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Abstract—To solve the problems of large prediction error, 

slow convergence speed, and poor generalisation ability of 

traditional models in predicting surface deformation of open-pit 

mine slopes, this paper proposes a new intelligent prediction 

model based on the Mayfly algorithm-optimised support vector 

machine (MA-SVM). In this method, the MA is used to optimise 

the SVM parameters to reduce the uncertainty of the model and 

avoid time-consuming parameter adjustment. To evaluate the 

proposed prediction model, real-world deformation data of the 

north slope of the Anjialing open-pit mine in Pingshuo city, 

China, are collected using the microdeformation monitoring 

radar and used to investigate the deformation prediction 

performance of the proposed method. The results of the analysis 

demonstrate that the proposed method is able to accurately 

predict the deformation of the surface of the mine slope and 

outperforms three existing popular methods, including SVM, 

genetic algorithm (GA)-SVM, and particle swarm optimisation 

(PSO)-SVM). The mean absolute error (MAE) of the proposed 

MA⁃SVM is 2.52 % while 6.56 %, 4.95 %, and 5.16 % for the 

SVM, GA-SVM, and PSO-SVM, respectively; the root mean 

square error (RMSE) of the proposed MA⁃SVM is 10.21 % 

while 30.79 %, 17.38 %, and 22.54 % for the other three 

methods. Because the proposed MA⁃SVM model is able to 

predict slope deformation using actual monitoring data, it is of 

practical importance in real-world applications for early 

warning on landslides of mine slopes. 

 
Index Terms—Deformation prediction; Mining monitoring; 

Artificial intelligence; Support vector machine. 

I. INTRODUCTION 

Prediction of surface deformation for open-pit slopes is 

important in the mining safety monitoring process. Prediction 

accuracy is directly related to production schedule, as well as 

personnel and property safety. The stability of the open-pit 

slope is affected by many factors. The relationship between 

the influence factors and the slope deformations is not a linear 

map, but presents the characteristics of strong nonlinearities 

and complex uncertainties. Traditional deformation 

prediction methods use mathematical modelling techniques, 

which always consider many assumptions and simplification; 

as a result, the prediction accuracy is usually very low and the 

application range is very limited, making it difficult to meet 

the requirements of practical applications.  

With the development of new technologies, such as 

artificial intelligence (AI), machine learning (ML), deep 

learning, and transfer learning, intelligent prediction methods 

have gradually become an important research and application 

direction for mine slope safety monitoring. For example, Fu, 

Wan, Fu, Xiao, Mao, and Sun [1] proposed a fuzzy method 

to predict the deformation of steep and high slopes based on 

the optimisation of all the distribution. Li and Qiu [2] 

combined the sparrow search algorithm (SSA) and the 

extreme learning machine (ELM) to predict the deformation 

of the slope of the Jianshan mine. Xi, Yang, Sun, and Mei [3] 

conducted a comparative investigation of machine learning 

approaches for predicting slope deformation based on 

monitored time-series displacement data. However, time-

series forecasting often does not consider factors of influence 

of deformation, such as the temperature and humidity, which 

may decrease the effectiveness of slope deformation 

prediction. Therefore, it is crucial to build AI prediction 

models with consideration of multisource information. 

Moreover, currently many artificial neural network (ANN) 

models have been introduced for slope deformation 

monitoring, but most existing ANN models have problems 

such as slow convergence, easy to fall into local minima, and 

limited generalisation ability. 

The support vector machine (SVM) uses structural risk 

minimisation in the training to avoid dimensional disaster 

problems and obtain reasonable generalisation ability in small 

sample learning, which makes it very suitable for the mine 

geological disaster monitoring. For example, Yang [4] 

combined particle swarm optimisation (PSO) and SVM to 

improve the prediction accuracy of slope stability. Chen, Wei, 

and Ma [5] built an improved ant colony algorithm (ACO)-

SVM model to forecast slope displacement. Du, Song, Qu, 
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Zhao, Sun, and Chen [6] established a slope monitoring 

model using the SVM.  

In recent years, the intelligent optimisation algorithm has 

the advantages of fast speed, high efficiency, and strong 

stability in parameter optimisation. With the development of 

high-precision deformation prediction model modelling 

technology, more and more scholars have introduced 

intelligent optimisation algorithm into the process of seeking 

optimal parameters of engineering slope deformation 

prediction model. Many factors affecting the deformation of 

the surface of the engineering slope, including internal factors 

and external factors, need to be considered during the 

modelling process of the engineering slope surface 

deformation prediction model. Through a comprehensive 

analysis and study of internal factors, such as geology and 

terrain, and induced factors, such as meteorological, 

earthquake, and artificial mining activities in the monitoring 

area, the factors that affect the deformation of the open-pit 

slope can be fully understood. Considering that in this study, 

Luzigou anticline, Anjialing reverse fault, and other structural 

factors have little influence on the deformation of the north 

slope of the study object; this paper takes the five 

meteorological factors and manual mining of disturbance data 

as the important inducing factor of the disaster to cause the 

deformation of the study object during the study period. 

Existing literature suggests that the optimisation must be 

performed for the SVM to increase the running speed and 

enhance generalisation ability when considering multisource 

information. Compared to traditional optimisation 

algorithms, the Mayfly algorithm (MA) combines the main 

advantages of the swarm intelligence algorithm and 

evolutionary algorithm and has faster convergence speed and 

stronger optimisation ability [7], [8]. Therefore, in this paper, 

the MA is used to globally optimise the penalty factor and 

complexity factor of the SVM model, and a MA-SVM 

prediction model is constructed to predict surface 

deformation in a real-world open-pit slope. The prediction 

results indicate high precision and strong generalisability of 

the proposed method, which provides a new method for the 

prediction of slope deformation.  

II. MINE SLOPE SURFACE DEFORMATION PREDICTION 

A. Geological Conditions of Research Area 

The Anjialing open-pit mine is located in the Pinglu 

district, Shuozhou City, China. It belongs to the Pingshuo 

mining area and is one of the three open-pit coal mines in the 

Pingshuo Coal Industry Co., LTD. The Pingshuo mining area 

belongs to the temperate semi-arid continental monsoon 

climate area, which presents dry, cold, and windy spring and 

winter while concentrated precipitation in summer and 

autumn with warm and cool wind. It is reported in [9] that 

75 % of annual rainfall in the Pingshuo mining area is mainly 

in July, August, and September. The average annual 

temperature of the Pingshuo mining area is around 7 ℃, the 

daily temperature difference is 18 ℃–25 ℃, the highest 

temperature is 37.9 ℃, and the lowest temperature is -

32.4 ℃. Due to low mountains and hills, the Shuoping area is 

mostly covered by the loess. The loess in the area has been 

subjected to strong erosion and wind cutting, and the 

vegetation in the area is sparse, which forms the landscape of 

the landform of the loess Plateau, such as beams, walls, and 

hills. The gully is developed in the shape of “V” with a cutting 

depth of 40 m to 70 m. The terrain in the region is basically 

high in the north and low in the south, as well as high in the 

middle and low in both sides. According to the digital 

elevation model of the slope in the north of the Anjialing 

slope, the research object has a highest elevation of 1,441 m, 

lowest elevation of 1,193 m, and the height difference 

between the highest and the lowest elevation is 248 m [10]. 

Figure 1 provides an image of the north side of the Anjialing 

slope. 

 
Fig. 1.  Slope topography of the north slope of the Anjialing open-pit mine. 

Photo taken on July 23, 2023 shows the north slope of the Anjialing open-pit 

mine of Pingshuo Group Co., LTD. 

The open-pit slope is an artificial slope produced by coal 

mining. There are many factors that affect its deformation, 

and the relationship between them is complicated. The 

internal factors and the inducement factors that affect the 

slope deformation are analysed in [11]. Internal factors, such 

as formation lithology, landform, elevation, and vegetation, 

in the study area are relatively stable and will not change 

greatly in a short period of time, while induced factors, such 

as meteorological factors, seismic factors, and human 

engineering activities, will randomly occur and change the 

slope greatly in a short period of time, which is easy to cause 

slope deformation and the occurrence of disasters. Therefore, 

in this study, six factors affecting the deformation of the 

surface of the mine slope are selected as the input to the 

prediction model. These factors include rainfall, rainfall 

duration, temperature, humidity, atmospheric pressure, and 

human factors of mining disturbance. 

B. Data Acquisition 

Data collection was carried out at the Anjialing open-pit 

coal mine in Pingshuo for seven days in July 2023. During 

data collection, there was a large rainfall in the study area and 

a large area of deformation aggregation appeared in the 

monitoring area. Slope deformation continued to increase 

after the rainfall. Therefore, the data for deformation 

monitoring and meteorological influencing factors have been 

collected by the IBIS-M ground-based radar [12]. The IBIS-

M radar is shown in Fig. 2. 

The IBIS-M radar parameters were set as follows: the 

acquisition period was 9 min, the range-orientated resolution 

was 0.5 m, the angle-orientated resolution was 4.4 mrad, the 

minimum monitoring distance was 1.828 km, and the 

maximum monitoring distance was 2.633 km. The maximum 

monitoring distance of the IBIS-M radar is 4 km, and the 
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actual monitoring accuracy can reach 0.1 mm, so it can be 

competent for this deformation monitoring data acquisition 

work. The weather station (Vantage Pro2 model) is the main 

device on the radar to collect the meteorological data. The 

Vantage Pro2 includes one rain collector, one temperature 

sensor, one atmospheric pressure sensor, one humidity 

sensor, one optical sensor, and one wind meter [13], as is 

shown in Fig. 3. Vantage Pro2 could also meet the needs for 

meteorological data types and accuracy. 

 
Fig. 2.  Overview of the IBIS-M radar.  

 
Fig. 3.  Meteorological sensor module: 1 - Rain collector, 2 - Solar panel, 3 

- Radiation shield, 4 - UV and Solar sensors and sensor mounting shelf, 5 - 

ISS base, 6 - Anemometer wane and wind cups. 

The Vantage Pro2 can measure seven meteorological 

parameters, including rainfall, rainfall duration, temperature, 

atmospheric pressure, relative humidity, refractive index, 

wind speed, and wind direction. Considering the strong 

random disturbance of wind speed and direction and their 

small influence on mine slope deformation, they were not 

selected as input variables for the prediction model. In this 

experiment, internal factors, such as geological structure, 

stratum lithology, landform, elevation, and vegetation cover, 

in the study area are relatively stable and will not change 

greatly over a short period of time, while inducing factors, 

such as meteorological factors and human engineering 

activities, will occur randomly, which will have great 

influence and change on open-pit slope surface deformation 

over a short period of time. It is easy to cause slope 

deformation and disaster in an open-pit mine. Finally, 

rainfall, rainfall duration, temperature, humidity, atmospheric 

pressure, and human factors were selected as input data for 

the prediction model, and the coordinate values of the 

monitoring points obtained from the radial deformation data 

from the ground radar combined with the data from the digital 

elevation model of the mining area were selected as output 

data for the prediction model. Then the SVM-based 

prediction model can be established to predict the ground 

deformation of the mine slope considering six factors in the 

measured coordinate data.  

III. MA-SVM PREDICTION MODEL 

A. Introduction of SVM 

The SVM is a kind of machine learning algorithm based on 

the principle of structural risk minimisation, which has great 

advantages in solving small samples and nonlinear high-

dimensional problems [14]–[16]. The structure of the SVM 

for the slope deformation prediction model is shown in Fig. 

4. 

 
Fig. 4.  SVM deformation prediction model. 

The input parameters in Fig. 4 are six factors that affect the 

surface deformation of the open-pit slope, including rainfall 

(R), rainfall duration (D), temperature (T), humidity (H), 

atmospheric pressure (A), and human activities (M). 

It can be seen from Fig. 4 that each input sample data 

contains relevant influencing factors that affect slope surface 

deformation. These six factors in input form as an input 

vector for the SVM. Through the kernel function and the 

weight of the kernel node, the support vector can be computed 

from the input sample vector; and then the obtained support 

vector passes through the output layer to generate the 

predicted slope deformation. 

B. Mayfly Algorithm (MA) 

The MA is a novel intelligent optimisation algorithm 

proposed by Zervoudakis and Tsafarakis in 2020 [17]. The 

MA optimises the target problem by simulating the flight and 

mating behaviour of the female and male mayflies. Hence, 

the MA can be considered as an improvement of the particle 

swarm optimisation (PSO) algorithm. Actually, the MA is an 

integration of the PSO, the genetic algorithm (GA), and the 

firefly algorithm (FA). The location of each mayfly in the 

search space is represented by a D-dimensional vector as a 

potential solution to the target problem [18]–[20]. Fitness 

values are represented by a predefined objective function. For 

the movement of the mayfly, a velocity vector is introduced 

[21]. The change of the flight direction of each mayfly is a 

dynamic interactive process. Each mayfly tends to move to 

the position of the individual most conducive to mating, as 

well as to the globally optimal position of the individual in 

the entire mayfly population. 

The steps of MA optimisation are expressed as follows： 

Step 1: Male mayfly moving. 

Male mayflies move in large groups, and each male mayfly 

adjusts its position according to its own flying experience and 

the around individuals. Supposing 𝑥𝑖
𝑡 is the current position 

of the mayfly x at the time t in the search space. When 

summing with the velocity 𝑣𝑖
𝑡+1 at the next time step t+1, it 
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could get the current position at the next time step t+1, and its 

position update formula is 

  1 1 0, , .t t t

i i i i max minx x v x x x     (1) 

Considering that the male mayfly is constantly moving and 

performing the wedding dance on the water surface, the speed 

of the male mayfly 𝑣𝑖𝑗
𝑡  in the j dimension is 
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where 𝑣𝑖𝑗
𝑡  represents the velocity value of mayfly 𝑖  at the 

time 𝑡 in the 𝑗 dimension of the search space, 𝑥𝑖𝑗
𝑡  represents 

the positional value of the mayfly 𝑖  at the time 𝑡  in the 𝑗 

dimension of the search space, 𝑎1  and  𝑎2 are used to 

measure the degree to which the male mayfly flight 

experience is less than the contribution of position, β is a 

fixed visibility coefficient and its default value is 2, 𝑟𝑝 

represents the current position and 𝑝𝑏𝑒𝑠𝑡  represents the 

personal sweet spot, and 𝑟𝑔 represents the distance between 

the current distance and globally optimal distance 𝑔𝑏𝑒𝑠𝑡. 

The mayflies with the best current position in the 

population also perform the marriage dance. This motion-bit 

algorithm introduces a random factor, which is represented 

by (3) 

 
1 ,   t t

ij iv v d r  (3) 

where,  𝑑  is the wedding dance coefficient and 𝑟  is the 

random number in the range [-1, 1].  

Step 2: Female mayfly moving 

Unlike male mayflies, female mayflies do not form groups 

to fly to males to reproduce. 

Assuming that 𝑦𝑖
𝑡 is the current position of the mayfly 𝑖 in 

the search space at time 𝑡 . By summing with the velocity 

𝑣𝑖
𝑡+1 at the next time step t+1, it can be obtained the current 

position 𝑦𝑖
𝑡+1 at time t+1, and the position update (4) can be 

expressed as 

  1 1 0, , .t t t

i i i i min maxy y v y U y y     (4) 

Female mayfly updates as follows 
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where 𝑦𝑖𝑗
𝑡  represents the position value of mayfly 𝑖 at time t 

in the dimension of the search space, 𝑎2 indicates the distance 

between the male and female mayflies, 𝑓𝑙 is a random walk 

parameter which is used to describe the random flight of the 

female mayflies when they are not attracted to the male 

mayflies. 

Step 3: Mayfly mating 

The crossover algorithm represents the mating process 

between two mayflies; one parent is selected from the male 

population and one from the female population. In particular, 

the selection can be random or based on the fitness values; if 

based on the fitness values, then the best female mates with 

the best male. 

In mating behaviour, a pair of female and male mayflies 

produced two offspring [22]–[24]: 
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o L m L fm

o L fm L m
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where  𝑜1 and 𝑜2 represent two filial generations, 𝑚 and 𝑓𝑚 

represent the male and female mayflies, respectively, and 𝐿 

is a random value within a specific range [-1, 1]. 

C. MA-SVM Model 

The radial basis function (RBF) kernel function is often 

used as the kernel function in the SVM model, two 

parameters 𝑐  and 𝛾  are introduced, where 𝑐  represents the 

penalty factor and and 𝛾  represents the complexity factor. 

The value of c determines the penalty degree for samples 

outside the error band. The complexity factor 𝛾 controls the 

complexity of the SVM model. The smaller the value of 𝛾, 

the more complex the SVM model is. The setting of these two 

parameters is very important for the prediction accuracy of 

the SVM model. However, it takes a lot of time and energy to 

manually adjust these two parameters, which cannot 

guarantee the quality of the SVM model. Therefore, the MA 

algorithm is applied to optimise these two parameters to 

improve the accuracy of the SVM model. The flow chart of 

the MA-SVM prediction model proposed in this paper is 

illustrated in Fig. 5.  

 
Fig. 5.  Flow chart of the prediction of deformation using the MA-SVM 

model. 

The implementation of the MA-SVM is described as 

follows. 

Step 1: Input deformation data to train the SVM model. 

Step 2: Random generation of mayfly populations; set the 

maximum number of iterations 𝐼𝑚𝑎𝑥  of the population and 

other initial parameters. 

Step 3: The parameters 𝑐  and 𝛾  of the SVM model are 

optimised in the MA search space based on the prediction 
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error function 𝐸(𝑦) using the training set samples. 

Step 4: Check whether the number of iterations reaches the 

maximum 𝐼𝑚𝑎𝑥 . If not, repeat step 3; if reach 𝐼𝑚𝑎𝑥 , the 

iteration is terminated and output the obtained parameters 𝑐 

and 𝛾. 

Step 5: Set the SVM parameters using the MA optimised 

ones to construct the MA-SVM prediction model. 

IV. RESULTS AND DISCUSSION 

A. Overview 

The prediction process for the open-pit mine slope 

deformation is shown in Fig. 6. First, the collected 

displacement data and the corresponding meteorological data 

from the Anjialing open-pit mine were divided into a training 

set and a test set after preprocessing. Second, the training set 

and the test data are divided into multiple data sets according 

to the time-series forecasting strategy. Third, existing popular 

AI models are established for the training data sets. Finally, 

the prediction accuracy of different AI models is compared 

using the test set. In this paper, the proposed MA-SVM model 

is compared with the SVM, GA-SVM, and PSO-SVM 

models for the slope deformation prediction.  

Testing meteorological data

SVM

MA

Coordinate data

Temperature

Humidity

Optimising

Rainfall 

duration

Cumulative 

rainfall

Atmospheric 

pressure

Mining 

disturbance

 
Fig. 6.  The diagram of the intelligent prediction method. 

B. Data Preprocessing 

Daily meteorological data and the corresponding 

deformation monitoring records are collected and monitored 

at the Pingshuo, China Coal. In the monitoring data set 

obtained by the data collection, there are seven data types, 

including cumulative rainfall, rainfall duration, temperature, 

humidity, atmospheric pressure, human mining disturbance, 

and deformation coordinates of the east monitoring site. A 

total of 150 data sets are prepared for each type of data at the 

monitoring points where significant deformation occurred 

after the rainfall, 120 data sets are used for training the 

prediction model, and the rest 30 data sets are used for testing 

the trained prediction model. We randomly selected five 

groups of data from the 30 test data sets and calculated the 

prediction error to evaluate the prediction performance of the 

four AI models.  

Before establishing the prediction model, it is necessary to 

standardise the time-series data to eliminate the influence of 

dimensions. In this paper, the maximum and minimum 

normalisation method is used to normalise the displacement 

data in the range of [0, 1]. The calculation method is 

described in (7) 

 ,min

max min

x x
x

x x


 


 (7) 

where 𝑥′  represents the calculated value, 𝑥𝑚𝑎𝑥  is the 

maximum value in the sequence data, and 𝑥𝑚𝑖𝑛  is the 

minimum in the sequence data. 

C. Evaluation Indexes 

Evaluation of the prediction results of the deformation 

monitoring models can judge the accuracy and applicability 

of the monitoring models. To evaluate the prediction 

performance of the four AI prediction models, the root mean 

square error (RMSE), the mean absolute error (MAE), and 

the mean absolute percentage error (MAPE) are adopted as 

evaluation indexes. The RMSE measures the degree of 

deviation between the predicted value and the true value and 

calculates the square root of the sum of squares of the 

difference between the predicted value and the true value. The 

value of the RMSE ranges from 0 to positive infinity. The 

smaller the value, the smaller the prediction error of the 

model, and the stronger the prediction ability of the model. 

The MAE calculates the average of the absolute values of the 

prediction errors for each sample. When the predicted value 

is exactly consistent with the real value, it is equal to 0, i.e., 

the prediction model is in perfect condition. The MAPE 

represents the average percentage of the relative error 

between the predicted value and the actual value. The smaller 

the MAPE value, the more accurate the prediction model will 

be.  

D. Prediction Results 

The prediction performance of the SVM, GA-SVM, PSO-

SVM, and MA-SVM models is evaluated using the measured 

real-world data sets. Fig. 7(a) and 7(b) compare the values 

predicted by SVM, GA-SVM, PSO-SVM, and MA-SVM for 

the eastern site of the mine slope. The deformation values and 

deformation errors predicted by the four prediction models 

are shown in Table I and Table II. As can be seen from the 

results, the prediction accuracy of the MA-SVM prediction 

model is higher than that of the SVM, GA-SVM, and PSO-

SVM prediction models. The prediction error of the MA-

SVM is much smaller than that of the SVM, GA-SVM, and 

PSO-SVM.  

 
(a) 
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(b) 

Fig. 7.  Prediction performance: (a) The prediction results for the SVM, GA-

SVM, PSO-SVM, and MA-SVM; (b) The prediction error for the SVM, GA-

SVM, PSO-SVM, and MA-SVM. 

The results show that the SVM optimised by the MA 

algorithm has a better training effect, a strong 

generalisability, and better prediction performance.  

TABLE I. THE PREDICTED DEFORMATION VALUES USING THE 

FOUR PREDICTION METHODS. 

Method 
Point 1 

[m] 

Point 2 

[m] 

Point 3 

[m] 

Point 4 

[m] 

Point 5 

[m] 

Real 

value 

484436. 

6754 

484436. 

6747 

484436. 

6742 

484436. 

6734 

484436. 

6741 

SVM 
484436. 

6744 

484436. 

6771 

484436. 

6793 

484436. 

6805 

484436. 

6809 

GA-

SVM 

484436. 

6747 

484436. 

6766 

484436. 

6780 

484436. 

6789 

484436. 

6793 

PSO-

SVM 

484436. 

6748 

484436. 

6768 

484436. 

6782 

484436. 

6791 

484436. 

6795 

MA-

SVM 

484436. 

6719 

484436. 

6743 

484436. 

6756 

484436. 

6758 

484436. 

6762 

TABLE Ⅱ. THE PREDICTION ERROR USING THE FOUR 

PREDICTION METHODS. 

Method 
Point 1 

[m] 

Point 2 

[m] 

Point 3 

[m] 

Point 4 

[m] 

Point 5 

[m] 

SVM 0.1497 -0.3585 -0.7605 -1.0432 -1.0076 

GA-

SVM 
0.1072 -0.2851 -0.5654 -0.8067 -0.7642 

PSO-

SVM 
0.0960 -0.3203 -0.5976 -0.8361 -0.8022 

MA-

SVM 
0.5133 0.0546 -0.2002 -0.3521 -0.3051 

 

The prediction performance of the SVM prediction model 

depends mainly on the two parameters, the penalty factor c 

and the complexity factor 𝛾. Therefore, searching for the best 

values of these two parameters is extremely important to 

improve the prediction effect of the SVM. In the training set, 

the GA algorithm, the PSO algorithm, and the MA algorithm 

are used to optimise the parameters of the SVM to find the 

best penalty factor c and the complexity factor 𝛾 . The 

optimisation process and results are shown in Figs. 8–10. 

As shown in Fig. 8, the GA algorithm falls into the local 

optimal state at the 5th, 10th, and 20th iterations, respectively, 

and finally reaches the preset stop optimisation condition at 

the 26th iteration. As shown in Fig. 9, the PSO algorithm also 

falls into local optimisation at the 8th iteration, and did not 

reach the preset stop optimisation condition until the 13th 

iteration. After four iterations, the MA algorithm quickly 

meets the preset stop optimisation condition without falling 

into local optimal. As a result, MA optimisation achieved 

better results than the GA algorithm and the PSO algorithm. 

 
Fig. 8.  Convergence curve of optimisation of the GA-SVM model. 

 
Fig. 9.  Convergence curve of optimisation of the PSO-SVM model. 

 
Fig. 10.  Convergence curve of optimisation of the MA-SVM model. 

To highlight the advantages of MA optimisation for the 

SVM, the surface deformation prediction models of the open-

pit slope are compared using the evaluation indexes. To 

ensure the reliability of the test results, the test set data of the 

four prediction models are identical and the initial setting 

parameters are also the same. Table III lists the prediction 

errors of the four models. 
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TABLE Ⅲ. MAE, MAPE, AND RMSE RESULTS. 

Method MAE (%) MAPE (%) RMSE (%) 

SVM 6.56 60.54 30.79 

GA-SVM 4.95 46.59 17.38 

PSO-SVM 5.16 49.26 22.54 

MA-SVM 2.52 5.96  10.21 

 
From Table III, the prediction performance of the SVM 

combined with the optimisation algorithms is obviously 

better than that of the single use of the SVM model. The 

MAE, MAPE and RMSE of the MA-SVM model are 

respectively 2.52 %, 5.96 % and 10.21 %, which is the 

smallest among the four models, which indicates that the MA 

algorithm has improved the prediction ability of the SVM 

model to provide better prediction performance than that 

using the GA and PSO optimisation. 

V. CONCLUSIONS 

To improve the accuracy and generalisability of the 

prediction of the SVM model for the prediction of surface 

deformation on the open-pit mine slope, it presents the idea 

of using MA to optimise SVM parameters. Considering the 

influence of deformation factors, six factors are used to 

construct the SVM model, including rainfall, rainfall 

duration, temperature, humidity, atmospheric pressure, and 

human activities. Because the prediction performance of the 

SVM model depends mainly on the penalty factor c and the 

complexity factor 𝛾, the MA is introduced to optimise these 

two SVM parameters. Real-world monitoring data are used to 

verify the proposed method and the prediction results are 

compared with SVM, GA-SVM and PSO-SVM. The 

comparison results demonstrate that the MA algorithm has 

stronger global search ability in the early iteration stage and 

stronger local search ability in the late iteration stage; the 

proposed MA-SVM model solves the problem of falling into 

local optimal solutions in the optimisation process; the 

prediction accuracy of the MA-SVM is superior to that of the 

SVM, GA-SVM and PSO-SVM models. As a result, a rapid 

and precise prediction of the slope surface deformation is 

realised using the proposed model, and the proposed MA-

SVM model is feasible and practicable for predicting slope 

deformation in real-world mining applications. 

Compared to the three models, the MA-SVM model has 

the best prediction accuracy and the fastest convergence 

speed, and can better complete the prediction task of the 

surface deformation of the mine slope. Compared to the SVM 

model (6.56 %), the GA-SVM model (4.95 %), and the PSO-

SVM model (5.16 %), the proposed algorithm has the lowest 

mean absolute error (MAE) value (2.52 %). In terms of 

MAPE evaluation index, compared to the SVM model 

(60.54 %), the GA-SVM model (46.59 %), and the PSO-

SVM model (49.26 %), the MA-SVM model (5.96 %) was 

also much lower than other models. In terms of RMSE 

evaluation indexes, compared to the SVM model (30.79 %), 

the GA-SVM model (17.38 %), and the PSO-SVM model 

(22.54 %), the MA-SVM model (10.21 %) was also much 

lower than other models. In terms of convergence speed, 

compared with the 26th iteration of the GA-SVM model and 

the 13th iteration of the PSO-SVM model to reach the optimal 

value, the model proposed in this paper only needs the 4th 

iteration, and the prediction time is 15.4 % and 30.8 % of the 

convergence time of the previous two optimisation 

algorithms, respectively, which is the fastest convergence 

speed in this paper. 

In the validation of the measured data model in this paper, 

compared with other prediction models, MA-SVM has the 

following three advantages. First, the model has a higher 

reliability than the traditional time-series prediction model 

because it fully considers the factors that affect the slope 

deformation of the open-pit mine, including meteorological 

factors and human mining interference factors. Second, due 

to the combination of the MA optimisation algorithm and the 

SVM model, the model has higher prediction accuracy than 

the traditional model. Third, the combination of the MA 

optimisation algorithm and the SVM model speeds up the 

search process for optimal parameters. Therefore, the 

convergence speed of the model proposed in this paper is 

much lower than that of other comparison models, which 

improves the prediction speed of the prediction model. Fast 

and accurate deformation prediction is very valuable for early 

warning of disasters. 

However, everything has two sides, so every method also 

has two sides. The MA-SVM prediction model proposed in 

this paper also has limitations and deficiencies. Due to the 

limitations of experimental conditions, it fails to fully 

consider other factors, such as the physical properties of rock 

and soil slopes and other disaster formation factors. However, 

the application of this method has a certain premise; through 

the study of the factors influencing slope deformation in the 

study area, the internal factors affecting the slope are analysed, 

the internal factors, such as formation lithology, topography, 

elevation, and vegetation cover, are relatively stable and will 

not change much in a short time. Therefore, only 

meteorological factors and human engineering activities are 

taken into account and the influence of them on slope 

deformation and the occurrence of disasters in open-pit is 

considered in a short time. 

VI. FUTURE WORK 

To improve the prediction accuracy and spatial resolution 

of the prediction data of the deformation prediction model in 

the open-pit slope surface deformation prediction model and 

give full play to the prediction and early warning function of 

the deformation prediction model, further research work will 

be carried out in the following three aspects. 

1. The most effective way to improve the prediction 

accuracy of the deformation prediction model is to reduce 

the monitoring error from the source of the training data 

set. Improving the accuracy of ground-based interference 

radar and meteorological sensor deformation monitoring 

data can effectively improve the accuracy of the prediction 

model. In addition, the data acquisition accuracy of the 

meteorological sensor in this paper can also effectively 

improve the accuracy of the prediction model. 

2. To improve the spatial resolution of the deformation 

prediction model, the accuracy of surface mine slope 

disaster deformation prediction and prediction is related to 

the distribution location and distribution density of 

meteorological observation stations, the accuracy of 

meteorological data prediction, the accuracy of digital 

elevation model (DEM), the degree of disaster geological 

survey, and other aspects. If further improvement is 

necessary to improve the accuracy of deformation 
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prediction and prediction, the accuracy and detail of the 

above-related factors must be improved. 

3. The open-pit slope surface deformation prediction 

model should be combined with other deformation 

monitoring equipment in practical application. The 

deformation prediction model proposed in this paper has 

some technical limitations, such as monitoring range, 

single-point monitoring accuracy, image data matching, 

and other problems. Other deformation monitoring 

technologies, such as InSAR, GPS, and 3D laser scanners 

and manual field inspection mechanisms, should be 

assisted to maximise their monitoring utilisation and 

accuracy. 

Therefore, how to minimise and reduce the monitoring 

errors of various monitoring data from the original data, 

improve the collection density and spatial resolution of 

various monitoring data, and combine the practical 

application of a variety of other advanced monitoring 

equipment and manual inspection to cooperate with the 

prediction model, is the future development trend and hot 

spot of surface deformation prediction model application 

research of open-pit slope. 
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