantizer is defined
in terms of its step sizes {a ; }::1 and the distances from
the representative

the
thresholds {5, }"~, the

to nether decision

then

levels

rather most common

convention using the threshold {ti(")}?:o and output
n—1
values {yi(n) }i=0 .
The quantizer distortion is given by

n
n-1 L

(
i+l

The most commonly used distortion measure is
mean-square error (MSE), denoted here byd, (A) and

D, - (e= 3, ) () 4

1
i=0

n)

given by:

2
d s (A)= A 5)
and in that case [4] optimal values of the distances from
the representative levels to the nether decision thresholds
are given by:



[
* 0
I

0

(x + ti+1(n)»x
(e b @)

A second necessary condition for optimality [4] can
be given by

S (6)

d (06:1 =% )— Alogy (Pi+1(”)) =d(-5;)-Alog, (Pf(”))~ (7

In this paper we consider case A =0 thereby (7)
becomes:

d(a;l —5i+1):d(—5i)- ®)

Exponential source

Let we consider the exponential source with
memoryless property. Namely, X is an exponentially
distributed random variable and has a value exceeding
some fixed nonnegative threshold #. Regarding to the
memoryless property of this exponential source the
conditional pdf of x—¢ is the same as the pdf of the
original random variable x and can be expressed by

fe(x):y_le_%‘, x>0,u>0. )

Without loss of generality we can assume that u=1
and (9) becomes:

felx)=e".

Using (10) the memoryless
exponential pdf allows the substitution:

.fe(x+ti+l(n)):eitiﬂ(n)fe(x)’ (11)

By substituting (11) in (6), the expression for
determining optimal values of the distances from the
representative levels to the nether decision thresholds as a
function of the step sizes ¢; is derived as

* ae i
5[ (a[)zl—l_le—_ai.

(10)
property of the

(12)

The optimal values of the distances from the
representative levels to the nether decision thresholds are

obtained for the optimal values of the step sizes o i* , thus
from (12) we have:

aie 7' (13)

and from (8)
e el )=o)

If we use mean-square error distortion measure then
from (14) and (5) follows

(14
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* * *
ol [ <ol (15)
Substituting (13) in (15) and using a simple set of
mathematical operations the transcendental equation is
obtained (16):

By solving equation (16) it is possible to determine
optimal values of the step sizes «,,;" as a function of

Thus,

i+l
. . . x
optimal values of the previous step sizesq, .

knowing the ;" may be sufficient to determine o, ;" .

Numerical results

As in [4], in this paper is also considered
transcendental equations solving problem for A =0 and is
settled by introducing the Lambert W function and some
approximations.

We suggested more efficiently solution of this
problem. The solutions of transcendental equations which
are iteratively found are the exact solutions. In the way to
easily find solutions which are nearly to the exact solutions
than it was done in [4], we suggest approximation method
for solving transcendental equations and therefore we
introduce the following approximation:

e me 0 —(x—xp)e 0.

)

By introducing this approximation the solving of
transcendental equations are replaced with solving of linear
equations.

Analyzing an Eq. (13) we can make two predictions
5(a1*)<1 and o, 75((11*) which is a little bit greater
than 5(051*). Therefore, if initial value is @,  ~2 the
mistake won’t be large.

Choosing the better initial value causes faster and
more accurate getting of the final solutions. It is very
important to notice that the representative levels y; (1) are
not obtained as an arithmetical mean of the decision
thresholds which determine the quantization levels.

Assuming the o, =, 5(a0*)= 1, 051,0* ~2 and
using
* *

a0 * *\, 74,0
—(q —aqp e

*
e ~e” (18)
from an Eq.(16) it is easy to calculate al* and that value
we mark as ¢,""). After the substitution a,, with aV
in (18) and also in (16) the new value for ¢," is obtained
and that value is a final value. Procedure of determining
subsequent values of the step sizes al_* i=1,..,n

identically repeats as it is shown for g, " .



Table 1. Parallel comparison of the accurate optimal values of
the step sizes, for scalar quantizers with n=4 levels, with
appropriate optimal values of the step sizes obtained by using the
approximation method

Accurate optimal values Optimal values of the
of the step sizes step sizes obtained by
using the approximation
method
0 =00 0lp =0
o, =1.5936 o, =1.5940
o, =1.0175 0, =1.0230
a3 =0.7539 03 =0.7583

Behaviors of the four levels MSE-optimal scalar
quantizer for exponential source are shown in Fig.1. and
Fig.2. The values of the step sizesa[* i=1,..,n onFig.l.
are obtained iteratively, by solving the transcedental
equations,  while the wvalues of the step
sizesgr,” i = 1,..., n on Fig.2. are obtained using suggested
approximation method. From Fig.1., Fig.2. and Table.l.
and Table.2. it is possible to notice that the appropriate
values of a,.* i=1,...,n, and also the appropriate values

of 5 i =1,...,n are almost identical.
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Fig.1. Behavior of the four levels MSE-optimal scalar quantizer
for exponential source
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Fig.2. Behavior of the four levels MSE-optimal scalar quantizer
for exponential source and using the approximation method

Table 2. Parallel comparison of the accurate optimal values of
the distances from the representative levels to the nether decision
thresholds, for scalar quantizers with n=4 levels, with appropriate
optimal values of the distances from the representative levels to
the nether decision thresholds obtained by using the
approximation method

Accurate optimal values Optimal values of the
of distances from the distances from the
representative levels to the | representative levels to the
nether decision thresholds | nether decision thresholds
obtained by using the
approximation method
3 =1 8 =1
3,=0.5936 8,=0.5937
8, =0.4239 8, =0.4257
85 =0.33 5, =0.3316

Conclusion

Logic, presented in this paper enables obviating the
problem of determining maximal amplitude of the input
signal e.g. problem of determining granular region, which
is very important and was considered in [3] and [4]. The
exact solution of the transcendental equations are obtained
using the iteratively method but using the approximation
method for finding for solutions we could, on very fast and
simply way, get the solutions very close to the exact
solutions. In this paper is also shown equation for finding
distances from the representative levels to the nether
decision thresholds as a function of the step sizes.
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