ELECTRONICSAND ELECTRICAL ENGINEERING

I SSN 1392 — 1215

2009. No. 5(93)

ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY

T 120

SISTEMU INZINERIJA, KOMPIUTERINES TECHNOL OGIJOS

Performance Evaluation of an Experimental Grid Computer using MPI

Applications

|. Ungurean, S. G. Pentiuc, V. Gaitan

Department of Computers, Faculty of Electrical Engineering and Computer Science,
Sefan cel Mare University of Suceava, Romania, phone: +40-230-520277; e-mails: ioanu32@yahoo.com,

pentiuc@eed.usv.ro, gaitan@eed.usv.ro
Introduction

In this paper we will present a discussion about
paralel programs performance [1][2]. These programs
were developed using the OpenMPI[3][4] implementation
of the Message Passing Interface (MPI)[5] standard and
were run on an experimental grid computer made of 7
desktop computers. These test applications measure
execution times for applications implementing the
Jacohi[6] approximation for a linear system of equations.
The output of the test application is the processing speed,
measured in MFlops and obtained using more methods in
order to test more aspects of inter-process communication.
The fina purpose of this paper is to see increasing
performance in a Grid [7] by increasing the number of
computing nodes.

A GRID is a hardware and software infrastructure
that provides consistent access to computing capabilities.
In fact the main idea of the GRID is developing a system
in which access to computing resources is supposed to be
as easy as accessing electrical power resources. One of the

remarkable things in the electrical infrastructure is that it
does not require knowing the electricity generator location
and details of network infrastructure systems.
Unfortunately this goal is not yet fully achieved. A GRID
architecture is structured on several levels, each level
having a specific function. In genera the highest level
targets the user. In this work tests were performed for
performance testing of parallel programs on an
experimental grid. The experimental grid is made of
computers connected using Ethernet networks of 100Mbit
and 1Gbit.

The experimental grid

The experimental grid is composed of 7 computers,
one representing the server and other 6 nodes the
computing nodes. On each computer Scientific Linux 5.0
isinstalled as the operating system, Globus Toolkit [8] and
OpenMPI packages (representing an open-source
implementation of the MPI standard).

Hostname: pelOl, gpelil

erid203 eed usv.ro
Switch 1Gbps

Hostname: pe 104, gpelod

Hostname: pel02, gpel 02

Hostname: pecl05, gpel05

Hostname: pel03, gpel03

Hostname: pel06, gpelOs

Fig. 1. Architecture of experimental grid

The architecture of the experimental GRID is
presented in Fig. 1. The GRID contains two swhiches (one
of 100Mbps and one of 1Gpbs). These two swhiches are
connected to all nodes of the GRID. In this way two
networks are formatted, one can be used for administration
and one can be used for implementation and execution of
MPI programs. Each node has associated two hosts (eg
pcl0l and gpcl0l) which correspond to each network.
Nodes are using private classes of IP addresses and the
server hasthe “grid203.eed.usv.ro” hostname and public IP
Address.

Hardware configuration of computers used for the
experimental GRID is:

« Processor: AMD Athlon (tm) XP 2000 +, 1.66 Ghz;
* RAM: 64MB.

Deter mination of processing speed

The Jacobi method is an algorithm in linear algebra
for determining the solutions of a system of linear
equations with largest absolute values in each row and
column dominated by the diagonal element.

To determine the processing speeds of the
experimental GRID the Jacobi iterations [6] for

approximation of the solution for a system of linear
equations were implemented. The applications will solve
Laplace equation in two dimensions with finite difference.

Nxn system of equations can be represented asa grid
(asseenin

Fig. 2). Any numerical analysis will show that the
iteration in which a point from the grid is replaced with
average of neighbors will achieve an approximation for the
solution of the Laplace equation. There is one last detail:
the replacement of the grid with the average values of
around only applies to the inside, the values for boundary
point is unchanged. Since the values are replaced with the
average values from around, this method is called relaxed.
You can aso define a convergence condition, but for the
determination of processing speed the application will
execute a fixed number of iteration.

For ssimplicity we consider an example with a grid of
8x8 on 3 processors.

9 ® Processes
[J [J
[] []
® ® Processes 2
L L
@ @
00000 OOS Processes 3

Boundary point

@ Interior point

Fig. 2. Grid example for a 8x8 system of equations on 3
processors

56

This method is very weak but is used because of its
simplicity. We develop a few applications that implement
this method wusing different techniques for the
communication between processes (which are technically
defined in the MPI standard).

The MPI_Wtime function is used in order to measure
execution time in an MPI application. This function returns
a double value, which represents the time passed from an
arbitrary point in the past. If the vaue for
MPI_WTIME IS GLOBAL attribute is set to true then the
value returned by this function is synchronized to all
processes from MPI_COMM_WORLD.

Jacobi method using MPI_Send / MPI_Recv operations

The Jacobi method for a problem size of 8x8 was
implemented in this example. For communication were
used MPI_Send and MPI_Recv functions. Also the
solution is given for exactly 250 iterations.

The results are given (in MFlops) for execution of
2.36 processes on the same node and 6 different nodes.
It can be noted that if the number of nodes increases the
performance does not increase significantly. This can be
explained by the fact that many communication operations
are performed, operations which run much slower than the
computing operations performed by each task.

N
wn
°

>~

N

=
o
.

-
L g

o
wn

Processing speed (Mflops)

3 4 5
Number of processes

—e—On a single node —=— On 6 nodes

Fig. 3. Results for implementing Jacobi method using MPI_Send
/ MPI_Recv operations

Jacobi method using MPI_Sendrecv operations

In this section are presented results of an
implementation of the Jacobi method which use the
MPI_Sendrecv function. This function carries out a data
exchange between two processes. A process calling this
function remains blocked until the message is transmitted
and another message is received. The results are given for
application execution on the same node or different 6
nodes.

It can be seen that the performance differences are not
very high between this case and the case where used
MPI_Send and MPI_Recv functions for communication
between processes.

=
o

I
N

i
N}
/

/

é
|

Processing speed (Mflops)

o
o

o
IS

o
N

Processing speed (Mflops)
o ’

o

3 5

N

4
Number of processes

—e—On a single node —=— On 6 nodes

g
IS

=
N

'7

o
o

e

o
o

I
~

|

o
N
*

o

3 5

N

4
Number of processes

—e—On a single node —=— On 6 nodes

Fig. 4. Results for implementing Jacobi
MPI_Sendrecv operations

method using

Jacaobi method using non-blocking oper ation

This version uses the non-blocking communication
operations for sending and receiving messages. In this
version, the transmission is announced first alowing the
use of rendezvous protocols for receiving data the by the
recipient process and decreasing the synchronization cost
(this can not be guaranteed). The results are given for
application execution on the same node or different 6
nodes.

[hed
wn

;

N

N
L

=
o

/

Processing speed (Mflops)

Processing speed (Mflops)
o
(6]

3 4 5
Number of processes

—e—On a single node —=— On 6 nodes

Fig. 5. Results for implementing Jacobi method using non-
blocking operation

Jacobi method using MPI_Rsend function

In a smple Jacobi loop at the end of each iteration
the MPI_Allreduce function can be used to test the solution
convergence. This provides a synchronization point in the
program. The current example uses this synchronization to
alow the use of routine MPI_Rsend. In this case, the
reception (MPI_lsend) is posted before the point of
synchronization and transmission (MPI_Rsend) is posted
after the synchronization. The results are given for
application execution on the same node or different 6
nodes.

57

Fig. 6. Results for
MPI_Rsend function

implementing Jacobi method using

Jacobi method using MPI_Irsend function

This example is similar with the previously one, the
only difference being that instead of MPI_Rsend function
it is using MPI_Irsend function (this function
implementing a non-blocking operation for data
transmission). The results are given for application
execution on the same node or different 6 nodes.

I
N

=
N
°

\
™~
I
DN

[ay

o
®

o
o

o
IS

o
)

o

3 5

N

4
Number of processes

—e—On a single node —=— On 6 nodes

Fig. 7. Results for
MPI_Irsend function

implementing Jacobi method using

Jacobi method using overlap of calculations and
communications

In this example the calculations are divided in two
parts. one part that needs data from other processors and
the other part that does not need. The part that is
independent of other processes is the domain (relative to
each process) and the part which needs external datais the
border. Communication is switched on, is done for data
communication from the inside, ending the communication
and made calculations for the border. This will produce an
overlap of calculations and communications. The results
are given for application execution on the same node or
different 6 nodes.

25 References

Foster lan. Designing and Building Paralel Programs. —

Addison-Wesley. — 1995.

2. Clément F., Martin V., Vodicka A., Di Cosmo R., and
Weis P. Domain decomposition and skeleton programming
with OCamlP31 // Parallel Comput.— Sep. 2006. — Val. 32,
No. 7. — P. 539-550.

3. Open MPI: Open Source High Performance Computing

[interactive]. Accessed at: www.open-mpi.org.

Rainer Keller, Shiging Fan, and Michael Resch. Memory

Debugging of MPI-Parallel Applications in Open MPI //

ParCo02007. — September 4-7, 2007. — Julich, Germany.

5. The Message Passing Interface (MPI) standard [interactive].

N
=

=
o
.

/

Processing speed (Mflops)
i
SN

0 T T

2 3 4 5 6
Number of processes Accessed at: http://www-unix.mcs.anl.gov/mpi/. — 2000.

On a sindle node On 6 nodes 6. Londre T. and Rhee N. H. Numerica Stability of the

— 9 - Parallel Jacobi Method // SIAM J. Matrix Andl. Appl. — Apr.

2005. —Vol. 26, No. 4. — P. 985-1000.
7. lan Foster, Carl Kesselman. The Grid — Blueprint for a
new computing infrastructure. — Morgan Kaufmann. — 1999.
8. Park J.H.and Dai H. K. Reconfigurable hardware solution
to parald prefix computation // J. Supercomput. — Jan.
2008.-Vol. 43, No. 1. — P. 43-58.

Fig. 8. Results for implementing Jacobi method using overlap of
calculations and communications

Conclusions 9. Hill M. D. and Marty M. R. Amdahl's Law in the
Multicore Era// Computer. — Jul. 2008. — Vol. 41, No. 7. —

Following the mentioned tests, some differences P. 33-38.
between parallel programs performances can be noted 10. Montella R., Agrillo G., Mastrangelo D., and Menna M.
given the different communication techniques. A globus toolkit 4 based instrument service for
Communication between parallel applications is a very environmental data acquisition and distribution //
important issue, as shown in the tests that were made by Proceedings of the Third international Workshop on Use of

P2p, Grid and Agents For the Development of Content
Networks. — Boston, MA, USA. — June 23, 2008. — P. 21—
28.

the effect it has on global performance. The tests are a real
proof of Amdalh’s Law [9]: performance does not rise two
timesif the number of nodesis doubled.

Received 2009 02 15

I. Ungurean, S. G. Pentiuc, V. Gaitan. Performance Evaluation of an Experimental Grid Computer using MPI Applications //
Electronics and Electrical Engineering. — Kaunas: Technologija, 2009. —No. 5(93). — P. 55-58.

A discussion about paradlel programs performance is presented. These programs were developed using the OpenMPI
implementation of the Message Passing Interface (MPI) standard and were run on an experimental grid computer made of 7 desktop
computers. These test applications measure execution times for applications implementing the Jacobi approximation for a linear system
of equations. The output of the test application is the processing speed, measured in MFlops and obtained using more methods in order
to test more aspects of inter-process communication. The final purpose is to see increasing performance in a Grid by increasing the
number of computing nodes. 1l1. 8, bibl. 10 (in English; summariesin English, Russian and Lithuanian).

H. Yurypean, C. I'. Ilentioc, B. I'aliTan. OneHka nNpou3BoAUTEIbHOCTH IKCIEPHMEHTAILHON CeTH KOMIILIOTEPOB, HCIOJIb3Ys
M PI nporpammel // dnekTpoHuka u d1ekTporexuuka. — Kaynac: Texnosorus, 2009. — Ne 5(93). — C. 55-58.

[puBenen ananu3 MPONW3BOJUTENBHOCTH MapaiiensHo paboraromux mporpamm. IIporpammer cozmansl uenons3ys «Open MPI» —
Bepcuro «Message Passing Interface» (MPI) ortkpeitoro kona. OHHM paboTand B 9KCHEPUMEHTAIbHOH CETH U3 7-U KOMIIBIOTEPOB.
IIporpaMmMbl U3MEPSUTH [IPOJOJDKUTENBHOCT JaCObi anmpoKCHMalnH CHCTEMbl JIMHEHHBIX ypaBHeHHH. CKOpocTh 00paGoTKH
UHGOPMALMK U3MEPsIIach 10 YMCIY ONepaluil MOABIKHOW 3ansroif. CTpemsch NPOTECTHPOBATh KaK MOXHO OOJbIEe acHeKTOB
HPOLIECCHBIX KOMMYHMKAaLMH, [UII W3MEPEHMH HCIIONB30BAJIOCh HECKOJBKO PB3JIMYHBIX MeTonoB. llenblo ObUIO CBA3aTh
TIPOU3BOIUTEIILHOCTD CETH C KOJIMYECTBOM ee y310B. M. 8, 6ubi. 10 (Ha anrimiickoM si3bIKe; pedepaTsl Ha aHIIIHMHCKOM, PYCCKOM U
JIUTOBCKOM 513.).

I. Ungurean, S. G. Pentiuc, V. Gaitan. Eksperimentinio kompiuteriy tinklo nasumo jvertinimas naudojant MPI programas //
Elektronikair elektrotechnika. — Kaunas: Technologija, 2009. — Nr. 5(93). — P. 55-58.

Pateikta lygiagreciai veikianc¢iy programy nasumo analizé. Programos buvo sukurtos naudojant ,OpenMPI* — atvirojo kodo
~Message Passing Interface” (MPI) standarto versija. Jos buvo vykdomos naudojant eksperimentini septyniy kompiuteriy tinkla.
Programos matavo tiesinés lygeiuy sistemos Jakobio aproksimacijos trukmg. Informacijos apdorojimo sparta matuota pagal slankiojo
kablelio operacijuy skaiciy. Siekiant testuoti kuo daugiau procesiniy komunikaciju aspekty, matavimui taikyti keli skirtingi metodai.
Tikslas— susieti tinklo nasuma su jo mazgu skaiciumi. 11. 8, bibl. 10 (anglu kalba; santraukos angly, rusy ir lietuviy k.).

58

