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Introduction 

 
In the research [1] is offered an improved 

modification of the statistical method [2] for noisy signal 
detection. We shall concentrate on constructing the 
statistical method that provide given amplitude signal to 
noise maximum ratio possible, and on applying of such a 
method for the wider amplitude range. 

According to the statistical method [2], discrete 
stroboscopic transformation of noisy signal proceeds as 
follows. Let us suppose that instantaneous amplitude of 
signal concealed by normally distributed noise, in the time 
point  is equal to . Because of the shot noise of the 

input cascade of the stroboscopic converter (SC), the value  
it iu
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where  – is normally distributed random variable with a 

mean 
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and variance 
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is substantively observed. 
In the time point  noisy instantaneous signal value 

is  times ( )compared with an acquainted threshold 
. If, out of 
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e n  times of comparison, iU  exceeds the 

threshold ie  n  times, then an estimation of the signal’s 

momentary value is calculated 
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where – is function of standard normal distribution,        

 – its inverse function, 
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of threshold exceedance probability,  – quantity of 
threshold exceedances, 

n
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The common factor 
n

n 2
 has sense only in the 

signal registration mode, and it can be omitted for signal 
detection. 

After calculation of , the following value of 

threshold, equal to 
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is set. The signal and threshold are compared again, and 
instantaneous value of signal in the next phase of the signal 
is calculated analogically. 

The value of the standard deviation 1  is stored 

parametric variable and that’s why it is considered as an 
acquainted and constant value. If there is no input signal, 
then the result of such transformation of this noise will be 

stochastic process with variance  that depends on 

quantity  of signal and threshold comparison operations. 
The more is quantity  of comparison operations, the 
smaller is variance . In case of transformation of 

centric weak signals, there can be set a constant and equal 
to zero threshold. In that case the result of observation of 
the instantaneous value can be expressed by the formula 
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Transformation of centric and concealed by noise 
signals takes place in case of receiving weak 
ultrabroadband radiolocation signals. We shall use 
harmonic single-oscillation with amplitude of  as a 

signal model. 
1A

To get quite good signal-noise ratio in the output 
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h  , where  is the amplitude of the signal in the 

output without zero offset, it’s necessarily to have a certain 
quantity  of signal and threshold comparison operations 
(strobing). The weaker is input signal, the greater quantity 
of strobing is necessary. To increase the operation speed, 
it’s reasonable to divide the operational mode of radio 
locator into two parts: the mode of signal detection and the 
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mode of precise registration of signal. In the detection 
mode signal amplitude – noise ratio is important. In the 
same time one doesn’t have to care about the quality of the 
transformed signal’s form and is able to economize 
quantity of strobes. For that purpose there was offered the 

method [1] that provides higher ratio of 
2

2
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Ā
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essence of this method is as follows. Instead of  

calculation according to (6)  is calculated using the 

formula 
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Summand 0  is worked in, for, if there’s , 

the value  would not turn into infinity. In the research 

[1], the value 

nni


`
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  is set equal to . The signal’s form in 

this transformation is very perturbed. But this doesn’t 
matter for the solution of the problem. 
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The synthesis of method for achieving maximal signal-
noise ratio.  

 
The question may be, what kind of statistics 

analyzing  there should be, to get the maximum 

possible ratio  if A and n  re given. It’s clear, that the 

method synthesized in such a way will be optimal only if 

amplitude is *
1A . at’s why it’s necessary to test quality 

of signal detection at wider amplitude range. 
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For noisy signal optimal transformation synthesis 

with an amplitude of  it’s necessary to find such 

, , using which 
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Necessitate that average value of input noise 
transformation is equal to 0  (i.e. the result of centric noise 
transformation will also be centric). Describe strobing  

times in the phase of the input signal , generally, 

we’d like to state that as the result of transformation the 
average value will be equal to 
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where . These ranges allow to 

assume 

  nnnn )(

n
  as independent real values. 

In its turn transformed noise standard quadratic 
deviation in that case will be: 

                     



n

i
iin

0

2
,12 )0(  .                   (11) 

For the synthesis of the method, the following ratio is 
of interest: 
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It’s clear, that under such i , which are extreme 

points of (12), we will have,  and signal-noise 

ratio will be maximal. 
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It’s well known, that to find extreme points of 
differentiable function, is enough to find corresponding 
derivatives of this function. After partial differentiation of 
(12) for each i , ni 0 , we equate the obtained 

derivatives to zero and will solve the system of equations 
relating to i , ni 0 , and will get the values i , under 

which maximal signal-noise ratio is obtained. 

Let’s look upon the following example:  

and 

1
*
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5n  (the argumentation, why specifically such  

was chosen, is stated below). In the given example it’s 
necessary to solve the following system of equities: 

*
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As a result of solution we get we get the following 
values of i  which can be seen at column 2 of Table 1. 

Tested examples allow to point out, that in such a 
way we get the values i  as a freely drawn value, each 

from 0)( i , multiplied by given coefficients. In the 

example discussed above 10  was chosen. 

Values i  were found analogically, in the range of 

165  n  (see Table 1). 
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Table 1. Coefficients for proposed method 

i
n 5 6 7 
0 1 1 1 
1 0.952948571 0.978898724 0.990481267 
2 0.792384157 0.906889988 0.957998306 
3 0.244453271 0.66115801 0.847149226 
4 -1.625377337 -0.177409744 0.468873408 
5 -8.006230454 -3.039047392 -0.82200418 
6  -12.80447183 -5.227162725 
7   -20.25989859 

 

Table 1. (continuation) 

i
n 8 9 10 
0 1 1 1 
1 0.995694877 0.998050585 0.999116808 
2 0.981003514 0.991398146 0.996102891 
3 0.930868798 0.968696499 0.985817806 
4 0.759782572 0.891226447 0.950719646 
5 0.175945687 0.626857566 0.830946122 
6 -1.816415219 -0.275309182 0.422215373 
7 -8.615406659 -3.353980308 -0.972590586 
8 -31.81716918 -13.86003801 -5.732407821 
9  -49.71227548 -21.97542711 

10   -77.40521834 
 

Table 1. (continuation) 

i
n 11 12 13 
0 1 1 1 
1 0.999599769 0.99981861 0.999917787 
2 0.99823397 0.999199611 0.999637235 
3 0.993573141 0.99708726 0.998679841 
4 0.977667918 0.989878796 0.995412705 
5 0.923390868 0.9652797 0.984263507 
6 0.738168806 0.881334543 0.946216534 
7 0.106092956 0.594869173 0.816380095 
8 -2.050884869 -0.382702504 0.373309346 
9 -9.411636492 -3.718695221 -1.138682894 

10 -34.53042251 -15.10287058 -6.298401823 
11 -120.2490344 -53.95171095 -23.90609767 
12  -186.5245456 -83.99288865 

13   -289.040868 
 

Table 1. (continuation) 

i
n 14 15 16 
0 1 1 1 
1 0.999962738 0.999983111 0.999992345 
2 0.999835578 0.999925476 0.999966222 
3 0.999401644 0.999728794 0.999877075 
4 0.997920827 0.999057613 0.99957286 
5 0.992867494 0.996767185 0.998534717 
6 0.975622846 0.988951033 0.994992024 
7 0.916774965 0.96227818 0.982902473 
8 0.715954805 0.871256266 0.941646521 
9 0.030649976 0.560641252 0.800859343 

10 -2.307973333 -0.499341815 0.320418869 
11 -10.28859563 -4.116565873 -1.319098678 
12 -37.52270895 -16.46045162 -6.914001556 
13 -130.4599387 -58.58433256 -26.00677569 
14 -447.611027 -202.3333415 -91.16144091 
15  -692.8811524 -313.5036932 

16   -1072.253308

Corresponding theoretically calculated signal-noise 

ratio under  for amplitude of input signal 1
*
1 75.0 A

11 50.0 A , 11 75.0 A , 11 00.1 A , 11 25.1 A  and 

11 50.1 A  are stated in the Table 2. 
 

Table 2.  Signal – noise ratios for proposed method 
n 0.50 0.75 1.00 1.25 1.50 
5 0.97 1.64 2.36 3.05 3.62 
6 1.09 1.95 2.93 3.89 4.74 
7 1.22 2.29 3.59 4.94 6.16 
8 1.34 2.67 4.37 6.23 7.97 
9 1.47 3.09 5.30 7.84 10.30 

10 1.56 3.56 6.42 9.85 13.29 
11 1.73 4.09 7.76 12.36 17.15 
12 1.87 4.70 9.36 15.51 22.12 
13 2.01 5.38 11.29 19.46 28.55 
14 2.16 6.16 13.61 24.41 36.84 
15 2.32 7.04 16.41 30.62 47.56 
16 2.48 8.04 19.77 38.42 61.42 
 
For reference, there are theoretically calculated 

signal-noise ratios according to the method [1], but in 
Table 4 – according the method [2].     

 

Table 3. Signal – noise ratios for  nn  method 

n 0.5 0.75 1 1.25 1.5 
5 0.81 1.51 2.33 3.18 3.93 
6 0.88 1.76 2.89 4.11 5.26 
7 0.95 2.03 3.54 5.29 7.00 
8 1.03 2.33 4.31 6.76 9.26 
9 1.11 2.68 5.24 8.60 12.20 

10 1.22 3.07 6.34 10.89 16.00 
11 1.34 3.52 7.62 13.71 20.84 
12 1.48 4.01 9.11 17.10 26.90 
13 1.65 4.56 10.76 21.07 34.27 
14 1.84 5.12 12.54 25.53 42.93 
15 2.04 5.68 14.32 30.28 52.59 
16 2.24 6.19 15.98 35.00 62.74 

 

Table 4. Signal – noise ratios for method [2] 
n 0.5 0.75 1 1.25 1.5 
5 0.87 1.30 1.70 2.04 2.31 
6 0.97 1.46 1.92 2.34 2.68 
7 1.05 1.60 2.13 2.62 3.03 
8 1.13 1.72 2.32 2.87 3.35 
9 1.21 1.84 2.49 3.11 3.65 

10 1.28 1.95 2.64 3.32 3.92 
11 1.34 2.05 2.78 3.51 4.17 
12 1.40 2.14 2.91 3.68 4.40 
13 1.45 2.22 3.02 3.84 4.61 
14 1.51 2.30 3.13 3.99 4.81 
15 1.56 2.37 3.24 4.13 4.99 
16 1.61 2.45 3.33 4.26 5.16 

 
From the obtained results we can see, that under 

chosen amplitude of   and amplitudes of input 

signal close to  the synthesized method provides higher 

1
*
1 75.0 A

*
1A
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signal-noise ratio. For example, under  and 

 the synthesized method provides signal-noise ratio 
equal to , the method [1] in the same circumstances 
has , but the method [2] – . So an 

advantage, regarding the signal detection, in one case is 
23%, and in the other – 70%. This advantage won’t be so 
seen on the individual involutes, but it’s important for the 
statistical mean. The method [1] provides insignificantly 
better signal-noise ratio, comparing to the given method, 
just for moderately high amplitudes of input signal. 
Although this advantage doesn’t have really important 
practical meaning, for high amplitude signal detection is 
not technically complicated. 

1
*
1 75.0 A

45.22 h

16n

2h
04.8
19.6

 
 

 
Fig. 1а. Input signal with amplitude of 175.01 A  

 
In general case it can be any positive number, taken 

as . Although in this case obtained coefficients *
1A i  will 

be optimal specifically for this signal amplitude. On this 

basis  was chosen from relatively small , 

for weak signals detection is especially difficult. As an 
example on the Fig.1 can be seen input signal concealed by 
noise with amplitude of 

*
1A 1

*
1 75.0A

11 75.0 A . 

 
 

 
 

Fig. 1b. The signal transformed by the method [1] 
As it’s seen on the figure, single-oscillation of such 

amplitude is completely concealed by noise. On the figure 

1b is stated the signal, transformed according to the 
method [1], but on the figure 1c - the signal, transformed 
according to the method [2].  The other conditions of 
simulation were as follows: quantity of strobing phase 
points for the period of single-oscillation 50Tn , 

involute length 350TN , input signal location – in the 

center of involute (phase points from 150 to 200). 
 
 

 
 

Fig. 1c. The same signal, transformed by the given method 
 
 
 The synthesized method provides maximum possible 

signal-noise ratio for each amplitude . That’s why 

the synthesized method can be used for quality estimation 
of any other signal detection method by the criterion 

*
11 AA 

22 A . 

In the Table 1 there are also coefficients i  for very 

small quantity of signal and threshold comparison 
operations. The results of such  don’t let to detect small 
amplitude signals without additional processing of 
transformed signal. As an additional processing one can 
use a convolution with an according standard.  

n

To obtain the best results after correlation filter, we 
will find the analytic expression of the single-oscillation 
transformation result with a certain .  1A

It should be noted that this standard will be the best 
only under this detected signal amplitude.  That’s why we 
will choose the amplitude  that is situated on the 

boundary of signal detection and omission.   
1A

Then under the amplitudes nearby this threshold 
amplitude we will obtain the improved signal – noise ratio 
correlation. Under the greater input signal amplitudes this 
standard optimality is not essential, since these signals can 
be detected without any efforts.  

We will find the form of the standard under certain 
given , 1A 11  ,  and . And we will use formulas 

(8), (9) and (10) for this purpose, according to them the 
mean observation of the transformation result that is 
obtained using statistical method is expressed as follows:    

n Tn

                             



n

j
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0
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The single-oscillation transformation result that is obtained 
using the method recommended is not symmetrical. That’s 
why it’s necessary to form the mirror image of the 

functional relation  to obtain the  

standard:  

),( ii unb ),(*
ii unb

                        .         (16) ),(),( 11
*

 ininii TT
unbunb

The form of the standard for the method recommended 
obtained under the following scenarios: 75.01 A , 

11  ,  and , is shown in the Fig. 2. As we 

can see, the standard obtained differs greatly from the form 
of the harmonical single-oscillation.   

5n 50Tn
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Fig. 2. The standard functional relation under 75.01 A , 

11  ,  and  5n 50Tn

 
On the Fig. 3 there can be seen the result of 

correlation filtration of the signal with an amplitude of 

11 75.0 A  using  after convolution with a half-

wave of harmonic single-oscillation. In the center of the 
involute the detected signal is clearly seen.     

5n

 

 

 
Fig. 3. The result of the convolution of the transformed signal 
with according standard using 11 75.0 A , , 5n 50Tn  

Since the input signal amplitude is indeterminate, we 
shall check what the 33 Ā  ratio will be in case of 

nonoptimal standard. We will use the following standards: 
under , ,25.01 A 50.01 A 75.01 A and , and 

we will change the amplitude of the input signal from 

00.11 A

25.01 A  to 50.11 A  

 
 
Table 5. 33 Ā  ratios with n=5 signal-threshold comparison 

operations for proposed method 

 0.25 0.5 0.75 1.0 
0.25 1.7044 1.6848 1.6464 1.6094 
0.5 3.5938 3.6356 3.6136 3.5742 
0.75 5.666 5.8303 5.8657 5.8496 

1 7.8283 8.1504 8.2675 8.2903 
1.25 9.9329 10.422 10.628 10.697 
1.5 11.836 12.48 12.77 12.884 

 
 
Table 6. 33 Ā  ratios with n=16 signal-threshold  comparison 

operations for proposed method 

 0.25 0.5 0.75 1.0 
0.25 1.6811 1.646 1.6166 1.604 
0.5 7.0909 7.2424 7.2206 7.2018 
0.75 21.654 22.45 22.518 22.508 

1 52.282 54.489 54.773 54.796 
1.25 102.76 107.17 107.74 107.79 
1.5 169.44 176.39 177.09 177.1 

 

33 Ā ratios for the  nn  method using the same 

simulation scenarios are listed in the Tables 7 and 8 for 
5n  and 16n  respectively.  

 

Table 7. 33 Ā  ratios with  signal-threshold 

comparison operations for the 

5n
 nn  method 

 0.25 0.5 0.75 1.0 
0.25 1.2063 1.1844 1.1502 1.1242 
0.5 2.7747 2.8259 2.8071 2.7799 
0.75 4.7902 4.9902 5.0236 5.0127 

1 7.1699 7.5682 7.6769 7.6935 
1.25 9.6981 10.313 10.506 10.555 
1.5 12.124 12.945 13.216 13.297 

 
Table 8. 33 Ā  ratios with  signal-threshold 

comparison operations for the 

16n
 nn  method 

 0.25 0.5 0.75 1.0 
0.25 2.891 2.8196 2.6423 2.4793 
0.5 7.3096 7.4946 7.348 7.1054 
0.75 16.555 17.758 18.113 17.968 

1 37.534 41.493 43.415 43.766 
1.25 78.456 87.995 93.151 94.569 
1.5 141.81 159.85 169.74 172.59 

 
As you can see in the tables, the single-oscillation 

amplitude chosen used to obtain the standard is not critical 
for the relatively broad input signals amplitudes range. 
Apparently, you can see that the method recommended 
almost always provides higher  , comparing to the 3h

 nn  method.    
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Siūlomas ir analizuojamas diskretinių stroboskopinių ultraplačiajuosčių radaro lokacinės sistemos signalų detektavimo, esant 

triukšmams, metodas. Metodo pranašumai, palyginti su  nn  metodu, pateikti atsižvelgiant į galimybę užtikrinti didesnį signalo ir 

triukšmo santykį prieš papildomai apdorojant stroboskopiškai transformuotus signalus ir juos apdorojus. Il. 3, bibl. 3 (anglų kalba; 
santraukos anglų, rusų ir lietuvių k.). 
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