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Introduction

Models of multistage continuous control of
mechatronic products are analyzed in this work similarly
as in publication [1], when production classification errors
of the first and second types are present [2, 3, 4]. Main
difference is that the area of analyzed structural variants of
control process will be broadened and more general beta-
distribution will be applied as well. The main
distinguishing of this distribution is that the random value
(r.v.) can vary in any interval (including from 0 to 1 also)
and in such manner this generalized double-parameter
distribution may be applied not only in quality control for
description of the defectivity level, but also to solve
various different engineering problems using stochastic
methods. We will discuss how generalized beta-
distribution is integrated into the general space of
stochastic distributions, when they are selected for
particular applications.

The selection of stochastic distributions

In the engineering practice during the experiments the
empiric results of the observations are obtained, according
to which it is possible to calculate some certain numerical
characteristics of the observed r.v. X. According to these
characteristics we need to select the stochastic model
which would describe the distribution of r.v. X. For this
reason we require the sufficiently broad set (family) of
stochastic distributions and some certain rule, on the basis
of which it would be possible to select most suitable
distribution from the available set for particular case.

Distribution families offered by Johnson and Pearson
[5, 6] are applicable most widely. We will concentrate on
the family of Pearson curves, since the generalized beta-
distribution is one of the main in this family. In general
case the density f(x) of r.v. X belongs to the family of
Pearson curves, if it meets the differential equation (1)

1 df(x) _dnf(x) _
f(x) dx dx

x—b
byx* +bx+b,
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where parameters by, b;, b, — the real numbers.
The shape of the density depends on the roots of

polynomial b,x? +b,x+b,. When there are two roots of

opposite signs, we have the distribution of the I type with
density

f(x)=Clx—v)* (v —x)"",

Vo<x<v, a>0, b>0; 2)

where C — normalizing multiplier (constant).
This is the generalized beta-distribution [6] and the
random value Y =(X-v,)/(v,—v,) will already be

distributed according to beta distribution with parameters
a,band 0< y<I.

There are seven types of distributions in the set of
Pearson curves (including such distributions as beta,
gamma, chi-square, Fisher, Student and Gaussian) [6],
although in [7] this classification was extended up to 12
types. Sets of I, IV and VII distributions are the widest
(according to [6] classification). It is considered in
probability theory, that gamma, beta (generalized) and
Gaussian distributions are the main ones.

Each distribution of probabilities fully characterizes
using k-th order initial &, or central z,, moments:

20! = EX* = kaf(x)dx,k =1,2,...
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where EX — mathematical mean or average. In practice it is
sufficient to have the first four (k=1, 2, 3, 4) initial
moments, since central moments can be expressed using
initial moments ( 4, = 0 always):
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where o) = EX = u, po =VX = 52 [8].

The asymmetry factor y, and excess yj are equal to [6]

_He _He o, _He ,_He
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H2) H)
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Note. For Gaussian distributiony, =y, =0 i.e. =3.
Hr)

For the selection of the distribution from Johnson or
Pearson sets of curves the parameters £, and [, are

used [6], which by some certain meaning describe the
shape of the distribution:

2
H3 H
Bi=ri=—L, PBp=yp+3="3L. (6)
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The following relation formulas are valid for the
family of Pearson curves (1):
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Each distribution (considering its shape) can be
visualized by points on the plane f,04; . The distribution
for which ( S, By ) acquire the single value is represented
by point (for example, for the Gaussian distribution
(pB4,Pr)=0, 3)). Distribution, which has one shape
parameter, is represented by particular curve, and with two
shape parameters — particular area of the plane S,00;

(Fig. 1).
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Fig. 1. The family of Pearson curve (types I and III)

The family of distributions of the III type is shown in
Fig. 1 as straight line, and of the I type (generalized beta-
distribution) — as area between the III type and the line
Pr—LF,—1=0, which defines the critical area in which

distributions do not exist. Most of other-type Pearson
distributions fall into the area below curve III (see Fig. 10
[6D).

In general case, when moments of the random value
are known, the type of the curve is selected according to
B4, By values, then distribution parameters are expressed

using moments and so the density f(x) is completely
characterized.

Let’s illustrate it by formal example. Assume, that we
want to visualize the particular beta-distribution X~Be(2,

3) in the plane pS,08;, when a=2, b=3,
vy =0<x<v =1. The initial moments are
D@+b) [ arkoiy o1, T@tb(a+k)
gy = — (1-x) = 2T IATE)
T'(a)T'(b) d T(@)(a+b+k)
a+k-1 a
=—a, ., kK=2,3,4; a, = ; 8
a+b+k-1 7D O a+b ®
where I'(z) — gamma function [3, 4].
According to (4), (6), (8) we have — g =u =04;
4 1 4
2) 3 35 (4) 14 @) = 35
33
=52=0,04; and
o Ho %757 H9 %750
4 33
B :E =0,082, B = v =2,357. We place the point

(ﬂA,ﬂE) = (0,082, 2,357) on the plane £,05; (Fig. 1)

and it is obvious, that this is the I type distribution of
Pearson family.

Generalized beta-distribution

When the random value Y~Be(a, b), we have the
density of beta-distribution

a,b) = -y 0<y<1; 9

@(y|a,b) Bab)’ 1-) y )

where B(a,b) = M — beta-function, with numerical
I'(a+b)

characteristics of the random value Y:

40-i) , 8, =Y . (10)

EY=p,=——, VY =0, =
Hy a+b’ a+b1

We perform transformation X =Y (v, —v,)+v,. Then

r.v. X is distributed according to generalized beta-law with
density

J@)=f(x]a,b)= y'(x)[¢ly(x)]=

=C(x—v)" (=), vy <x <,

(In



where y(x) =220, =21
V=V ox Vi — Vo
—_ 1 _ a-1 _ ol
A= g )
1 T'(a)T'(b)

= —atb 1 —avb . const.
B(a,b)(v —vy) I(a+b)(v; —vp)

The numerical characteristics of the random value X:

av; + by,
EX = p=vy+ (v —vo)u, =ﬁ, (12)
VX = 8% = (y—vp)?6 =— 20Uy
LY T b+l a+h
S=AVX . (13)

When a=b=1, we have the uniform distribution in
interval (vy,v): X ~ R(vy,v;) with density

1

V1=V

S(xILh) =

, Vg Sx <y, a=b=l.

(14)

From (12), (13) equations we obtain a and b
expressions

= NTH L as)

a=H"" {(#_Vo)("l_ﬂ)_l}, b
1=V

52

1= %

After substituting the estimates 7 =X, 5% =57 into
(15) [3, 4] and having the a priori information about the
values of v,,v;, we obtain the estimates &,l; and in such

manner we select particular density according to empirical
data.

Transformations of densities in continuous control

e [et’s analyze two-stage continuous control (Fig. 2).
Analogous was discussed in [1] Fig. 2, but in the current
case the probability density g(6) of defective product

between stages K; and K, is described using the density of
generalized beta-distribution.
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Fig. 2. The diagram of two-stage control
We have
2O =CO-vy) (-0, 0<v, <0<y <1; (16)

where the normalizing factor C is found according to (11).
After direct transformation T (see [1]) g(@) is

transformed into density /(7)

a-l1 b1
h(r)=6'(z)| glO(r)] = C, (t-7)" (1,—7)

1+Cr)*r 7
ToST27); 7)
where C; = =—— ¢ - > = const.,
T (14 Crg) T (14 Cory)
T T 1
0(r)=—= ==, 00)=—""T7.
Bo(A+Cor ) B, +7,7) B, 1+Cyr )
C T—=7T) a1, 01—T b1 1
[0(7)] == ( 0 ,
g D2 4 Cyry. 11 Gyr (14 Cyr) 2
E[ :L’Z :1_&:L’77i :l_ai_ﬂi!i:132:
1- a; 1- a;
C. :;_lzizﬁ.roz ﬂ2v0 = ﬂ2vl .
B; B B 1=7y2vy 1=y,
After the reverse transformation A, g(8)is
transformed into the density f(®)
(@) (@ -~ )"
w)=C , oy folw, (18
f@)=C, == p<o<ao, (18)
na+b-1
where C,, = — Caﬂ_ll ——— g =const.,
(I=900)" (I1-na)
a) Yo Yo ol

0 = == = = = . a)o = == .
Bitrve  Bil+ev) Bid+ewm)

Densities f(w) and /(r) are named as the second-

order generalized beta-distributions [7].
The mode (point of maximum) 6,, of the density

g(0) is

a—1
Oy =vg+ (Vv —vy)————. 19
v =Vo+(m O)a+b—2 (19)
We will use the transformation X=t-t, for the

density A4(7)and in this way we shall obtain the density
h(x)

a-lga _ yb-1
hory=c, X BemD) x)b ,0<x<A.;  (20)
1+ Bx)*
G
where C, =const., A, =1,-1y, f, = :
1+ Cyry

Assuming that the first derivative h‘(x)=0, we obtain
the equation of extremes (21)

XA, X)) T2B. 67 - A x+(a-DA]1=0; (1)

where 4. =(b+1)A, B, +a+b-2



After solving (21), we have that the mode 7,, equals

A } 8(a—DA.B
=7+ =7y +—[1+ [I-—————F]. (22
TM TO XM TO 4BT [ ﬂj ] ( )

Analogously, after making the substitution Z=w-w,,
we have

A 8(a-1A,
=wy+zy =0, +—2[1% |1 ——“’ @ 23
Oy =0y +2) =, 18, [ ’ 2 ] (23)

i
1=y
Ay, =0b+DA,B,+a+b-2.

where A, =w,—w,, B, =—

Averages u, and y, can be calculated by (24):

@y

= ]lz-h(‘[)dr, U, = wa(w)dw.

To @y

24)

In practice it is more convenient to use the functions
7(0), w(f) and the density g(6):

V1

4 = [2(0)g©)d0, u, - j (0)g(0)d0 ;

Vo Vo

(25)

0 _ 6
p+c0) p+n0

The averages of returning flows according to [3, 4]
are equal to

where 7(0) = p 2~0 , w(0) =
1-y,0

Q=0+ Yy, Gy =0+ Yo lly. (26)

According to (16), obtain for A

transformation:

(25) we

" N T N
= S [ A 20 €
B 1+¢,0 By

Vo

~Ln-a,,

el

27

1
- 0—vy) v -0 do=—(,-1,),
1+cl6’( Vo) T (1 —0) cl(l o)

1
I = j (O =vy) " (v, —0)"dO = (v, —vy)**" ' B(a,b) =

Vo

;- j‘(e—vo)““(vl—e)”‘l 40
@ 1+¢0 '

Analogously for the direct transformation T we receive the
following:

H :L(CIT _1)9
)

(28)

1O-v)" " (v -9

where I, = do.

Vo

Similarly like in [1] we assume, that it is sufficient to
use the whole-number values of parameters a and b (a>1,
b>1) during the modeling. After integration of [, from
27) and I,

expressions:

from (28), we receive the following

1 a— ll
Ia):ca+b 1{( 1) 1 1[ b— 11n

1 xo

+Zcb1<1)’b’”“. Z DTG
; i x j_xl+j
ZCb [ (=1 A0 }; (29)
i=0 +.]
n!
where x, =l+¢,vy, X, =l+¢v; C) =——;
m!(n—m)!
ye+o-1 o b1 l -
IT:(~3+1;1 {( D™y 1+[zcb (=D Rl
72 ol [
llnyO +Z 1( 1)[1 j-1 (l)ljl
J_ it
ZC}) 1( 1)1+1 b+i— lyO N : (30)
i=0 +]

where y, =1-7,v,, x;, =1-7,v, .

Furthermore, when a and b have whole-number
values, we have
B (a+b-1)!
(@=DIb =Dy =y

31

where a>1, b>1 — whole numbers.

If we consider s-stage direct transformation T
(according to [1] Fig. 3), then the density #,(z,) has the

form of (17), when we substitute ¢, instead of ¢,

N
==L =[] 5. i=1-s.
Ls i=1

Averages L,

(32)

are calculated analogously, when
instead of ¢, we put ¢, into expression and instead 7, we

pUt 7’713 :l_ﬂls °



It is obvious, that all the received models with
generalized beta-distribution can be immediately used for
transformations of beta-distribution, after inserting values
vo=0and v, =1.

ee [ect’s consider two-stage continuous control
(modified), in which the returning flow is passed into its
own repair (regeneration) operation R; after each control
stage K;, i=1, 2 (see Fig. 3).

ai, Bi a, B2
G g(9) K, h*(*) K, h*(t*)

Ho = Hy — 2
| Q,
R ﬁl* R, ﬂ;

1

Fig. 3. The modified two-stage continuous control

In each repair operation R; all the products rejected
during the control K; are repaired and returned back to the
K. The cycle is repeated until all the products which have
been passed into the control K;, will be accepted as good,
ie. p; =1 (see [1]). In average the Q part of products is
returned to the repair operation in each stage. According to
the [2] during the repair operation in such scheme the

second type error ﬂi* =const., and the first type error

al-* =0 (does not exist), since the assumption is made, that

all the rejected products are repaired in the repair
operations. Then [2]

T = B0, T; = ﬂozf* = B01Bnf; (33)
B B _ 5
et o S Ty P T By

Let’s consider, that g(8) (Fig. 3) is beta-density with

vo=0, v, =1. Then after Tl* transformation 7~ = L0
we obtain already generalized beta-density h*(t*), where
0<7*¥< By <1:

Tk () =0 g0 )] =
B—l(a b)

T pa+tb-1
01

= () (B~ ) (34)

* * T -1 1
where 8'(t )=—, 6(r )=—, B (a,b) = .
01 01 B (a,b)
After the second stage K, we have (the

transformation 75 ):

-1 . i
%%%?@V%Arnf%

12

Tz* ih;(T;):

0<7,< By (35)
where Ez = Bo1Boz -

Generally we can write, that in the modified
continuous control scheme with number s of the control
stages K; which are connected in series and with their own
repair operations R;, i=1-s, the density after the operation
K, is
B (a,b)

A“b‘( DBy —1) 7, 0<1, < By, (36)

hy(zy) =

where Els = Hﬁol‘ .

i=1

The mode 7,,, of the density %, (z; ) is

- -1 .
lM ﬂll +b 7 1_1_87 (37)
and the averages ,ui* :
38
ﬂll a+ b ( )
If o1 =PBop=-=Pos =Py, we have B, =p;,
. = S0 and
* * B a, b a _ * =8
mw»—ﬁ;b3<>%% L 0ST < B (39)

The averages of multifold returning flows 61»
according to [3, 4] equals to

b
1-

Q = (; +ci117) (40)

where ¢; is found according to (17).

Note. The reverse transformation A*:w =6/, has the

meaning if v < f, ,i.e. when v, / B, <1.

Practical implementations

Example 1: The control scheme according to Fig. 2
with  the error probabilitiess «a; =a, =a=0,08,

By =p,=4=0.23. Parameters of densities a=b=2,
when v, =0,1 and v, =0,6.

Modeling results:
1 3 2x
==l-—=1x ( CIn=--1D]f,
Heo 7 { (CAg) X xo }

1 3 2}’0 a0
== -D]-1j,
u {<mw[ Jume 1 -1}



g1 o~ 3
=—, :1— =—,

I—a 4 r=1=h=y

AQZVI_VOZO,S;

Xo=1+cvyg =13, x;=1+cv, =28, y,=1-pv,=0925,

y=1-p,=055; y=1l-a-£=0,69;

g(0)=48(0-0,1)(0,6—-6), uy =06, =0,35;

2,73(w —0,3077)(0,8571 — w)
(1-0,75w)*

w, =0,3077,
A: f(w)= ;

w, =0.8571 °
U, =0,6644 , @, =0,7473, g, =0,5384 ;

1563(z —0,027)(0,2727 - 7)
(1+37)*

7, = 0,027,
T: h(r)= ;

7, =0,2727°

M, =01247, 7,, =0,0939, g, =0,3215.

We receive, that in this

inequalities are valid:

case the following

To<Vy<T <@y <v < <l.

Densities f(w), g(0), h(r) are shown in Fig. 4.

40)./(@.h(D)
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Fig. 4. Densities of defectivity levels, when a=b=2, v, =0,1,
Vl = 0,6

Example 2 (two cases)

Case 2.1: The control scheme according to Fig. 3
(localized returning flows). The scheme of errors
according to Fig. 3 (localized returning flows). The error
probabilities og=a,=a=0.2, B=p=p=04,

ﬁl* = ﬂ; = ﬂ* :%. Parameters a=b=1 (uniform density),
VO :0 and Vl :1.

Modeling  results:

ﬂOZO,Sa
ﬁ_,lzzﬂozzi; g(@=1,when 0<0<1, 1, =05,

y=04, c=1,

10

T :h'(z7)=2, when 0<7 <05, 4 =025,
Q, =0,5625;
T, :hy(t,)=4, when 0<7,<025, u =0]25,

Q, =0,3906.

Densities g(0), h*(r*) s h; (z'; ) are shown in the
Fig. 5.

Case 2.2 (for comparison with the case 2.1): The
control scheme according to Fig. 2 when we substitute the
density g(@) instead of the f(w), and the density #(z) —

density #,(r,) instead of the g(6#) (see [1] Fig. 3) —i.e.
we apply the two-stage scheme of direct transformation T},
T,.

The parameters of the error probability and the
density are analogous as in the case 2.1: =0,2, f=04,

a=b=1, vy =0, v, =1 (the density g(f) as in the case
2.1).
Modeling results:
F=7=05 f=p=t c=a-1-3;
7 ERgit] 12 4 ) ﬁz )
1 2

T, :h(r)=

= = ,0<7r<
B+cr)’ (1+1)°
g =a+yuy=04;

m =l(é1ni_—1)=o,3863, h0)=2, h(1)=0,5;
cy B

1 4
T, hy(7,)=—= = ,
2 () Br1+T1,)°  (1+31,)

@ =a+ypy =03;

<r,<1,

1,1
_?(1—/72

hy(1)=0,25.

1
1n?-1)=o,2828, hy(0)=4,

Densities A(zr) and h,(7,) are shown in Fig. 5.

N 2(0).5; (z;),h; (z]),i =1,2. X
LB ho=b=3
3 \\
V(e 4 s
IR AN
RG] . . g(0)
0 Bi Bl | 1 1o
0 02 04 0,6 0,8 .1

Fig. 5. Densities of defectivity levels, when a=b=1, v, =0,

v =1



It is obvious, that according to the values of the 4. It is obvious, that in order to select the control scheme

defectivity level average s, and s the transformation 1IN @ reasonable manner, it is purposeful to create the
function of losses, which would estimate the maintenance

Ty, T, is more efficient than the transformation 7; , 7, , costs of control and repair operations and the losses due to
but the maintenance of the localized repair operations R, , defectivity levels of accepted flows, when various
probabilities of real errors are present. When minimizing
this function under the defined constraints it is possible to
of rejected product flows g; into the manufacture G (as select the scheme which would have the minimal total

shown in Fig. 2). losses.

R, (as shown in Fig. 3) is more expensive than the return
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the manufacture. I11. 5, bibl. 8 (in English; summaries in English, Russian and Lithuanian).

P. Kaabnioc, J. Jiinykac. [IpumeHenue 00001eHHOro 0eTa pacnpeesieHusl B MOAeJIIX KOHTPOJISI KayecTBa // DJIEKTPOHUKA U
yjiekTporexnuka. — Kaynac: Texnomnorus, 2007. — Ne 1(73). — C. 5-12.

IMpencraBieHbl MaTEMATHYECKAE MOEINA OCHOBHBIX BEPOSTHOCTHBIX XapPaKTEPHCTHK MHOTOCTYHEHYATOTO CIUIOLIHOTO KOHTPOJIS
MEXaTPOHHBIX HM3IENHUI, KOTJa JUIS ONMHCAHHs YPOBHSA Ne(QEKTHOCTH NMpHMEHSETCs 00o0menHoe Oeta pacnpexaeneHne. O0CyKaaloTcs
HPUHIHIEL TOA00pa BEPOSTHBIX paclpeeleHHH 110 SMIMPUIECKUM JaHHBIM Ha OCHOBE ceMelcTBa KpHBHIX JxoHcoHa mim [Inpcona.
AHanu3upyloTcs IBE CTPYKTYpHl CXeM KOHTpOJSL: HepBas, KOTAa MOTOKM 3a0pakoBaHHBIX M3JEIHH BO3BPAIAIOTCS HA
NPOU3BOJCTBEHHBIH IIpoLecc, M BTOpas, Korjaa 3a0pakoBaHHBIE M3[EIHsS PEMOHTUPYIOTCS HEIOCPEACTBEHHO II0Cie KaXIOil CTYNEeHU
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KOHTPOJIS Ha JIOKAJIN3UPOBAHHBIX PEMOHTHBIX onepanusax. [losydeHHbIe MaTeMaTHYeCKHe MOJICIN YYUTHIBAIOT BIMSHUE BEPOSITHOCTEH
OUIMOOK IEpPBOr0 M BTOPOrO pOAa, BO3HUKAOMIMX INPH KIAacCU(PUKANMK W3IENIUA BO BpeMs KOHTPOJS M BO BpEMs PEMOHTA.
D¢ eKTUBHOCTD KOHTPOIIS ACPEKTHOCTH, CPEIHUX 3HAUCHUH YPOBHS JE()EKTHOCTH a TAK)KE BEIUYMH BO3BPATHBIX OTOKOB B HYKHBIX
TOYKaX CXEMBbl CIUIOIIHOrO KOHTpoid. IToka3aHo, YTO cxeMa KOHTPOJIS C JIOKAJIBHBIMM PEMOHTHBIMH ONEpalsiMH (yHKIHOHUPYET
Oonee 3¢ (eKTHBHO, HO TaKXe SABIsETCA U Oosee moporocrosmieid. M. 5, 6ubm. 8 (Ha aHTIHMHCKOM sI3bIKe; pedepaTsl Ha aHTJIUHCKOM,
PYCCKOM H JTUTOBCKOM $3.).

R. Kalnius, D. Eidukas. Apibendrinto beta skirstinio taikymas kokybés kontrolés modeliuose // Elektronika ir elektrotechnika. —
Kaunas: Technologija, 2007. — Nr. 1(73). — P. 5-12.

Sudaryti mechatroniniy gaminiy istisinés daugiapakopés kontrolés pagrindiniy tikimybiniy charakteristiky matematiniai modeliai,
kai defektingumo lygiui apraSyti taikomas apibendrintas beta skirstinys. Aptarti pagrindiniai tikimybiy skirstiniy parinkimo pagal
empirinius duomenis principai, paremti DZonsono ir Pirsono kreiviy Seimomis. Analizuojamos dvi kontrolés schemy struktiiros: kai
iSbrokuoty gaminiy srautai grazinami i gamybos procesa ir kai iSbrokuoti gaminiai remontuojami lokalizuotose remonto operacijose po
kiekvienos kontrolés pakopos. Matematiniai modeliai jvertina gaminiy klasifikavimo pirmos ir antros riiSies klaidas kontrolés ir remonto
operacijose, o kontrolés efektyvumas vertinamas pagal transformuotus defektingumo lygio tankius, defektingumo lygio vidurkius ir
griztamyjy srauty dydzius reikiamuose kontrolés schemos taskuose. Parodyta, kad kontrolés schema su lokalizuotomis remonto
operacijomis funkcionuoja efektyviau, taciau praktiskai jgyvendinti tokia schema kainuoja brangiau nei schema, kurioje visi griztamieji
gaminiy srautai grazinami | gamyba. I1. 5, bibl. 8 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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