
55

ELECTRONICS AND ELECTRICAL ENGINEERING
ISSN 1392 – 1215 2009. No. 5(93)

ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY

T 120
SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Performance Evaluation of an Experimental Grid Computer using MPI
Applications

I. Ungurean, S. G. Pentiuc, V. Gaitan
Department of Computers, Faculty of Electrical Engineering and Computer Science,
Stefan cel Mare University of Suceava, Romania, phone: +40-230-520277; e-mails: ioanu32@yahoo.com,
pentiuc@eed.usv.ro, gaitan@eed.usv.ro

Introduction

In this paper we will present a discussion about
parallel programs performance [1][2]. These programs
were developed using the OpenMPI[3][4] implementation
of the Message Passing Interface (MPI)[5] standard and
were run on an experimental grid computer made of 7
desktop computers. These test applications measure
execution times for applications implementing the
Jacobi[6] approximation for a linear system of equations.
The output of the test application is the processing speed,
measured in MFlops and obtained using more methods in
order to test more aspects of inter-process communication.
The final purpose of this paper is to see increasing
performance in a Grid [7] by increasing the number of
computing nodes.

A GRID is a hardware and software infrastructure
that provides consistent access to computing capabilities.
In fact the main idea of the GRID is developing a system
in which access to computing resources is supposed to be
as easy as accessing electrical power resources. One of the

remarkable things in the electrical infrastructure is that it
does not require knowing the electricity generator location
and details of network infrastructure systems.
Unfortunately this goal is not yet fully achieved. A GRID
architecture is structured on several levels, each level
having a specific function. In general the highest level
targets the user. In this work tests were performed for
performance testing of parallel programs on an
experimental grid. The experimental grid is made of
computers connected using Ethernet networks of 100Mbit
and 1Gbit.

The experimental grid

The experimental grid is composed of 7 computers,
one representing the server and other 6 nodes the
computing nodes. On each computer Scientific Linux 5.0
is installed as the operating system, Globus Toolkit [8] and
OpenMPI packages (representing an open-source
implementation of the MPI standard).

Fig. 1. Architecture of experimental grid

56

The architecture of the experimental GRID is
presented in Fig. 1. The GRID contains two swhiches (one
of 100Mbps and one of 1Gpbs). These two swhiches are
connected to all nodes of the GRID. In this way two
networks are formatted, one can be used for administration
and one can be used for implementation and execution of
MPI programs. Each node has associated two hosts (eg
pc101 and gpc101) which correspond to each network.
Nodes are using private classes of IP addresses and the
server has the “grid203.eed.usv.ro” hostname and public IP
Address.

Hardware configuration of computers used for the
experimental GRID is:

• Processor: AMD Athlon (tm) XP 2000 +, 1.66 Ghz;
• RAM: 64MB.

Determination of processing speed

The Jacobi method is an algorithm in linear algebra
for determining the solutions of a system of linear
equations with largest absolute values in each row and
column dominated by the diagonal element.

To determine the processing speeds of the
experimental GRID the Jacobi iterations [6] for
approximation of the solution for a system of linear
equations were implemented. The applications will solve
Laplace equation in two dimensions with finite difference.

Nxn system of equations can be represented as a grid
(as seen in

Fig. 2). Any numerical analysis will show that the
iteration in which a point from the grid is replaced with
average of neighbors will achieve an approximation for the
solution of the Laplace equation. There is one last detail:
the replacement of the grid with the average values of
around only applies to the inside, the values for boundary
point is unchanged. Since the values are replaced with the
average values from around, this method is called relaxed.
You can also define a convergence condition, but for the
determination of processing speed the application will
execute a fixed number of iteration.

For simplicity we consider an example with a grid of
8x8 on 3 processors.

Fig. 2. Grid example for a 8x8 system of equations on 3
processors

This method is very weak but is used because of its
simplicity. We develop a few applications that implement
this method using different techniques for the
communication between processes (which are technically
defined in the MPI standard).

The MPI_Wtime function is used in order to measure
execution time in an MPI application. This function returns
a double value, which represents the time passed from an
arbitrary point in the past. If the value for
MPI_WTIME_IS_GLOBAL attribute is set to true then the
value returned by this function is synchronized to all
processes from MPI_COMM_WORLD.

Jacobi method using MPI_Send / MPI_Recv operations

The Jacobi method for a problem size of 8x8 was
implemented in this example. For communication were
used MPI_Send and MPI_Recv functions. Also the
solution is given for exactly 250 iterations.

The results are given (in MFlops) for execution of
2.36 processes on the same node and 6 different nodes.
It can be noted that if the number of nodes increases the
performance does not increase significantly. This can be
explained by the fact that many communication operations
are performed, operations which run much slower than the
computing operations performed by each task.

0

0.5

1

1.5

2

2.5

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 3. Results for implementing Jacobi method using MPI_Send
/ MPI_Recv operations

Jacobi method using MPI_Sendrecv operations

In this section are presented results of an
implementation of the Jacobi method which use the
MPI_Sendrecv function. This function carries out a data
exchange between two processes. A process calling this
function remains blocked until the message is transmitted
and another message is received. The results are given for
application execution on the same node or different 6
nodes.

It can be seen that the performance differences are not
very high between this case and the case where used
MPI_Send and MPI_Recv functions for communication
between processes.

57

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 4. Results for implementing Jacobi method using
MPI_Sendrecv operations

Jacobi method using non-blocking operation

This version uses the non-blocking communication
operations for sending and receiving messages. In this
version, the transmission is announced first allowing the
use of rendezvous protocols for receiving data the by the
recipient process and decreasing the synchronization cost
(this can not be guaranteed). The results are given for
application execution on the same node or different 6
nodes.

0

0.5

1

1.5

2

2.5

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 5. Results for implementing Jacobi method using non-
blocking operation

Jacobi method using MPI_Rsend function

In a simple Jacobi loop at the end of each iteration
the MPI_Allreduce function can be used to test the solution
convergence. This provides a synchronization point in the
program. The current example uses this synchronization to
allow the use of routine MPI_Rsend. In this case, the
reception (MPI_Isend) is posted before the point of
synchronization and transmission (MPI_Rsend) is posted
after the synchronization. The results are given for
application execution on the same node or different 6
nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 6. Results for implementing Jacobi method using
MPI_Rsend function

Jacobi method using MPI_Irsend function

This example is similar with the previously one, the
only difference being that instead of MPI_Rsend function
it is using MPI_Irsend function (this function
implementing a non-blocking operation for data
transmission). The results are given for application
execution on the same node or different 6 nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 7. Results for implementing Jacobi method using
MPI_Irsend function

Jacobi method using overlap of calculations and
communications

In this example the calculations are divided in two
parts: one part that needs data from other processors and
the other part that does not need. The part that is
independent of other processes is the domain (relative to
each process) and the part which needs external data is the
border. Communication is switched on, is done for data
communication from the inside, ending the communication
and made calculations for the border. This will produce an
overlap of calculations and communications. The results
are given for application execution on the same node or
different 6 nodes.

58

0

0.5

1

1.5

2

2.5

2 3 4 5 6
Number of processes

P
ro

c
e
s
s
in

g
s
p

e
e
d

(M
fl

o
p

s
)

On a single node On 6 nodes

Fig. 8. Results for implementing Jacobi method using overlap of
calculations and communications

Conclusions

Following the mentioned tests, some differences
between parallel programs performances can be noted
given the different communication techniques.
Communication between parallel applications is a very
important issue, as shown in the tests that were made by
the effect it has on global performance. The tests are a real
proof of Amdalh’s Law [9]: performance does not rise two
times if the number of nodes is doubled.

References

1. Foster Ian. Designing and Building Parallel Programs. –
Addison-Wesley. – 1995.

2. Clément F., Martin V., Vodicka A., Di Cosmo R., and
Weis P. Domain decomposition and skeleton programming
with OCamlP31 // Parallel Comput.– Sep. 2006. – Vol. 32,
No. 7. – P. 539–550.

3. Open MPI: Open Source High Performance Computing
[interactive]. Accessed at: www.open-mpi.org.

4. Rainer Keller, Shiqing Fan, and Michael Resch. Memory
Debugging of MPI-Parallel Applications in Open MPI //
ParCo2007. – September 4–7, 2007. – Julich, Germany.

5. The Message Passing Interface (MPI) standard [interactive].
Accessed at: http://www-unix.mcs.anl.gov/mpi/. – 2000.

6. Londre T. and Rhee N. H. Numerical Stability of the
Parallel Jacobi Method // SIAM J. Matrix Anal. Appl. – Apr.
2005. – Vol. 26, No. 4. – P. 985–1000.

7. Ian Foster, Carl Kesselman. The Grid – Blueprint for a
new computing infrastructure. – Morgan Kaufmann. – 1999.

8. Park J. H. and Dai H. K. Reconfigurable hardware solution
to parallel prefix computation // J. Supercomput. – Jan.
2008. – Vol. 43, No. 1. – P. 43–58.

9. Hill M. D. and Marty M. R. Amdahl's Law in the
Multicore Era // Computer. – Jul. 2008. – Vol. 41, No. 7. –
P. 33–38.

10. Montella R., Agrillo G., Mastrangelo D., and Menna M.
A globus toolkit 4 based instrument service for
environmental data acquisition and distribution //
Proceedings of the Third international Workshop on Use of
P2p, Grid and Agents For the Development of Content
Networks. – Boston, MA, USA. – June 23, 2008. – P. 21–
28.

Received 2009 02 15

I. Ungurean, S. G. Pentiuc, V. Gaitan. Performance Evaluation of an Experimental Grid Computer using MPI Applications //
Electronics and Electrical Engineering. – Kaunas: Technologija, 2009. –No. 5(93). – P. 55–58.

A discussion about parallel programs performance is presented. These programs were developed using the OpenMPI
implementation of the Message Passing Interface (MPI) standard and were run on an experimental grid computer made of 7 desktop
computers. These test applications measure execution times for applications implementing the Jacobi approximation for a linear system
of equations. The output of the test application is the processing speed, measured in MFlops and obtained using more methods in order
to test more aspects of inter-process communication. The final purpose is to see increasing performance in a Grid by increasing the
number of computing nodes. Ill. 8, bibl. 10 (in English; summaries in English, Russian and Lithuanian).

И. Унгуреан, С. Г. Пентюс, В. Гайтан. Оценка производительности экспериментальной сети компьютеров, используя
MPI программы // Электроника и электротехника. – Каунас: Технология, 2009. – № 5(93). – C. 55–58.

Приведен анализ производительности параллельно работающих программ. Программы созданы используя «Open MPI» –
версию «Message Passing Interface» (MPI) открытого кода. Они работали в экспериментальной сети из 7-и компьютеров.
Программы измеряли продолжительность Jacobi аппроксимации системы линейных уравнений. Скорость обработки
информации измерялась по числу операций подвижной запятой. Стремясь протестировать как можно больше аспектов
процессных коммуникаций, для измерений использовалось несколько рвзличных методов. Целью было связать
производительность сети с количеством ее узлов. Ил 8, библ 10 на английском языке; рефераты на английском, русском и
литовском яз.).

I. Ungurean, S. G. Pentiuc, V. Gaitan. Eksperimentinio kompiuterių tinklo našumo įvertinimas naudojant MPI programas //
Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 5(93). – P. 55–58.

Pateikta lygiagrečiai veikiančių programų našumo analizė. Programos buvo sukurtos naudojant „OpenMPI“ – atvirojo kodo
„Message Passing Interface“ (MPI) standarto versiją. Jos buvo vykdomos naudojant eksperimentinį septynių kompiuterių tinklą.
Programos matavo tiesinės lygčių sistemos Jakobio aproksimacijos trukmę. Informacijos apdorojimo sparta matuota pagal slankiojo
kablelio operacijų skaičių. Siekiant testuoti kuo daugiau procesinių komunikacijų aspektų, matavimui taikyti keli skirtingi metodai.
Tikslas – susieti tinklo našumą su jo mazgų skaičiumi. Il. 8, bibl. 10 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

