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Introduction 
 

The analysis and processing of 
electroencephalographic (EEG) signals are carried out for 
many reasons, the most important ones are to implement 
brain-computer interfaces, to make diagnosis by means of 
automated classification and to use the features of these 
signals as biometric keys. 

The first stage in all the above-mentioned tasks is to 
drastically reduce the amount of collected data. This may 
be achieved by means of evidencing the stationary parts of 
the signal as the EEG signal has an important inherent 
feature, a high non-stationarity.  

In this paper, we present an adjusted method that 
serves for the segmentation of the EEG signal into 
stationary fragments. The mathematical background that 
describes the algorithm is presented in the first section of 
the paper, the second section deals with the experimental 
results, the third is a discussion of the possible applications 
and the last one is devoted to the conclusions.  
 
Theoretical background 
 

Segmentation and detection of different waves of an 
EEG signal may be obtained in several ways. Among them 
is the one based on the so-called “innovations filter”, first 
introduced by I. Schur, [1], [2]. The “innovations filter” is, 
in its fundamental nature, an optimal orthogonal linear 
prediction algorithm.  

This choice is appropriate when dealing with non-
stationary signals with randomly appearance that are of 
unknown amplitude, which is the case of the EEG signals. 
Because it involves an adaptive optimal orthogonal 
parameterization, the algorithm that governs the 
functioning of the filter is well suited for both detection 
and segmentation of the signal. 

In what follows, we shall use the notations introduced 
by Lee, Morf and Friedlander in [3], to review the 
mathematical background. 

An “innovations filter” is implemented using N 
identical sections, each one described by means of a 
reflection coefficient, ρ, a forward prediction error, ν and 
backward prediction one, η. The essence of the algorithm 
is that it calculates the parameters of the model for each 
new sample of the signal and that explains why the 
“innovations” term was chosen for the filter.  

The recursive equations that define the n-th section of 
the filter, at a certain t moment, are the following: 
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with n∈{1,2,...N} and t∈{1,2,...M}. 
It is worth mentioning that the algorithm uses 

normalized values for both the coefficients and the signal. 
The signal is normalized by means of its variance, denoted 
by Rt, as given by the following equation: 

2
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where tx  is the sample of the signal at the t instant. 
Therefore, the normalized value of the signal is 
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The main advantage of using normalized values lays 
in numerical stability (all the values used in computation 
are between 0 and 1). 

The normalization process involves also the so-called 
forgetting factor, λt∈[0,1]. The forgetting factor has the 
role of weighting the previous value of the signal, 
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compared to the new sample. This factor may be kept 
constant but, as it will be shown, it is far more practical 
when the forgetting factor is computed in relation with the 
energy of the forward prediction error for the last section 
of the “innovations filter”, 2

1t,N −ν , as given by the 
subsequent formula: 
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1t,N1tt −− ν−⋅−+λ⋅=λ , (6) 

where a∈(0,1) is a parameter used to adjust the weight of 
the former value of λ. 

The forgetting factor is a good indicator of the 
stationarity of the signal and it is possible to make use of it 
for the segmentation of the signal. When its value is 
relatively constant, it may be considered that the signal is 
stationary or quasi-stationary; on the other hand, dealing 
with important variations of the forgetting factor is a clear 
marker of the presence of non-stationarities in the signal. 
In order to measure the variations of the forgetting factor, 
its values have to be compared to a threshold. To obtain an 
adequate segmentation it is worth noticing that this 
threshold must not be a constant value. 

We suggest the following formula for the threshold of 
the forgetting factor, λth: 

)31(th λσ−⋅λ=λ , (7) 

where λ  is the mean and σλ is the standard deviation of 
the forgetting factor. We choose this expression because it 
is closely linked to the statistical properties and therefore 
the forgetting factor is able to adjust its values according to 
these properties. 

This choice was made taking into account the fact 
that the EEG signals are of very different shapes and so the 
segmentation procedure is based on statistical 
considerations, i.e. stationarity. 
 
Experimental results 
 

The datasets used in our study were downloaded from 
http://republika.pl/eegspikes, a site created by M. Latka. 
The 19 channels EEG signals, sampled at 240 Hz, recorded 
according to the international 10-20 standard system were 
from juvenile epileptic patients. The signals were divided 
into three groups, as follows: 
1. signals with large, single spikes which are not 

accompanied by the prominent slow wave (30 epochs, 
files labeled s1 to s30); 

2. signals with spikes or sharp waves followed by slow 
waves with comparable amplitudes (14 epochs, files 
labeled s38 to s51); 

3. a sequence of spikes (spikes localized close to each 
other, 7 epochs, files labeled s31 to s37). 

The initialization of the three parameters of the 
innovation filter was chosen as follows: 

00,000,00,n x,x,0 =η=ν=ρ . (8) 

Besides this, the initial values for the forgetting factor and 
the variance were chosen as 

ε+==λ 2
000 xR,1 , (9) 

where ε (a very small quantity) was introduced only for 
computational reasons, to be sure that division by zero is 
avoided, because we cannot know in advance that the 
value of the first sample of the signal is not zero. 

From various runs of the algorithm we found that 
N=11, representing the number of sections of the filter, 
was a good compromise between the amount of computing 
and the segmentation capabilities. 

In our work, we also found that setting a = 0.2 in 
formula (6) is a good choice for weightings of the 
forgetting factor at time t-1 and the energy of the forward 
prediction error of the last section of the filter, at the same 
moment.  
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Fig. 1. Signal s10 (epoch 10) 

 
To illustrate the need for a threshold value λth, linked 

to the statistical properties of the signal that has to be 
segmented, let us consider the signal xt in Fig. 1, the 
forgetting factor λt and its threshold value λth for the same 
signal, in Fig. 2. 
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Fig. 2. The forgetting factor λt and its threshold value λth for the 
signal from Fig. 1 

 
In Fig. 2 there are visible smaller values of λt for the 

first samples, t∈[0,100], of the signal, because the 
algorithm needs a certain period of time to adapt itself to 
the signal. In this particular case, the threshold value was 
computed, according to the previous formula, as λth=0.618. 
It is easy to notice the fact that there is a zone (around 
t∈[540, 580]) evidenced by small values of the forgetting 
factor and about three zones with forgetting factors higher 
than the threshold  (the ending zone is characterized even 
by values near unity). As values behind the threshold are 
obvious signs of stationarity, we could say that this signal 
may be divided into three stationary segments, as it 
follows: [100, 250], [250-540] and [580-1200].      

In fact, the value of the forgetting factor is also a 
measure of the derivative of the signal: for equal amplitude 
variations, in different periods, the forgetting factor varies 
slower in the case of the longer period.  



 75

0 200 400 600 800 1000 1200

2.038 103×

560−

xt

1.207 103×0 t  
Fig. 3. A single-spike signal 

 
For signals that do not exhibit many deviations, 

known as “single-spikes”, see Fig. 3, a typical detection is 
as the one presented in Fig. 4. 

According to the graph in Fig. 4, there are only two 
segments of the signal, the first one being obviously non-
stationary. 
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Fig. 4. The forgetting factor and its threshold value for the single-
spike signal in Fig. 3 

 
The spike-sequence signal presented in Fig. 5, which 

is far different from the previous ones can also be 
segmented by means of proper choosing of the threshold 
value.  
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Fig. 5. The spike-sequence signal 
 

This kind of signal is somewhat more difficult to 
characterize since the forgetting factor, as seen in Fig. 6, 
exhibits values nearly equal to the threshold value, 
λth=0.599, even in the stationary region, for t > 300. 
Nevertheless, the overall tendency for λt is an increasing 
one and this is clearly seen from the graphic. 
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Fig. 6. The forgetting factor and its threshold value for the spike-
sequence signal in Fig. 5 

 
The last type of signal that was the subject of the 

segmentation procedure was the so-called “slow-spikes”, 
presented in Fig.7.  

Here it seems that the non-stationarities are more 
difficult to be evidenced because of the slower variations. 
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Fig. 7. The slow spike signal 
 

Nevertheless, choosing a threshold linked with the 
statistical features of the signal, like the one given in 
equation (7), proved a good choice since there are 
moments in which the threshold is greater than the 
forgetting factor, as it can be seen in Fig.8.  
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Fig. 8. The forgetting factor and its threshold value for the slow- 
spike signal 

 
It is apparent from Fig. 8 that a constant threshold 

could lead to wrong segmentation since the variations are 
somewhat less significant due to their slow nature. In this 
case λth=0.871 and there is just one period of time, around 
t=250, when this value is exceeded. 
 
Discussion 
 

One of the applications of the above method of 
segmentation is in predicting the seizures in epilepsy. The 
capability to predict epileptic seizures prior to their 
occurrences may end in novel diagnostic means and 
treatments of epilepsy, [4]. Between seizures, some waves, 
morphologically defined episodic, transient EEG 
discharges, were found. Spikes, sharp waves, slow waves 
and slow-wave complexes are the types included in this 
category, [5]. A comprehensive study on different methods 
on seizure prediction may be found in [6]. The authors, 
using comprehensive references, concluded, based on 
several methods, that there is strong evidence that seizures 
can be predicted by means of the interictal EEG signals. 

During last years, some approaches centered both on 
spatial and temporal contextual information in detecting 
epileptiform activity waves were developed, [5], [7]. These 
papers proposed multistage systems, some of them 
involving, besides the well-known stage of feature 
extraction, a preliminary stage dedicated to separate the 
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stationary and non-stationary components of the EEG 
signal. In this way, data volume is significantly reduced. 

From this point of view, our work may be of real 
interest since the segmentation of the signal may be 
achieved fast and with low computing power. 

Another possibility to use the results is the one that 
arise from the use of EEG signals as biometric keys. In this 
case, a proper segmentation, according to the stationarity 
of the signal, may improve significantly the rate of success 
when authenticating with a system using EEG signals as 
biometric keys.  
 
Conclusions 
 

We have tailored a method based on an optimal 
orthogonal linear prediction algorithm to obtain the 
segmentation of an EEG signal into stationary components. 
A close link of the threshold of the forgetting factor to the 
statistical properties of the signal, in spite of the usual 
constant values used in other applications, was the key to 
evidence the non-stationary parts of the signal.  

We have applied the method on three types of 
interictal epileptic EEG signals: signals with large, single 
spikes or sharp waves which are not accompanied by the 
prominent slow wave, signals with spikes or sharp waves 
followed by slow waves with comparable amplitudes and   
sequences of spikes. The best results were pointed out for 
the first two types of interictal spikes. Nevertheless, when 
dealing with spike-sequences EEG signals, the algorithm 
reached its lowest rate of success. 

The future work will focus on comparing the qualities 
of this method to those evidenced by other methods (e.g. 
the use of the fractal dimension of the signal). 
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