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Introduction

The aim of “Blind Source Separation” (BSS) is to re-
cover mutually independent unknown source signals only
from observations obtained through an unknown linear
mixture system. Given observation matrix

     NMN,,  Cxx 1X the general linear instan-

taneous mixing signal model is

VASX  , (1)

where N is the number of available samples, M denoting
the number of observations (output dimension), K denoting
the number of sources (input dimension),

     NKN,,  Css 1S contains the corresponding

latent (hidden) components which represent unknown

source signals,
KMCA represents the unknown

mixing matrix describing the input-output relation and
NMCV is a matrix of additive noises which are mutu-

ally uncorrelated and are also uncorrelated with the sour-

ces. The goal is therefore to estimate both unknowns ( A
and S ) from the measurements X and in principle all
there is to do is to invert the mixing process

WXS ˆ , (2)

where
-1AW  is called the separating matrix. The ge-

neral BSS problem requires A to be an KM  matrix

of full rank, with KM  (i.e. there are at least as many
mixtures as independent sources). In most algorithmic
derivations, an equal number of sources and sensors is
assumed. As resolutions of the problem, many methods
have been proposed (see [1] for instance). The approximate
joint diagonalization of a set of real m-square symmetrical
correlation matrices (second-order statistics) is an essential
tool in blind source separation algorithms [2], [3]. Given a

matrix set  KMMM ,,, 21 M , where

NN
k

CM , Kk 1 , the approximate joint diago-

nalization problem seeks a nonsingular diagonalizing

matrix
NN CW and K associated diagonal matrix

NN
K2

CΛΛΛ ,,,1  (which are usually not of

interest in the context of BBS) such that the following
common structures are best fitted:

TWΛWM kk  , Kk 1 . (3)

The “goodness of fit” is evaluated by some criterion

(cost or objective function). It is proved, that matrix W is

closely related to
-1A – inverse of mixture matrix A . The

existing algorithms for approximate joint diagonalization
are generally divided into two categories: orthogonal and
nonorthogonal diagonalizations. In BSS, using orthogonal
diagonalization, observations are prewhitened so that they
are uncorrelated and have unity variance [1]. However, due
to the limitations of orthogonal joint diagonalization, the
nonorthogonal joint approximate diagonalization (JAD)
has received increasing attention in recent years [4], [5].

In this paper the efficacy of the BSS algorithm based
on nonlinear phase-space reconstruction and nonorthogo-
nal joint approximate diagonalization of several time-
delayed covariance matrices [6] is investigated in the case
that the observation noise exists. The algorithm is appli-
cable for mixed pseudoperiodic chaotic signals and another
sources, that have temporal structures and non-vanishing
temporal correlation.

Description of the algorithm

Briefly algorithm can be characterized as follows.
Given a group of M sensor signals with N samples

     NMN,,  Cxx 1X a reconstructed phase

space matrix [7]
 kX , M,,k 1 with d rows and

 1 dNL columns (called a trajectory matrix) for

the mixture received by
thk sensor is defined by
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X , (4)
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where d – the embedding dimension and  – time delay.

A high-dimensional system, i. e. overembedding at 1
is preferable. For M sensors, we obtain M embedding ma-
trices generally with the same values for  and d. Using

the ith , d,,i 1 rows of the embedding matrices
 kX

we can form a data matrix for all sensors for every embed-
ding dimension, i. e.
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X , (5)

where d,,i 1 .

The time-delayed covariance matrixes
MMC jR has

the form

T
1jj

L



 XXR 1

1

1
, (6)

where 11  d,,j  .

Given a set of time-delayed covariance matrixes

 j,,, RRR 21R , where
MMC jR , the goal

of a joint diagonalization algorithm is to find a diagonali-

zing matrix
MMC U , called separating matrix in BSS,

so that the matrices  1,,1,  djT
j UUR are as

diagonal as possible. In this work the numerical algorithm
FFDIAG (Fast Frobenius Diagonalization) [5], [8] as itera-
tive scheme to approximate the solution of the following
optimization problem

  


 
 

1

1

2

V MM
min

d

j lk
kl

T
jUUR

R
(7)

are used. The matrix of source signals is estimated as

UXS ˆ (8)

in which each row represent a separate signal.

Numerical results

The proposed algorithm was applied to artificially mixed
synthetic signals. In the first experiment two mixed x com-
ponents of the Rossler system, defined by
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(9)

with parameters a = 0,398; b = 2; c = 4 and a = 0,2; b =
0,2; c = 4,6 respectively were considered. The embedding

dimension of the reconstructed phase space 60d and

time delay 1 for mixed signals were defined and 2000
samples were used in this experiment. In the second
experiment two mixed signals of the Mackey-Glass diffe-
rential-delay equation, defined by

 
 

 tbx
dtx
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1
, (9)

were used. The two sequences are generated with the same

parameters (a = 0,2; b = 0,1; c = 10 and 30d ) but with
different integrating conditions. The equation is solved
numerically by using the algorithm described in [9]. The
embedding dimension of the reconstructed phase space

50d and time delay 1 for mixed signals were
defined. The lenght of sequences – 1600 points. As men-
tioned above it is assumed that the number of sensors M is
equal to the number of signals K. That is, two sensors are
used and the coupling (mixing) matrix in both cases is
given by











11,1

0,51
A . (10)

First, the additive noise  tn is modeled as a stationa-

ry, temporally white, zero-mean random process indepen-
dent of the source signals, i. e. the covariance matrix of the
noise satisfying:

    Inn  2T)(  ttE , (11)

where E is the expectation operator,
2 denotes the

variance of the noise,   – the Kronecker delta, and I
denotes the identity matrix. In this case adopting delayed
correlation matrices resolves the influence of the noise,
whereas the autocovariance of noise equals to zero for time

lag 0 . In a simulation environment (the true matrix

A is known) the performance of blind separation can be
characterized by one single performance index defined by
[10]

 
 

2

2
diag

P

P-P
P J , (12)

where the permutation matrix WAP  ,
MMC P

and  denotes the Frobenius norm of a matrix. Note that

 PJ is non negative and if
-1AW    0PJ holds.

Fig. 1 shows that the nonorthogonal joint approximate
diagonalization algorithm is robust to the white Gaussian
noise – it provides a perfect separation for signal to noise
ratio (SNR) up to 5 dB. Since the separated signals remain
noisy, they must be enhanced at postprocessing stage. It
should be noted that nonlinear noise reduction, as a prep-
rocessing (before blind separation), can adversely affect
the total performance of the signals separation, since the
errors, committed in this preprocessing stage, lead to the
greater errors in the joint diagonalization stage. As the
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criterion that evaluates the total performance of the separa-
tion and denoising of the signals the relative mean square

error  between the normalized original signal matrix S
and estimated signal matrix Z is used

2

2

Z

Z-S
 . (13)

Separated noisy signals are denoising by applying
nonlinear noise reduction based on the local phase space
singular value decomposition method [11], [12], when the

covariance matrix nR is defined as
T
nnn

N
SSR

1

1


 ,

where nS – the centered neighborhood nN matrix for

every the reference point ns of reconstructed phase space

and N – the number of neighbors in nN . The embedding

dimension 60d (i. e. overembedding), time delay

1 and the first 60 nearest neighbors for each reference
phase space point were used. For large amount of noise it
becomes a nontrivial problem to identify the correct
neighbors, whereas all neighborhoods merge. As a result
the  is considerably higher at SNR = 5 dB (Fig. 1).
Therefore, for large amounts of noise the nonlinear noise
reduction based on the global phase space singular value
decomposition method [11], [12] is preferable.

Fig. 1. The performance index  PJ and the relative mean

square error  versus white Gaussian noise level for separation
the a) Rossler signals and b) Mackey-Glass signals

Further, the case for chaotic data with colored noise
generated from a three-order autoregressive process
[AR(3)] is studied

nnnnn wwww   321 6,05,08,0 , where

 1,0~ Nn follows the normal distribution. Fig. 2

shows that blind source separation performance remains
approximately at the same level, but nonlinear noise reduc-
tion error is lower.

Fig. 2. The performance index  PJ and the relative mean

square error  versus colored noise level for separation the a)
Rossler signals and b) Mackey-Glass signals

Conclusions

In this paper the BSS algorithm based on nonlinear
phase-space reconstruction, nonorthogonal joint
approximate diagonalization of several time-delayed cova-
riance matrices and nonlinear noise reduction are investi-
gated by applying them to noisy mixed pseudoperiodic
chaotic Rossler signals and Mackey-Glass signals. The
time-delayed covariance matrices are estimated correspon-
ding to the data matrix of first embedding dimension and
data matrix of the every another embedding dimension. A
high-dimensional system, i. e. overembedding, at the no-
northogonal joint approximate diagonalization stage and at
the postprocessing – nonlinear noise reduction stage is
used.

Simulation results show that algorithm is able to sepa-
rate mixed pseudoperiodic chaotic or similar to pseudope-
riodic signals, which have temporal structures and each
source has non-vanishing temporal correlation, in the pre-
sence of a white Gaussian noise or stationary colored noise
up to SNR=(5–10) dB.
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The blind source separation (BSS) algorithm based on nonlinear phase-space reconstruction, nonorthogonal joint approximate dia-
gonalization (JAD) of several time-delayed covariance matrices and nonlinear noise reduction is investigated by applying it to noisy
mixed pseudoperiodic chaotic Rossler signals and Mackey-Glass signals. The time-delayed covariance matrices are estimated corres-
ponding to the data matrix of first embedding dimension and data matrix of the every another embedding dimension. Simulation results
show that algorithm gives a good performance in the separation and denoising of mixed noisy signals in the presence of a white Gaus-
sian noise or stationary colored noise up to SNR=(5–10) dB and can be applied to separation signals, that have non-zero autocorrelation
function for a non-zero time lag, i. e. when analysis based on the second-order statistics (SOS) is applicable. Ill 2, bibl. 12 (in English;
summaries in English, Russian and Lithuanian).

К. Пукенас. «Cлепое разделение» смеси псевдопериодических хаотических сигналов при наличии шумов //
Электроника и электротехника. – Каунас: Технология, 2009. – № 3(91). – C. 31–34.

Исследуется алгоритм «слепого разделения источников» (Blind Source Separation – BSS), основанный на реконструкции 
фазового пространства, совместной приблизительной неортогональной диагонализации нескольких ковариационных матриц 
сигналов реконструированного фазового пространства, определенных с использованием матрицы данных первой меры 
и матрицы данных каждой другой меры фазового пространства, а также нелинейной фильтрации. Путем анализа смеси 
хаотических сигналов Росслера и сигналов Маккей-Гласс показывается, что алгоритм обеспечивает хорошее разделение и 
фильтрацию сигналов при наличии белого или стационарного цветного шума при отношении сигнал-шум выше (5–10) дБ и 
может применяться для разделения псевдопериодических хаотических или им подобных сигналов, когда каждый источник 
обладает ненулевой автокорреляционной функцией при ненулевом сдвиге, т. е. когда применимы статистики второго порядка.
Ил. 2, библ. 12 (на английском языке; рефераты на английском, русском и литовском яз.).

K. Pukėnas. Triukšmingų pseudoperiodinių chaotinių signalų atskyrimas „akluoju metodu“ // Elektronika ir elektrotechnika. –
Kaunas: Technologija, 2009. – Nr. 3(91). – P. 31–34.

Tiriamas “aklo šaltinių atskyrimo” algoritmas fazinės erdvės rekonstrukcijos, bendros apytikslės kelių rekonstruotos fazinės erdvės
signalų kovariacijos matricų neortogonalios diagonalizacijos ir netiesinės filtracijos pagrindu. Kovariacijos matricos sudaromos pirmo
rekonstruotos fazinės erdvės matmens duomenų matricos ir visų kitų rekonstruotos fazinės erdvės matmenų duomenų matricų pagrindu.
Atlikti tyrimai su sumaišytais triukšmingais chaotiniais Rosslerio signalais ir Mackey-Glass signalais parodo, kad algoritmas įgalima
gerai atskirti ir filtruoti signalus esant baltajam Gauso arba stacionariajam spalvotam triukšmui iki santykio signalas-triukšmas (5–10)
dB ir gali būti naudojamas pseudoperiodiniams chaotiniams bei į juos panašiems signalams atskirti, kada kiekvienas atskiriamas šaltinis
turi nenulinę autokoreliacinę funkciją prie nenulinio postūmio, t. y. kada galima taikyti antros eilės statistikas. Il. 2, bibl. 13 (anglų kal-
ba; santraukos anglų, rusų ir lietuvių k.).


