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Introduction

The analysis and processing of
electroencephalographic (EEG) signals are carried out for
many reasons, the most important ones are to implement
brain-computer interfaces, to make diagnosis by means of
automated classification and to use the features of these
signals as biometric keys.

The first stage in all the above-mentioned tasks is to
drastically reduce the amount of collected data. This may
be achieved by means of evidencing the stationary parts of
the signal as the EEG signal has an important inherent
feature, a high non-stationarity.

In this paper, we present an adjusted method that
serves for the segmentation of the EEG signal into
stationary fragments. The mathematical background that
describes the algorithm is presented in the first section of
the paper, the second section deals with the experimental
results, the third is a discussion of the possible applications
and the last one is devoted to the conclusions.

Theoretical background

Segmentation and detection of different waves of an
EEG signal may be obtained in several ways. Among them
is the one based on the so-called “innovations filter”, first
introduced by I. Schur, [1], [2]. The “innovations filter” is,
in its fundamental nature, an optimal orthogonal linear
prediction algorithm.

This choice is appropriate when dealing with non-
stationary signals with randomly appearance that are of
unknown amplitude, which is the case of the EEG signals.
Because it involves an adaptive optimal orthogonal
parameterization, the algorithm that governs the
functioning of the filter is well suited for both detection
and segmentation of the signal.

In what follows, we shall use the notations introduced
by Lee, Morf and Friedlander in [3], to review the
mathematical background.
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An “innovations filter” is implemented using N
identical sections, each one described by means of a
reflection coefficient, p, a forward prediction error, v and
backward prediction one, 7. The essence of the algorithm
is that it calculates the parameters of the model for each
new sample of the signal and that explains why the
“innovations” term was chosen for the filter.

The recursive equations that define the n-th section of
the filter, at a certain £ moment, are the following:
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withne{1,2,..N} and te {1,2,...M}.

It is worth mentioning that the algorithm uses
normalized values for both the coefficients and the signal.
The signal is normalized by means of its variance, denoted
by R,, as given by the following equation:

Rt :7\/t 'Rt_l +Xt2’ (4)
where x, is the sample of the signal at the t instant.
Therefore, the normalized value of the signal is
A Xt
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The main advantage of using normalized values lays
in numerical stability (all the values used in computation
are between 0 and 1).
The normalization process involves also the so-called
forgetting factor, A.€[0,1]. The forgetting factor has the
role of weighting the previous value of the signal,



compared to the new sample. This factor may be kept
constant but, as it will be shown, it is far more practical
when the forgetting factor is computed in relation with the
energy of the forward prediction error for the last section

of the “innovations filter”, VIZ\I,t—I’ as given by the

subsequent formula:

hy=a-de g +(1-a) 1=V 1), (6)
where a€(0,1) is a parameter used to adjust the weight of
the former value of A.

The forgetting factor is a good indicator of the
stationarity of the signal and it is possible to make use of it
for the segmentation of the signal. When its value is
relatively constant, it may be considered that the signal is
stationary or quasi-stationary; on the other hand, dealing
with important variations of the forgetting factor is a clear
marker of the presence of non-stationarities in the signal.
In order to measure the variations of the forgetting factor,
its values have to be compared to a threshold. To obtain an
adequate segmentation it is worth noticing that this
threshold must not be a constant value.

We suggest the following formula for the threshold of
the forgetting factor, Ay:

A =A-(1-305), (7
where A is the mean and o; 1s the standard deviation of
the forgetting factor. We choose this expression because it
is closely linked to the statistical properties and therefore
the forgetting factor is able to adjust its values according to
these properties.

This choice was made taking into account the fact
that the EEG signals are of very different shapes and so the
segmentation procedure is based on statistical
considerations, i.e. stationarity.

Experimental results

The datasets used in our study were downloaded from
http://republika.pl/eegspikes, a site created by M. Latka.
The 19 channels EEG signals, sampled at 240 Hz, recorded
according to the international 10-20 standard system were
from juvenile epileptic patients. The signals were divided
into three groups, as follows:

1. signals with large, single spikes which are not
accompanied by the prominent slow wave (30 epochs,
files labeled s/ to $30);

2. signals with spikes or sharp waves followed by slow
waves with comparable amplitudes (14 epochs, files
labeled s38 to s51);

3. a sequence of spikes (spikes localized close to each

other, 7 epochs, files labeled 531 to s37).
The initialization of the three parameters of the
innovation filter was chosen as follows:
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Besides this, the initial values for the forgetting factor and
the variance were chosen as

o =1,

Pno =0, Voo =Xg, Moo =Xp-
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where ¢ (a very small quantity) was introduced only for
computational reasons, to be sure that division by zero is
avoided, because we cannot know in advance that the
value of the first sample of the signal is not zero.

From various runs of the algorithm we found that
N=11, representing the number of sections of the filter,
was a good compromise between the amount of computing
and the segmentation capabilities.

In our work, we also found that setting a = 0.2 in
formula (6) is a good choice for weightings of the
forgetting factor at time #-/ and the energy of the forward
prediction error of the last section of the filter, at the same
moment.
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Fig. 1. Signal s10 (epoch 10)

To illustrate the need for a threshold value Ay, linked
to the statistical properties of the signal that has to be
segmented, let us consider the signal x; in Fig. 1, the
forgetting factor A, and its threshold value Ay, for the same
signal, in Fig. 2.
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Fig. 2. The forgetting factor A, and its threshold value Ay, for the
signal from Fig. 1

In Fig. 2 there are visible smaller values of A, for the
first samples, te[0,100], of the signal, because the
algorithm needs a certain period of time to adapt itself to
the signal. In this particular case, the threshold value was
computed, according to the previous formula, as A4,=0.618.
It is easy to notice the fact that there is a zone (around
te[540, 580]) evidenced by small values of the forgetting
factor and about three zones with forgetting factors higher
than the threshold (the ending zone is characterized even
by values near unity). As values behind the threshold are
obvious signs of stationarity, we could say that this signal
may be divided into three stationary segments, as it
follows: [100, 2501, [250-540] and [580-1200].

In fact, the value of the forgetting factor is also a
measure of the derivative of the signal: for equal amplitude
variations, in different periods, the forgetting factor varies
slower in the case of the longer period.
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Fig. 3. A single-spike signal

For signals that do not exhibit many deviations,
known as “single-spikes”, see Fig. 3, a typical detection is
as the one presented in Fig. 4.

According to the graph in Fig. 4, there are only two
segments of the signal, the first one being obviously non-
stationary.
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Fig. 4. The forgetting factor and its threshold value for the single-
spike signal in Fig. 3
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The spike-sequence signal presented in Fig. 5, which
is far different from the previous ones can also be
segmented by means of proper choosing of the threshold
value.
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Fig. 5. The spike-sequence signal

This kind of signal is somewhat more difficult to
characterize since the forgetting factor, as seen in Fig. 6,
exhibits values nearly equal to the threshold value,
Ap=0.599, even in the stationary region, for t > 300.
Nevertheless, the overall tendency for A; is an increasing
one and this is clearly seen from the graphic.
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Fig. 6. The forgetting factor and its threshold value for the spike-
sequence signal in Fig. 5
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The last type of signal that was the subject of the
segmentation procedure was the so-called “slow-spikes”,
presented in Fig.7.

Here it seems that the non-stationarities are more
difficult to be evidenced because of the slower variations.
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Fig. 7. The slow spike signal

Nevertheless, choosing a threshold linked with the
statistical features of the signal, like the one given in
equation (7), proved a good choice since there are
moments in which the threshold is greater than the
forgetting factor, as it can be seen in Fig.8.
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Fig. 8. The forgetting factor and its threshold value for the slow-
spike signal

It is apparent from Fig. 8 that a constant threshold
could lead to wrong segmentation since the variations are
somewhat less significant due to their slow nature. In this
case Ay=0.871 and there is just one period of time, around
t=250, when this value is exceeded.

Discussion

One of the applications of the above method of
segmentation is in predicting the seizures in epilepsy. The
capability to predict epileptic seizures prior to their
occurrences may end in novel diagnostic means and
treatments of epilepsy, [4]. Between seizures, some waves,
morphologically defined episodic, transient EEG
discharges, were found. Spikes, sharp waves, slow waves
and slow-wave complexes are the types included in this
category, [5]. A comprehensive study on different methods
on seizure prediction may be found in [6]. The authors,
using comprehensive references, concluded, based on
several methods, that there is strong evidence that seizures
can be predicted by means of the interictal EEG signals.

During last years, some approaches centered both on
spatial and temporal contextual information in detecting
epileptiform activity waves were developed, [5], [7]. These
papers proposed multistage systems, some of them
involving, besides the well-known stage of feature
extraction, a preliminary stage dedicated to separate the



stationary and non-stationary components of the EEG
signal. In this way, data volume is significantly reduced.

From this point of view, our work may be of real
interest since the segmentation of the signal may be
achieved fast and with low computing power.

Another possibility to use the results is the one that
arise from the use of EEG signals as biometric keys. In this
case, a proper segmentation, according to the stationarity
of the signal, may improve significantly the rate of success
when authenticating with a system using EEG signals as
biometric keys.

Conclusions

We have tailored a method based on an optimal
orthogonal linear prediction algorithm to obtain the
segmentation of an EEG signal into stationary components.
A close link of the threshold of the forgetting factor to the
statistical properties of the signal, in spite of the usual
constant values used in other applications, was the key to
evidence the non-stationary parts of the signal.
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We have applied the method on three types of
interictal epileptic EEG signals: signals with large, single
spikes or sharp waves which are not accompanied by the
prominent slow wave, signals with spikes or sharp waves
followed by slow waves with comparable amplitudes and
sequences of spikes. The best results were pointed out for
the first two types of interictal spikes. Nevertheless, when
dealing with spike-sequences EEG signals, the algorithm
reached its lowest rate of success.

The future work will focus on comparing the qualities
of this method to those evidenced by other methods (e.g.
the use of the fractal dimension of the signal).
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Finding the stationary parts of an EEG signal proves to be a difficult task because of the various shapes of the signal that can be
found for different subjects, both normal and abnormal. The paper presents the results obtained in the segmentation of an EEG signal
into stationary parts in order to be used in the stages of feature extraction and classification of these signals or in predicting epileptic
seizures. For this purpose an optimal orthogonal linear prediction algorithm that implements a so-called “innovations filter” is used. The
algorithm was tested on EEG signals from epileptic patients and the results are presented in detail. Some further applications and
possible research fields are also offered. I11. 8, bibl. 7 (in English; summaries in English, Russian and Lithuanian).
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OOHapy)xeHHe TOCTOSHHBIX 4YacTel CHTHala 3JIeKTpOodHIedanorpaMMbl JOCTaTOYHO TPyAHAs 3ajada HM3-3a PasiIH4YHBIX (HopM
CHTHaNa, KOTOpPBIE XapaKTepHBI JUIS PAa3IMYHBIX CYyOBEKTOB — W HOPMAaIbHBIX, M aHOPMaJbHBIX. [IpencTaBiIeHBl pPe3yJbTaTkhl,
MOJyYeHHBIE BO BpPeMsl CErMEHTAllUM CHTHAJIA AJIEKTPOdHIE(haJorpaMMbl B MOCTOSHHBIE YacTH, YTOOBI HCIOJB30BAaTh UX B CTAIHSIX
U3BJICUEHUs] OCOOEHHOCTEH M KiIacCH(HKAIMU 3TUX CUTHATIOB HIM B MPEICKa3aHWH SIMMISNTHYeCKHX mHpumaakoB. C 3Toi mensio
HCIIOJIB3YETCS] ONTHUMAIBbHBIN OPTOTOHAIBHBINA JTMHEHHBIA aNrOpUTM MpeACKa3aHHs, KOTOPbIH OCYIIECTBISET TaK Ha3bIBaeMbIi “GuibTp
HOBIIECTB”. AJITOPUTM OBUI MMPOBEPEH Ha CUTHANAX 3JCKTPOIHIE(PATOrpaMMBI SMICHTUHYECKUX MarreHToB. [logpoOHO npeacTaBneHb
pe3yabTaThl. Takke MpeaiararTcs HEKOTOpbIe chepbl HCOIb30BAaHHUS U BO3MOXKHBIE 00JIACTH AajibHeimero uccnenosanus. M. 8, 6uon.
7 (Ha aHIIIMIICKOM sI3BIKe; pedepaThl Ha aHITIMHCKOM, PYCCKOM U JIUTOBCKOM $3.).

R. Ursulean, A. M. Lazar. Elektroencefalografiniy signaly segmentavimas naudojant otimaly ortogonaly tiesinio prognozavimo
algoritmga // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 1(73). — P. 73-76.

Stacionarias elektroencefalogramos dalis aptikti gana sunku, nes reikia tirti skirtingy formy signalus, gaunamus tiek i§ normaliy, tiek
i§ nenormaliy subjekty. Pateikiami elektroencefalogramos segmentavimo { stacionarias dalis rezultatai, kurie bus naudojami tolesniuose
etapuose, nustatant signaly savybes ir juos klasifikuojant, arba prognozuojant epilepsijos priepuolius. Siam tikslui panaudotas optimalus
ortogonalus tiesinio prognozavimo algoritmas, kuriame pritaikytas vadinamasis ,,inovacijy filtras“. Algoritmo testavimas atliktas tiriant
epilepsija serganc¢iy pacienty elektroencefalogramas. Pateikiami i§samis tyrimy rezultatai. Taip pat pasiilytos kitos galimos taikymo
sritys bei tolesniy tyrimy kryptys. Il. 8, bibl. 7 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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