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Introduction

With the advent of digital signal processors, advanced
control methodologies through artificial intelligence can be
applied in most of the industrial applications. The power
supplies have emerged as an independent industry which is
inevitable in all the manufacturing process. The practical
challenge in most of the SMPS is to design the advanced
control strategies to tackle the nonlinearity and uncertainty
of plant model. The stability is also and important issue.
The main strength of the neural network structures lies in
their learning and adaptive abilities. Neural networks finds
potential solution in the field of plant identification and
pattern recognition problems in its parallel form i.e. neural
network controller is parallel connected with the plant. But
the requirement of a plant emulator can not be avoided
when ANN controller is in between the plant and the
control input.

Many researches suggest direct type of neuro-control
systems [10],[6],[5]in order to overcome the difficulties of
conventional PID in non-linear system theory. The major
difficulty of this control strategy is the requirement of a
plant emulator which serves as a teacher for the Neural
Network controller (supervised learning).

In [13], Narendra and Parthastry suggest a sensitivity
model for the plant which requires some information
regarding the jacobians of the plant. This is difficult for the
online implementation. This paper is concerned with a
procedure suggested by that of Narendra and Parthastry’s ,
but avoids the development of the sensitivity model for the
plant just by replacing the sensitivity model with a simple
Fuzzy based emulator.

In [12] Suwat, Robert and Rees proposed a Neural
Network based plant emulator, but it requires an off-line
training before use. Moreover off-line training requires
exact model of the plant for the simulation, introduces
model uncertainty in case of a nonlinear plant.

In [8] Park, choi and Lee, proposed a neuro identifier
concept which computes the derivatives associated with
the plant. But this requires the knowledge of the plant and
is also complex for the on line implementation. Recently
back propagation based dynamic neural for buck converter
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is implemented which replaces the tuning of PID
parameters [1]. Newly introduced dynamic backpropa-
gation learning framework for the training of feedforward
neural networks with a simple fuzzy emulator is proposed
(which eliminates the need of PID controller for training
[17).

The new control makes use of the MRAC system
design principle, common in traditional adaptive control
system design. This design work can be extended for the
class of nonlinear system with structural uncertainty. This
simple new method incorporates the online training
algorithm. Simulation studies are carried out for the DC-to-
DC converter system and the same is implemented using
DSP processor (TMS320LF2407 DSK)[22], to obtain the
real time response. The overall simple control
methodology requires less memory in DSP. The practical
and simulation results shows that the proposed method
gives far better response as compared to conventional PID
controller.

The Elements of Model Reference Adaptive Controller

The nature of the dynamical system usually shows slow
changes of system parameters and changes of the
parameters due to the different operating conditions or
operating point. In this case an adaptive controller should
be designed to follow the changes of operating conditions
and adapt in certain prescribed way. Robustness of the
adaptive systems to unmodeled dynamics and bounded
disturbances is treated in[19].

The basic idea of MRAC is to introduce a global
stability criterion into the design procedure and to choose
the adaptive control law in such a way that the requirement
of the stability criterion is fulfilled. In other words, it is
desired to design a controller that computes a control
action signal, such that the overall control system respond
dynamically as the specified reference model. Limitations
of the classical PID design is, the controller parameters
must be tuned by some appropriate algorithm to obtain the
desired response and also re-tuning is required for the
different values of load changes. The system is affected by
the environmental conditions, hence, not a robust system.



On the other hand a MRAC can completely replace the
conventional PID and also can produce reasonable output
for inputs that not encountered during training, making it a
robust controller.
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Fig. 1. Basic structure of MRAC

Fig. 1 shows the basic components of MRAC. The
block labeled “REFERENCE MODEL” is the required
trajectory of the plant to be followed. This may be
explained in the mathematical term as follows. A plant
with an input-output pair u(n), y(n), and a stable reference
model specified by its input-output pair r,(n), y,(n) with
the reference input signal of the system r,,, € L. Then the
objective is to determine a control action law, u(n), for all
n>0, and an updating law of the controller parameters
such that .

lim
n——»0

| ym(n) - Y(n)|< & . (M

For a specified constant € > 0. each component of the
MARC is discussed below.

The reference model. Here the reference model is
considered as a second order stable system with 0.15 ms
rise time and 0.3 ms of settling time. The discrete time
version of the reference model is given as

Yim(n)=1.2913%y, (n-1)-0.2917*+0.2083*r,,(n-1)+

+0.1388%*r,,(n-2). )

The plant. To prove this fact a highly nonlinear buck
converter is considered as a plant in Fig. 1. A buck
converter is a step down DC to DC converter. DC to DC
converters are inherently nonlinear due to switching
operation. The regulation is normally achieved by the
Pulse Width Modulation technique (PWM) at fixed
frequency. Buck converter gives a regulated DC supply to
load according to the duty cycle of the PWM input. The
basic structure of the Buck converter is shown in Fig. 2.

Fig. 2. Step down or Buck converter
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The transfer function [3] of buck converter is written
below.

U, (s) u
Gro)==2= = )
s) iyj=0 as +bs+c
R
where a=LC C:1+—L,b:%+RLC.

For the experimental purpose the buck converter was
designed with R =2Q, L =2.05mH, C =47uF, R;=0.25 Q
and Ud=15V.

The transfer function of the buck converter

1.557= 10"
& (5= 4
9 s+ 107610 s +1.168=107 @

Modeling of the plant is not required for the real time
implementation purpose. To obtain the simulation results,
the discrete time model is developed by Tustin method
with the sampling frequency 30 KHz. The obtained
modeling equation is

y(n)=1.688*y(n-1)-0.6986*y(n-2)+0.0769*u(n-1)+

+0.06828*u(n-2). 5)

The artificial Neural Network (ANN) controller. A
neural network can be thought of as a black box that maps
the inputs to the output. The mapping is done without
explicit rules. The ANN adapts the desired mapping
through a learning process, which requires presenting to
the network a set of input-output pattern pairs.
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Fig. 3. Basic structure of Neural Network

Fig. 3 shows the basic Neural Network with one input
layer, one hidden layer and one output layer with biases. It
is proven fact that ANN architecture with one hidden layer
and with sigmoid activation function can approximate any
linear or non linear function with desired accuracy. Neural
Network designer mainly faces problems with the
architecture selection; how many hidden layers to use and
how many neurons to choose in each hidden layer? The
common practice is to choose a large number of computing
neurons, which often results a bulky network with large
memory requirement. One new method suggested in [2]
describes, if the basic geometric shape of the target
function is known in advance then the number of hidden
neurons is equal to the minimal number of line segments
(or hyper planes in large—dimensional cases) that can
construct the basic geometrical shape of the target
function. Using Dynamic Back Propagation training if the



training phase is stopped at a local minima then a single
hidden unit must be added to ensure the global minimum
solution.

The second factor, which directly affects the stability
of the network, is the choice of the learning rate (u). The
learning rate determines the stability and convergence rate.
For input patterns dependent on time, convergence of the
mean and the variance of the weight vector is ensured for
the most practical purpose if

O<puy<——,
trace[ R]

where trace[R] = X (diagonal elements of R), is the

average signal of the weight vectors E(X'X) with p set

within this range, the algorithm converges in the mean

weight. Proof can be found in [21].

From the above discussion the 4-6-1 architecture of
ANN is found to be optimal for the given problem. The
four inputs of the ANN are the two delayed plant
outputs(y(n)), one delayed duty cycle(u(n)) and the
reference input(r,,(n)). The Back propagation algorithm is
a generalized windrow-Hoff rule to multiple-layer
networks and non-linear differentiable transfer functions.
Input vectors and the corresponding target vectors are used
to train a network until it can approximate a function,
associate input vectors with specific output vectors.
Networks with biases, a sigmoid layer, and a linear output
layer are capable of approximating any function with a
finite number of discontinuities. Dynamic back
propagation (see Appendix 1) is also a gradient descent
algorithm, in which the network weights are moved along
the negative of the gradient of the performance function.
The training algorithm of the dynamic back propagation is
well established in [13] for the reference it is attached in
Appendix 1. The weight updating rule is given as

Wik (new) =W (old)+ aw i,

Vij (new) =V (old)+ Avy;, (6)
where ijkz_a Oe = _0‘5ij ’A"ijz _aa_e:
‘ W ji ovij

=—ad ;x;, a is the learning rate parameter.

The Emulator. The emulator is the main heart of the
MRAC as it provides the training signal to the ANN
controller. Plant emulator can not be avoided when ANN
controller is in between the plant and the control input.
Several methodologies for constructing the plant emulator
have been proposed but they require either off-line training
of the plant emulator or an exact mathematical model of
the plant. This limits the capability of a neural system in
generalization and control problem of a nonlinear plant.
Another alternate is to use a heuristic approach like Fuzzy
logic to build a plant emulator. To approximate the plant
we need not design a precise emulator hence a simple
fuzzy controller can serve as a plant emulator by just
knowing some plant input-output data. It is shown in a
result section that the real time results are much matched
with its simulation counterpart.

The structure of proposed fuzzy logic emulator
consists of three modules fuzzification, rule base and

defuzzification. Structure of emulator is designed to
produce the value of the duty cycle u’(n) based upon the
difference in the reference model(yy,(n)) and plant
output(y(n)). The rule base is of Mamdani-style fuzzy
inference system. The term set for input variable e(n) and
output variable has a 7 linguistic values as shown if Fig. 4
& 5. All these Fuzzy Sets are selected as overlapping
isosceles triangles Both the input and output variables are
defined on the normalized domain of [-1 1]. The rule base
is developed with some prior knowledge of the plant data.
The rule surface formed by inference is shown in Fig. 6,
which indicates the nature of rules fired.
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ME ] NS z =3 Phd FB

05+ q

o 1 1 1 1 1 1 1 = 1 1

-1 -0s 06 -04 02 1] oz 0.4 06 03 1
cutput Varizhle " Dty cywele"

Fig. 5. Output variable “Duty cycle”
1

N ,_./\

duty
[}

0.5 \/_-f

-1
-1 -0s 0 0s 1

errar

Fig. 6. Rule surface

The real time implementation scheme of MRAC
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Fig. 7. Implementation scheme for MRAC with DSP processor



Fig. 7 shows a simplified block diagram of a digitally
controlled dc-dc converter interfaced to TMS320LF2407A
DSP controller. As indicated in the Fig. 7, a single signal
measurement is needed to implement the voltage mode
control of the dc-dc converter. The instantaneous output
voltage V,, is sensed and conditioned by the voltage sense
circuit and then input to the DSP via the ADC channel.
The digitized sensed output voltage y(n) is compared with
the reference model output y,,(n).

A software routine is implemented through code
composer studio (CCS) tool provided by Texas
Instruments in C language programming. Once the error
e(n) is calculated the fuzzy emulator provides the target
duty cycle command to ANN controller. By the dynamic
back propagation learning algorithm, ANN is trained to
produce next duty cycle command u(n) to the converter
regulator switch Q1. This command output is used to
calculate the appropriate values for the timer compare
registers in the on-chip PWM module. The PWM module
uses this value to generate the PWM output, PWMI in this
case, that finally drives the buck converter switch Q1.

CCS is used to load and run the controller to achieve
real time control. Furthermore, the parameters of the
controller like learning rate can be adjusted while the
converter is running, so that the online adjustment is
achieved. This avoids the shutting down the system re-
assembling and re-compiling the source code each time the
parameters are adjusted. The software code which
implements the neural network controller is written in
timer interrupt service routine is given in appendix 2.

The test setup

For the simulation purpose the model of the plant is
considered as given in equation (5) and the Reference
model as (2). The MRAC code is written in “C” language.

The real time results were obtained by implementing
the controlled digitally on TMS320LF2407A DSK for the
proposed converter. The transient response is obtained
with the initial load of 2Q and then the load was changed
to 0.66Q2 by connecting a 1€ resistor in parallel to obtain
the transient response. The frequency of the PWM is
chosen 30 KHz. And the output voltage was kept constant
at 3.3V. The sampling time in all the above calculation is
chosen 1/30000 sec with the thumb rule that sampling time
is chosen as the inverse of the PWM frequency.

The prototype model was constructed at the
laboratory of Control Systems in Birla Institute of
Technology India as shown in Fig. 8 and Fig. 9 with
following parameters:

Input Voltage 15vDC

Output Voltage 3.3vDC

Rated Load 2Q

Switching frequency : 30 KHz

Inductor : 2.05mH, 0.11 Q
Mosfet IRF 840

Mosfet driver TLP 250

Diode UF5407

Capacitor 47uF, 35V

DSP TMS320LF2407A DSK

Fig. 8. Buck converter Prototype
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Fig. 9. Buck converter interfaced to TMS320LF2407A
Results

Fig. 10 shows the simulation result for the startup and
reference change for the conventional PID controller. As
the buck converter being highly non-linear device, we can
expect that the PID parameters designed for the simulation
purpose will not give the comparable result in real time,
which is shown in Fig. 12. In comparison to the Fig. 10 the
overshoot of the system remains at 15%. But the settling
time is increased in case of the real time 0.05 sec. the
results anticipate for the design of adaptive controllers like
MRAC.
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Fig. 10. Simulation result for startup
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Fig. 12. Practical result for startup of PID
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Fig. 13. Practical result for startup of MRAC

X-axis: Time
Y-axis: Output voltage

Fig. 14. Real time response for reference change form 3.3V to 5V
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Fig. 15. Real time result for load Voltage and PWM signal for
MRAC

Fig. 11 shows simulation result for the startup and
reference change of MRAC. We see the overshoot has
been reduced to 3%. If look at the real time response of the
MRAC in Fig. 13, we can conclude the results are
comparable. The real time response is much better than the
simulation. It has nearly 0% overshoot. The rise time of the
MRAC system when compared to PID is more, but if we
compare the practical responses it is around 0.04sec. Fig.
14 shows the real time reference change form 3.3V to 5V.
Fig. 15 shows the variation of the output Load voltage with
reference to its PWM signal.

Conclusions

A Novel simple emulator for MRAC with dynamic
back propagation algorithm applied to industrial power
supplies is proposed. This design work can be extended for
the class of nonlinear system with structural uncertainty.
This simple new method incorporates the online training
algorithm. The suggested overall simple control
methodology requires less memory requirement in DSP.
The improvements in practical and simulation results are
stated by comparing with conventional PID controller.
The proposed method can be widely used in most of the
industrial nonlinear and complex applications.
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Model Reference Adaptive Control (MRAC) is commonly used in traditional neural network based adaptive controller design.
Neural network based MRAC often requires plant emulator when neural controller is connected in between the plant and the control
input. Several methodologies for constructing the plant emulator have been proposed but they require either off-line training of the plant
emulator or an exact mathematical model of the plant. This limits the capability of a neural system to generalize the controller for a
nonlinear plant. Authors suggest a simple combination of Nero-Fuzzy technique to address this problem. Newly introduced dynamic
back propagation learning framework for the training of feed forward neural networks with a simple fuzzy emulator is proposed. This
design work can be extended for the class of nonlinear system with structural uncertainty. This simple new method incorporates the
online training algorithm. Simulation studies are carried out in Matlab for the DC-to-DC converter and the prototype of buck converter
is implemented using DSP processor, to obtain real time response. The overall simple control methodology requires less memory in
DSP. The practical and simulation results are compared and contrasted with PID controller. The proposed method can be used in most
of the industrial applications. IIl. 15, bibl. 22 (in English; summaries in English, Russian and Lithuanian).

C. I'. KagBane, A. Kymap, b. M. Kapan. MRAC c¢ He4YeTKHM 3MYyJATOPOM Ha OCHOBE JHHAMHUYECKOI0 00pPaTHOro
pacnpocTpaHeHHsl 1151 KOHBEPTepa NMOCTOSIHHOIO TOKa // DJIeKTPOHUKA U djeKkTpoTexHuka. — Kaynac: Texnosorus, 2007. — Ne
1(73). - C. 49-54.

Mognens agantuBHOro KOHTpois (MRAC) 0O0bBIMHO HCTONB3yeTcsl B IMPOCKTHPOBAHWU AaJalTHUBHBEIX KOHTPOJUIEPOB Ha 0Oase
TpagUUHUOHHBIX HeHpoHHBIX ceTeil. MRAC Ha 0a3ze HEMpOHHOH ceTH 4acTo TpeOyeT SMyNiTopa YCTPOHCTBa, KOT/Ia HEHpOHHAs CETh
MOMEIISeTCs] MEeXTy YCTPOHCTBOM M BXOJJOM CHTHAIa KOHTPOJIS. BpITo mpeoixkeHo HeCKOIbKO METOIOJIOTHIA JUISl CO3IaHUs IMYJISITOpa
YCTPOHCTBA, HO OHU TPEeOYIOT MM aBTOHOMHOIO OOy4eHHs SMyJsTOpa, WIM TOYHOM MaTeMaTHYeCKOH MOJENIH yCTpoWcTBa. DTO
OrpaHNYMBACT CIIOCOOHOCTH HEHPOHHBIX ceTeil 000OIIATH HENMHEHHBIE YCTPOWCTBAa. ABTOPBHI IPEIJIaraloT IPOCTYI0 KOMOHMHALUIO
HEYETKOW TEXHHKH, dYTOOBI pemmnTh 3Ty mnpoOmemy. [IpexcraBneHa TexHuka oOy4deHHMs HpUMEHssS IMHaMHUYeckoe oOpaTHOe
pacnpocTpaHeHHe, KOTOPYIO MOXKHO HCIIONb30BaTh Il 00yUeHUs] HEHPOHHBIX CeTell MpUMEHsI MpocToil aMynaTop. OTa paboTa MOXKET
OBITH pacIIUpeHa A0 Kiacca HEJIMHEWHOW CHUCTEMBI CO CTPYKTYpHOH HEOINpeNeaEHHOCTBIO. METOoA BKIIOYAET aIrOPUTM IPSIMOTO
oOyuennsi. C momomipto Matlab BEIIONIHEHO MOAETMPOBaHHE KOHBEpPTEpPa IIOCTOSIHHOTO TOKA; OMBITHBIA 00Opas3en KoHBepTepa
OCYIIECTBIEH HCIIONB3Ysl TpoIeccop NU(POBOH 0OpabdOTKM CHUTHAJIOB C LENbI0 MONYyYHTh PEAKIHI0O B pEaJbHOM BpPEMEHH.
IIpakTHdeckue pe3ysbTaThl U Pe3yJIbTaThl MOACIHPOBaHUs cpaBHEeHHI ¢ PID xonTpomtepom. M. 15, 6ubi. 22 (Ha aHTIHICKOM S3BIKE;
pedepatsl Ha , aHTTIMHCKOM, PYCCKOM U JIUTOBCKOM 513.).

S. G. Kadwane, A. Kumar, B. M. Karan. Nuolatinés srovés keitiklio MRAC su nerai§kiuoju emuliatoriumi, pagristas
dinaminiu atgaliniu sklidimu // Elektronika ir elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 1(73). — P. 49-54.

Modeliu paremtas adaptyvusis valdymas (MRAC) daznai naudojamas kuriant tradiciniy neuroniniy tinkly pagrindu veikiancius
adaptyviuosius valdiklius. Tokiam MRAC daznai reikalingas irenginio emuliatorius, kai neuroninis valdiklis jjungiamas tarp irenginio ir
valdiklio {¢jimo. Pateiktos kelios jrenginio emuliatoriaus sudarymo metodikos, taciau joms igyvendinti reikalingas arba autonominis
jrenginio emuliatoriaus mokymas, arba tikslus jrenginio matematinis modelis. Tai riboja neuroninés sistemos geba valdyti netiesini
irenginj. Problemai sprgsti pasiiilytas paprastas neraisSkusis neuroninis metodas. Pasifilyta nauja dinaminio atgalinio sklidimo mokymo
sistema, skirta neuroniniams tinklams mokyti naudojant paprasta neraiskyji emuliatoriy. Sis darbas gali biti pritaikytas netiesiniy
sistemy su struktiirine neapibréztimi klasei. Numatytas tiesioginio mokymo algoritmas. Atliktas DC-DC keitiklio modeliavimas Matlab
terpéje, o impulsinio reguliatoriaus prototipas sudarytas naudojant DSP procesoriu, siekiant gauti realaus laiko reakcija. Praktiniai ir
modeliavimo rezultatai lyginami su PID valdikliu. Il. 15, bibl. 22 (angly kalba; santraukos angly, rusy ir lietuviy, k.).
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