
                 ELECTRONICS AND ELECTRICAL ENGINEERING  
 ISSN 1392 – 1215                2009.  No. 6(94) 

ELEKTRONIKA IR ELEKTROTECHNIKA 
 
 

TELECOMMUNICATIONS ENGINEERING 
T180  ──────────────────────── 

TELEKOMUNIKACIJŲ INŽINERIJA 
 
 

Ant System Implementation using Microblaze: Some Preliminary 
Results on Efficiency Study 
 

R. Laptik, V. Arminas, D. Navakauskas 
Department of Electronic Systems, Vilnius Gediminas Technical University, 
Naugarduko str. 41-422, LT-03227 Vilnius, Lithuania, phone: +370 5 2744765, e-mail: raimond.laptik@el.vgtu.lt 
 
Introduction 
 

Various optimization techniques are widely used to 
solve real world problems. Field of image processing is not 
an exception – optimization techniques were successfully 
applied in terrestrial imagining [1], growing field of 
computer vision [2] and biomedical image processing [3], 
to name a few. As performance and complexity of the 
digital circuits constantly increase, complete system-on-
chip solutions [4] that are market appealing become a 
reality. 

Field-Programmable Gate Array (FPGA) is a 
semiconductor device with programmable logic. FPGAs 
are primarily used for implementation of complex logic 
schemes. They can be programmed developing logic 
circuit diagram in software supplied by device 
manufacturer, or writing code in a Hardware Description 
Language. Performance of FPGA is usually lower than that 
of Application Specific Integrated Circuits however they 
are getting more powerful and cheaper as integrated circuit 
production technology improves. Because of flexible 
development and quick upgrade, FPGAs are widely used in 
industry. 

Internal structure of FPGA can be represented by a set 
of programmable logic blocks that can carry out basic logic 
functions and by the help of reconfigurable 
interconnections, can implement various complex logic 
circuits. FPGAs logic blocks also include D-type flip-flops 
that can implement various memory elements. Large 
quantity of programmable blocks makes FPGA a perfect 
choice for system-on-chip applications. 

Xilinx – one of producers of FPGAs – also develops a 
program code for implementation (on Spartan and Virtex 
FPGA families) a software processor called 
Microblaze [5]. The availability of such software processor 
enforces quicker system development, moreover, enables 
to implement sophisticated system-on-chip 
architectures [6]. However the use of Microblaze usually 
demands FPGA of larger size and reduces advantage of 
parallel computing. Thus successful application of 
Microblaze inheritably requires a good balance between 
system complexity, functionality and speed. 

In this paper we present initial results on Microblaze 
efficiency study, while implementing Ant System on 
Virtex family FPGAs. Ant System [7] is a predecessor of 
less aggressive search algorithm – Max-Min Ant 
System [2]. Both paradigms are the part of Ant Colony 
Optimization theory [8] and multi-agent evolutionary 
optimization technique. This field is relatively new, 
nevertheless Ant Colony Optimization already proved to 
be suitable for solving real world combinatorial 
optimization problems [2, 9]. 

Most typical and widely known in combinatorial 
optimization [9] is Traveling Salesman Problem (TSP). 
TSP is usually included as a part of a testing set for 
evaluation of performance of optimization algorithms. 
Thus, in this work we present comparative results on 
implementation of Ant System and Brute Force algorithms 
that solve TSP. 

We start with the setup of Microblaze for Ant System 
implementation. First we experimentally ground the best 
use of Pseudo-Random Number Generator testing it with 
Floating Point Unit and single or double precision 
arithmetic. Then we experimentally reason the usefulness 
of eight supplemental Microblaze core units. After 
determination of suitable Microblaze configuration, we 
experimentally investigate Ant System implementation 
performance on the TSP size. 

Setup of Pseudo-Random Number Generator 

Ant System uses random numbers for selection of 
movement direction [7], thus random number generator, 
implementable on different platforms, is a necessary part 
of the system. For the implementation of Pseudo-Random 
Number Generator we select Multiply-With-
Carry algorithm [10, 11]. This algorithm, proposed by 
George Marsaglia, appears to be fast algorithm with 
uniform distribution of generated pseudo-random numbers. 

Multiply-With-Carry algorithm implementation on 
FPGA is not unique, thus resulting different Pseudo-
Random Number Generators needs to be evaluated. As a 
test framework, Monte-Carlo [12] method for number   
calculation was implemented. It is based on calculation of 

   27



the ratio of areas of quarter circle with radius  and square 
with side length . So, 

r
r   can be expressed by: 

 C

S

4
T

T
,  (1) 

here  is a number of random generated coordinates 

belonging to quarter circle;  is a number of generated 

coordinates belonging to square. 

CT

ST

This test framework let us to evaluate performance of 
different Pseudo-Random Number Generators when single 
or double precision data are used. 

In brief, there are two types of a floating point 
numbers available in Microblaze: single precision and 
double precision. Single precision number occupies 
32 bits, where 24 bits are the precision bits. Double 
precision number occupies 64 bits, where 53 bits are the 
precision bits. Thus, single precision type has 7 significant 
digits, while double precision – 16 significant digits. 
However, implementation of Multiply-With-
Carry algorithm can provide up to 9 significant digits. 
Results of performed experiments with different 
implementations are summarized in Table 1. 

Table 1. Evaluation of Pseudo-Random Number Generators 

Computing time, s 

Without FPU With FPU 
Number 

of 
iterations 

Single1 Double1 Single1 Double1 

1 000 0.15 0.20 0.13 0.20 

10 000 1.56 1.96 1.28 1.90 

100 000 15.10 19.57 12.18 19.40 

1 000 000 150.00 194.00 123.60 193.00 
1 – precision. 
 

Based on these results one can state, that computing 
time of Pseudo-Random Number Generator linearly 
depends on number of iterations, moreover: 

 The use of single against double precision requires 
about 1.3 times less time (without FPU) and about 
1.5 times less time (with FPU); 

 The use of floating point unit is advantageous; 
nevertheless it only slightly reduces the computing 
time of Monte-Carlo method. 

Aiming to check the precision requirements, Ant 
System algorithm was simulated. For that purpose standard 
PC was used. It was found that for a TSP with  cities, 
required precision for Pseudo-Random Number Generator 
was  significant digits, and for path calculation 

maximum used precision (even after 10

n

10log ( 1)n 
9 iterations) was 

less than 6 significant digits. For the further investigation 
of Ant System as Pseudo-Random Number Generator 
implementation Multiply-With-Carry algorithm in a single 
precision floating point numbers was considered. 

Setup of Microblaze 

Core of software processor Microblaze has 
supplemental units that can be used in order to speed up 
calculations. Implementation of each core unit takes some 

area on FPGA however it introduces additional commands 
or functions advantageous for specific applications: 

 Basic Floating Point Unit (FPU) provides single 
precision floating point arithmetic operations; 

 Extended Floating Point Unit add few more 
commands, e. g., square root operation; 

 Integer Multiplier Units are of two types: 32 bits 
and 64 bits, and are used for integer 
multiplication; 

 Barrel Shifter Unit provides additional shift by 
bits operations; 

 Integer Divider Unit enables to perform division 
of integer numbers; 

 Machine Status Register Unit adds two commands 
for setting and clearing machine status register; 

 Pattern Compare Unit compares provided words 
and improves performance of string and pattern 
matching. 

The usefulness of inclusion of additional core 
units (for summarized results see Table 2) was tested 
comparing time necessary to reach solution by two 
algorithms: Ant System and Brute Force method. As a 
testing framework, TSP with 14 cities was selected. This 
particular number of cities was chosen because search time 
for the solution by both approaches was almost the same. 

Table 2. Evaluation of Microblaze with supplemental core units 

Computing time, s Microblaze with  
supplemental core units Brute Force Ant System

Only core 54.0 57.0 

Basic FPU 53.0 33.4 

Extended FPU 53.0 –   

32 bits Multiplier 53.5 43.0 

64 bits Multiplier –   –   

Barrel Shifter –   –   

Integer Divider 54.0 57.0 

Machine Status Register 54.0 57.0 

Pattern Compare 54.0 57.0 

Basic FPU with 32 bits Multiplier 52.0 23.0 

 
Results presented in Table 2 indicate, that the best 

improvement in performance of Ant System 
implementation is achieved when Basic Floating Point 
Unit together with 32 bits Integer Multiplier are used. The 
usefulness of these units can also be grounded by the 
nature of Ant System algorithm, where a lot of operations 
with floating point data need to be performed in order to 
calculate distance probability and pheromone deposition. 
Collective use of Basic Floating Point Unit and 32 bit 
Integer Multiplier in comparison with no use of 
supplemental core units enables to reduce the computing 
time about 2.5 times. Performance results of Brute Force 
algorithm implementation also confirm advantage of the 
same units use, however reduction of computing time is 
comparatively small (only 4 %).  

   28



14 15 16 17 18 19

2

2.2

2.4

2.6

P
e

rf
o

rm
a

n
ce

 g
a

in
, t

im
e

s

Number of cities

These results may be justified by the fact that Brute 
Force algorithm is of extensively iterative nature with only 
few calculations per iteration. During extended 
investigation of collective use of both units (see Fig. 1) 
appeared that when the total number of cities increases 
performance gain decreases and stabilizes at 
1.9 times (cache memory limit is reached). 

Preliminary results of Ant System implementation 

Implementation of Ant System algorithm [7] was done 
on a multi FPGA DN8000K10PSX board produced by 
Dini Group [13], featuring three Xilinx Virtex-4 FPGAs. 
For implementation Microblaze V9.0 was used, provided 
together with Xilinx EDK 10.1 software. 

In solving TSP it is important to choose good initial 
parameters for Ant System as it increases the probability to 
find better solution. Parameters for probability of ant 
movement expressed by 

 
 
   

( )

 

 

 

 

      
  

ij ijk
ij

il il
l

t
p t

t
, (2) 

14 16 18 20 22 24 26
10

20

30

40

D
is

ta
nc

e

 

 
Average Best Worst

14 16 18 20 22 24 26
1.4

1.6

1.8

2

D
ev

ia
tio

n

14 16 18 20 22 24 26
0

10

20

30

A
nt

s

14 16 18 20 22 24 26
0

500

1000

T
im

e,
 s

 

Fig. 1. Performance gain of Ant System 
a) 

b) 

c) 

 

Number of d) cities  
Fig. 2. Results of Ant System implementation using Microblaze 

with pheromone level expressed by 

     best1ij ij ijt t        ,  (3) 

are chosen according to recommendations [7]:  
 pheromone sensitivity 1  ; 
 sensitivity to heuristic information 2   (in TSP, 

heuristic information is a distance between cities); 
 initial pheromone level (0) 0.2 ij . 

Number of ants  and pheromone evaporation 
coefficient 

N
  depend on number of cities and tend to 

increase as complexity of the problem increases. 
During single iteration ants are sent through all cities 

and pheromone level is renewed according to the path 
length. The shortest found path, as a solution of TSP, is 
selected after all iterations are computed. Experiments are 
repeated 1 000 times for each total number of cities. 
Inevitably with the increase of the total number of cities, 
adjustments to the number of ants  and evaporation 
coefficient 

N
  are done. Fig. 2 present summarized 

experimental results, showing travel distance (part a), 
standard deviation of a travel distance (part b), number of 
used ants (part c) and computing time (part d) dependences 
on the total number of cities used in solving TSP. 

Standard deviation of a travel distance is used as a 
measure of a solution quality and determinism of the 
algorithm.  

When standard deviation reaches zero, algorithm 
becomes deterministic. It may happen because of few 
reasons: 

 Too many ants are used – solution average is close 
or equal to best solution; 

 Bad parameters of Ant System causes solution to 
stuck in the same local minima. 

Large standard deviation shows poor efficiency of the 
algorithm. Search becomes fully stochastic, heuristic and 
pheromone information has no or very small influence on 
solution, because of: 

 Not enough ants are used – average is far from the 
best solution; 

 Bad parameters cause Ant System to be unable to 
search around good solutions. 

Increase of the total number of cities, leads to TSP 
search space increase thus more ants are needed (Fig. 2c) 
and more time it takes (Fig. 2d) to find the shortest path 
between cities. In Ant System case, time increase is 
linearly dependent on number of ants. During 
experimentation number of ants was increased only in the 
case of bad solutions. When the total number of cities was 
in 17–20 range, number of ants was kept constant as 
system delivered good solutions. Standard 
deviation (Fig. 2b) reflects system balance: increase when 
there is an excess or shortage of ants, and decrease when 
number of ants is sufficient for a right solution. 

   29



   30

Conclusions 

1. Pseudo-Random Number Generator plays an important 
role in Ant System implementation – the use of 
Multiply-With-Carry algorithm let us to get repeatable 
results on different platforms. 

2. The use of Basic Floating Point Unit and 32 bits 
Integer Multiplier has the greatest influence on Ant 
System implementation performance – it 2.5 times 
speeds 14 cities Traveling Salesman Problem solution. 

3. Rapid growth of standard deviation may be used as an 
indicator that system should be adjusted for current 
complexity of the problem. 

Acknowledgement 

This work was supported by Lithuanian State Science 
and Studies Foundation (projects T-08127 and T-09152, 
corresponding contracts T-112/08 and T-106/09). 

References 

1. Mateika D., Martavičius R. Large Image Formation using 
Harris-Plessey Corner Detection Algorithm // Electronics and 
Electrical Engineering. – Kaunas: Technologija, 2008. – No, 
5(85). – P. 21–24. 

2. Laptik R., Navakauskas D. MAX-MIN Ant System in 
Image Preprocessing // Electronics and Electrical 
Engineering. – Kaunas: Technologija, 2009. – No. 1(89). – 
P. 21–24. 

3. Matuzevičius D., Navakauskas D. Investigation of 
Segmentation Methods for Proteomics // Electronics and 
Electrical Engineering. – Kaunas: Technologija, 2005. – 
No. 7(63). – P. 66–70. 

4. Serackis A., Matuzevičius D., Navakauskas D. 
Reconstruction of Protein Spots Using DSP Modules // 
Proceedings of 29th International Conference on 
Fundamentals of Electrotechnics and Circuit Theory. – 2006. 
–Vol. 2. – P. 573–576. 

5. MicroBlaze Processor. Xilinx Inc. Accessed at: 
http://www.xilinx.com/products/design_resources/proc 
_central/microblaze.htm. 

6. Huerta P., Castillo J, Martinez I. J., Multi MicroBlaze 
System for Parallel Computing // Proceedings of 9th 
International Conference on Circuits. – 2005. – P. 1–6. 

7. Dorigo M., Maniezzo V., Colorni A. The Ant System: 
Optimization by a colony of cooperating agents // IEEE 
transactions On Systems, Man, and Cybernetics. Part B. – 
1996. – Vol. 26, No. 1. – P. 1–13. 

8. Laptik R., Navakauskas D. Application of Ant Colony 
Optimization for Image Segmentation // Electronics and 
Electrical Engineering. – 2007. – No. 8(80). – P. 13–18. 

9. Stutzle T., Hoos H. H. The MAX-MIN Ant System and local 
search for the traveling salesman problem // Proceedings of 
the IEEE International Conference on Evolutionary 
Computation (ICEC’97), Piscataway, NJ. – 1997 – P. 309–
314. 

10. Marsaglia G. Yet another RNG // Electronic billboard 
sci.stat.math. Accessed at: http://groups.google.com/group 
/sci.stat.math/browse_thread/thread/a7b68b5b74ec272b/dd90
bad892f56640. 

11. Couture R., L’Ecuyer P. Linear Recurrences with Carry a 
Uniform Random Number Generators // Proceedings of the 
1995 Winter Simulation Conference. – P. 263–267. 

12. Metropolis N., Ulam S. The Monte Carlo Method // Journal 
of the American Statistical Association. – 1949. – 44(247). – 
P. 335–341. 

13. DN8000K10PSX board. The Dini Group Accessed at: 
http://www.dinigroup.com/DN8000k10psx.php. 

 
Received 2009 04 16 

 
R. Laptik, V. Arminas, D. Navakauskas. Ant System Implementation using Microblaze: Some Preliminary Results on Efficiency 
Study // Electronics and Electrical Engineering. – Kaunas: Technologija, 2009. – No. 6(94). – P. 27–30. 

The paper presents some preliminary results on efficiency study of Ant System implementation using software 
processor Microblaze. By the use of Monte-Carlo tests of number π calculation the best use of Pseudo-Random Number Generator – 
implementation of Multiply-With-Carry algorithm in a single precision floating point numbers – is grounded. By experimentation the 
usefulness of eight supplemental Microblaze core units is assessed and the advantage of the use of Basic Floating Point Unit together 
with 32 bits Integer Multiplier is proven. Experimental investigation of Traveling Salesman Problem solution by implemented Ant 
System is presented and confirms that rapid growth of standard deviation may be used as an indicator that system should be adjusted for 
current complexity of the problem. Ill. 2, bibl. 13. (in English; summaries in English, Russian and Lithuanian). 

Р. Лаптик, В. Арминас, Д. Навакаускас. Воплощение муравьиной системы, используя Microblaze: предварительная 
оценка производительности // Электроника и электротехника. – Каунас: Технология, 2009. – № 6(94). – С. 27–30. 

Представлены первичные результаты исследования производительности муравьиной системы, используя программный 
процессор Microblaze. Для обоснования применения генератора псевдо-случайных чисел, основанного на алгоритме 
умножения с переносом, используется метод Монте-Карло для расчета числа π. Экспериментально исследуются восемь 
внутренних счетных устройств Microblaze, доказывается преимущество использования основного устройства вычисления с 
плавающей запятой и 32 битного умножителя. Представлено экспериментальное исследование задачи путешествующего 
коммивояжера с подтверждением, что резкий рост среднего квадратичного отклонения может быть использован как индикатор 
требования изменения параметров системы. Ил. 2, библ. 13 (на английском языке; рефераты на английском, русском и 
литовском яз.). 

R. Laptik, V. Arminas, D. Navakauskas. Skruzdžių sistemos įdiegimas naudojant Microblaze procesorių: pirminis našumo 
įvertinimas // Elektronika ir elektrotechnika. – Kaunas: Technologija, 2009. – Nr. 6(94). – P. 27–30. 

Straipsnyje pateikiami pirmieji programiniame procesoriuje Microblaze įdiegtos skruzdžių sistemos našumo tyrimų rezultatai. 
Skruzdžių sistemos pseudo atsitiktinių skaičių generatoriaus naudojimas pagrindžiamas perkeliamosios daugybos algoritmu – Monte 
Karlo metodu nustatant skaičiaus vertę. Iš aštuonių procesoriaus Microblaze branduolio modulių eksperimentiškai atrenkami daugiausiai 
įtakos turintys moduliai: pagrindinis slankiojo kablelio aritmetikos modulis ir 32 bitų sveikųjų skaičių daugintuvas. Skruzdžių sistema 
sprendžiant keliaujančio prekeivio uždavinį parodoma, jog iš staigaus vidutinio kvadratinio nuokrypio augimo galima spręsti apie 
poreikį keisti sistemos parametrus. Il. 2, bibl. 13. (anglų kalba; santraukos anglų, rusų ir lietuvių k.). 


