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Abstract—Epilepsy is a neurological disorder commonly 

observed in children. Currently, electroencephalography (EEG) 

is widely used as the most important diagnostic method for 

epilepsy in medical practice. The diagnosis of epilepsy in 

pediatric patients is challenging due to their high level of activity 

and incomplete brain development. In this study, data sampled 

at 256 Hz were obtained from patients between the ages of 7–12, 

collected by Boston Children’s Hospital. First, the image 

intervals that contain seizure waves were identified in the 

datasets, and the discrete-time Fourier transform (DFT) was 

applied. The amplitude-frequency features of the frequency 

spectrum in seizure and nonseizure states were obtained, and 

patients were classified for seizure detection using a multilayer 

perceptron (MLP) based on an artificial neural network (ANN) 

architecture. In the next step, the EEG signals were resampled 

at low frequencies, and the same analyses were repeated to 

minimise the disadvantages of limiting factors such as storage 

space and processing power, resulting in reduced storage space 

usage and more efficient performance.  

 
Index Terms—Electroencephalography; Epileptic seizure; 

Discrete transforms; Machine learning. 

I. INTRODUCTION 

Epilepsy is a chronic condition that affects more than 50 

million people worldwide and requires long-term follow-up. 

It commonly manifests as epileptic seizures due to sudden 

and abnormal discharge of nerve cells from the brain [1]. 

These seizures can occur in different types and vary in 

response to treatment from person to person. There is no 

difference in incidence between males and females. Epilepsy 

is frequently observed in childhood, typically presenting in 

the early years of life and causing intellectual disability, 

learning difficulties, and hyperactivity disorder in 25 % of 

affected children [2]. 

Electroencephalography (EEG) is an imaging technique 

that is used in the diagnosis and determination of the type of 

epilepsy, as well as in the diagnosis of many other 

neurological disorders. In adults, EEG measurements can 

easily be obtained compared to those of child patients, as the 

brain has completed its development. This allows seizure 

conditions to be identified. Electrical activities in the brain 

change with age. Due to the mobility of children and the fact 

that their brain development processes have not yet been 

completed, interpreting EEG recordings of child patients is 

more difficult than that of adult patients and requires careful 

interpretation by pediatric neurologists [3]. 

In high-income countries (HICs), there are few difficulties 

in accessing hospital equipment and specialised physicians, 

while low- and middle-income countries (LMICs) often lack 

these resources. For example, in 2017, there were only 208 

neurologists working in Colombia, which means that there 

was only one neurologist per 240,000 people. Statistical 

studies by the health department estimate that there will be a 

maximum of 629 neurologists in the country by 2030, which 

is still an insufficient number [1]. Given this situation in 

LMICs, digital transformation in epilepsy diagnosis is greatly 

needed to reduce the time neurologists spend reviewing EEG 

images. The minimum time required to interpret the EEG 

images is between 30 and 60 minutes, significantly limiting 

the number of diagnoses a neurologist can make in one day. 

With the help of machine learning algorithms, much faster 

and more accurate results can be obtained [2]–[4]. 

When studies on the EEG signal classification are 

examined in this context, machine learning algorithms based 

on EEG data from childhood epilepsy patients have been 

applied to various classification methods in recent years, 

particularly using deep learning models based on different 

convolutional neural network (CNN) architectures to predict 

epileptic seizures in advance [5]. With these CNN 

architectures, 95 % accuracy can be achieved with AlexNet 

and 94.17 % with GoogleNet [1]. In another study, 

resampling techniques were investigated to reduce the effect 

of motion artifacts on EEG signals. Here, a K-nearest 

neighbour (KNN) algorithm was used to obtain a 0.98 area 

under the curve (AUC) rate and a 98.4 % accuracy rate [6]. 

However, these studies need to go further to make a more 

efficient and rapid diagnosis of pediatric epilepsy seizures 

with less storage space. Therefore, in this study, a new 

method is proposed based on resampling of childhood 

epilepsy EEG data in lower frequency ranges (128 Hz–

64 Hz) according to the Nyquist theorem [7] is proposed. 

Frequency spectra were obtained using a discrete-time 

Fourier transform (DFT) for the resampled samples in the 

proposed study. Feature reduction was performed by 

determining the mean frequency (MNF) characteristics from 

the obtained spectra. Classification was performed using the 
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obtained values together with an artificial neural network 

(ANN) architecture based on multilayer perceptron (MLP) 

structure, particularly effectively determining seizure and 

nonseizure conditions in child patients. Additionally, the 

proposed system is efficient in terms of processing speed 

while using even less storage space. 

II. MATERIAL AND METHOD 

A. Electroencephalography 

EEG was first recorded in 1924 by the German psychiatrist 

Hans Berger. Between 1929 and 1938, he published 

numerous research articles on EEG [8]. EEG signals are a 

continuous signal consisting of the oscillation of potential 

differences over time. EEG graphs are plotted as voltage 

signals over time. Each signal is the instantaneous value of 

the voltage in equally spaced time intervals [9]. EEG is an 

imaging method that records electrical signals generated by 

neurons through small electrodes placed on the scalp using a 

gel. The most common electrode placement technique is the 

international 10-20 system, which involves placing 21 

electrodes around the circumference of the skull shown in 

Fig. 1 [10]. 

 
Fig. 1.  Positions of electrode placement according to the international 10-20 

system. 

Brain waves are divided into four main categories: alpha, 

theta, delta, and beta waves shown in Fig. 2.

Fig. 2.  EEG signal obtained from different frequency regions of the FP2-F4 channel of an 11-year-old girl showing the moment of epileptic seizure.

Beta waves (12 Hz–30 Hz) typically occur during 

wakefulness and intense thinking and have a high frequency. 

Alpha waves (8 Hz–12 Hz) are typically seen in a relaxed 

mental state and have a lower frequency. Theta waves (4 Hz–

8 Hz) are typically seen during light sleep. Delta waves 

(0.1 Hz–4 Hz) are the waves with the lowest frequency and 

are typically seen during deep sleep. Human EEG largely 

contains signal power in the 1 Hz–30 Hz frequency range. 

There is some evidence that higher frequencies may also 

carry important neurophysiological information. However, 

most EEG studies are concerned with EEG signals in the 

1 Hz–30 Hz frequency range [11]. 

The effect of epileptic seizures on brain waves can vary 

depending on the type of seizure and the overall condition of 

the patient. Therefore, in this study, all channels for each 

patient are analysed in all frequency ranges, and the 

distinctive features of the frequency spectra are examined for 

effective classification. 

B. Dataset 

In this study, a total of 844 hours of EEG data were used 

from 9 pediatric patients with ages ranging from 7 to 12 years 

(Table I), which were made publicly available by Boston 

Children’s Hospital-MIT, were used. The recordings for each 

patient consisted of EEG data sampled at 256 Hz from 16 

different channels. 

TABLE I. PATIENT DEMOGRAPHICS IN THE DATASET. 

Patient No. Gender Age 

1 F 11 

2 M 11 

3 F 7 

4 F 10 

5 F 12 

6 F 9 

7 F 9 

8 F 7 

9 F 12 
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C. Signal Preprocessing 

In EEG devices, signals are typically passed through 

analogue filters, as seen in Fig. 3, before being converted into 

digital signals. This process eliminates noisy frequency 

components and obtains the desired frequency components. 

For example, a high-pass filter suppresses low-frequency 

signals (typically signals below 0.1 Hz) and passes high-

frequency signals (typically signals above 50 Hz). Similarly, 

low-pass filters suppress high-frequency signals and pass 

low-frequency signals. In addition, some modern EEG 

devices use digital filters. Unlike analogue filters, these filters 

primarily process recorded signals digitally to improve signal 

quality. Other advantages of these filters include the ability to 

change filter parameters, better frequency options, and 

greater sensitivity of the filter [12]. 

 
Fig. 3.  The preprocessing process of EEG devices signal. 

Significant frequency ranges for epilepsy diagnosis in EEG 

datasets are up to 30 Hz [10]. Therefore, the alpha, theta, 

delta, and beta frequency ranges were taken into account for 

the 256 Hz sampled signals of each patient, and all of these 

signals were filtered using second-order Butterworth low-

pass digital filter structures to eliminate high-frequency 

components in the EEG data. Additionally, the same EEG 

dataset was resampled at 128 Hz and 64 Hz frequencies [13]. 

During this process, the minimum sampling frequency was 

chosen at least twice the frequency limit of the Beta band, 

following the Nyquist theorem [7], to avoid any data loss.  

D. Obtaining Frequency Features Using DFT 

The Fourier transform (FT) expresses an exponential 

function with frequency f and time variable t in seconds as a 

periodic function of the form e±j2πft = cos(2πft) ± jsin(2πft). 

From this all sinusoids with frequencies that make up the 

original signal can be obtained. The Fourier transform is 

applied to nonperiodic continuous signals. However, when 

processing discrete-time data, the discrete-time Fourier 

transform (DFT) considers time intervals discretely and 

calculates frequency components by sampling the data at 

equal intervals, assuming that the data are periodic. As a 

result, the distinction between frequency components 

increases and the frequency components of the signal are 

more accurately identified. Therefore, in this study, DFT is 

preferred over FT. 

DFT represents a signal as a combination of complex 

exponentials known as frequencies [14] with discrete 

sampling consisting of equidistant N point. s[n], represented 

as s[0], s[1], s[2],…, s[N - 1]. In other words, in this 

transform, the given signal is considered as a periodic signal 

and applies this signal over a period of N. Applying DFT to 

s[n] generates another sequence s[k]. When DFT is applied to 

the data sequence s[n], the resulting sequence is given by s[k] 

as obtained in (1) [15] 
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In (1), for each s[n] where n = 0, 1, 2, ..., N - 1, the value 

of s[k] represents the frequency-domain output of each kth 

component as a complex number (a + jb). The imaginary part 

of s[k] contains the phase information of the signal [16], [17]. 

In the literature, s[k] is commonly referred to as the spectrum 

domain. The length of s[k] is expressed as 0 to N/2. As with 

the time-domain axis, the frequencies also periodically repeat 

from 0 to the data sampling frequency (Fs). Therefore, as a 

result of this periodicity, it corresponds to (2) 
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The sampling period of the DFT is nΔt (Δt: sampling 

interval). As seen in the above equation, the ratio k/N 

corresponds to the sampling interval per cycle [14], [16]. 

After k = N/2, the magnitude value repeats itself, but not in 

terms of the direction of the signal. The DFT transformation 

of an analogue signal, beyond the Nyquist frequency, is 

essentially in complex conjugate form. In other words, for k 

> 0, s[k] = s[N - k]*. Frequencies beyond Fs/2 are not 

included because negative frequencies are of the same 

magnitude as positive frequencies and the entire cycle repeats 

after N points. 

In the DFT process, the total observation time of the signal 

is considered as NΔt [17]. The kth value in the DFT, Fk, is 

determined based on the relationship between the sample 

number N and Δt [17], [18] 

 .k

k
F

N t



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In (1), (2) and (3), the first DFT result corresponds to 0 Hz 

(k = 0), which is equal to the sum of all signal values. For the 

2th frequency (k = 1), F1 = 1/NΔt. This continues until k = 

N/2. In other words, this point is half of the sampling 

frequency, which corresponds to the Nyquist frequency at 

Fs/2. Frequencies beyond this point, including the Nyquist 

frequency, are displayed on the negative frequency axis. All 

these features related to the DFT process are summarised in 

Fig. 4 as an example. 

 
Fig. 4.  Explanation of the DFT output data with 6 points as an example. 

In this study, raw EEG signals sampled at 256 Hz in the 

time domain were   digitally   filtered  and then  resampled at 
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256 Hz, 128 Hz, and 64 Hz to obtain the s[n] samples, which 

were then transformed into instantaneous frequency s[k] 

values at discrete time intervals using DFT. In the next step, 

to increase the speed and efficiency of the machine learning 

process before classifying epilepsy seizures, a feature 

reduction [19] was performed. In this process, mean 

frequency (MNF) values were obtained from the magnitudes 

of instantaneous frequencies at each discrete time 
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MNF is the average frequency value of each instantaneous 

frequency value obtained by multiplying the power spectrum 

density values of the signal at each instantaneous frequency 

value for J = 1, 2, ..., M and summing them up, divided by 

the same power spectrum density values of the spectrum [20]. 

In (4), fj represents the frequency of the jth frequency band, Pj 

represents the power spectrum of the signal in the jth 

frequency band, and M represents the length of the frequency 

band.  

E. Classification of Epileptic Seizure States Using MLP 

Artificial neural network (ANN) is a machine learning 

method developed from the idea of simulating the human 

brain. Artificial neurons are the building blocks of this 

system. ANN is used to solve many problems in machine 

learning, such as learning, classification, prediction, data 

compression, image processing, natural language processing, 

and more. It is formed by connecting many nodes or neurons 

shown in Fig. 5. These neurons process input data and 

generate outputs. ANN automatically adjusts its weights (W: 

1, 2, …, m) during the learning process by taking examples 

(input: 1, 2, …, m) from the data sets. This allows the 

automatic discovery of the necessary features for a model to 

perform better [21]. 

 
Fig. 5.  Example of an artificial neuron model. 

As the size and complexity of data sets increase, artificial 

neural networks perform better. One of the most popular 

methods used to evaluate EEG signals is the neural network 

models. Therefore, the multilayer perceptron (MLP) 

architecture based on the forward propagation algorithm, 

which is the most widely used artificial intelligence algorithm 

for classification, was preferred in this study [22]. 

Additionally, it provides more variable parameters compared 

to other artificial intelligence algorithms. In this study, the 

adaptive moment estimation (Adam) optimization was used 

to train artificial neural networks and optimise deviations. 

This algorithm requires less memory since it does not need to 

store all the gradient history like other optimisation 

algorithms [23], is computationally efficient, and is suitable 

for complex models dependent on large data sets. The data 

sets in the study were divided into 80 % training and 20 % 

testing. Additionally, the model created to improve the 

effectiveness of the training process was trained by grouping 

it with cross-validation at different K-fold values. This 

validation method is particularly used for the effective 

performance of the model during machine learning [4]. The 

most effective performance value obtained from the model 

we created in this study is achieved at K-fold: 5. 

The MLP structure created consists of three layers: the 

input layer, the hidden layer, and the output layer. The 

activation function used for neurons in the input layer is the 

sigmoid function shown in (5) 

 ( ) 1/ (1 ).xf x e   (5) 

Here, x is the input value given to the sigmoid function. 

The output values range between 0 and 1 [24]. This function 

f(x) is particularly used in classification problems and limits 

the output of neurons. The reason for using the sigmoid 

function in this study is that EEG signals consist mainly of 

low-frequency signals [25]. For the activation of neurons in 

the output layer, SoftMax was used. Using the SoftMax 

function in the last layer for the classification of EEG signals, 

the probability of each class is effectively calculated. The 

SoftMax function normalises the outputs to ensure that their 

sum is equal to 1 [26]. Table II shows the parameters of the 

constructed neural network model. 

TABLE II. ANN MODEL PARAMETERS OF THIS STUDY. 

Data Set Rate (%) 80 % training, 20 % test 

Input Layer Activation Function Sigmoid 

Output Layer Activation Function Softmax 

Learning Rate 0.01 

Optimisation Algorithm Adam 

Epoch 500 

K-fold 5 

 

Finally, in the classification process, data consisting of the 

MNF features of EEG signals with and without seizures in 

patients were divided into two classes using the open source 

Fieldtrip toolbox, MATLAB-based software [27], and 

classification accuracy (%) and area under curve (AUC) 

metrics were used to evaluate performance [28]. The 

accuracy rate represents the ratio of correctly classified 

examples and is calculated as shown in (6) [29] 

  
1

1
% 100.

N

k

NCCS
Accuracy

N TNS

 
  

 
  (6) 

where N is the number of classes, NCCS is the number of 

correctly classified samples, and TNS is the total number of 

samples. The AUC value, on the other hand, represents the 

area under a ROC curve and is a commonly used metric to 

measure the performance of a classification model. AUC 

measures the accuracy of the classification model, i.e., its 

ability to correctly separate positive and negative examples, 

and its value ranges from 0 to 1. The closer it is to 1, the better 

the performance of the classification model [28], [29]. 
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III. RESULTS 

The frequency spectra of the EEG recordings were 

obtained, including all channels of the patients. Figure 6 

shows the spectra of 3 different patients as an example, where 

the densities represented by the light colours in the power 

spectra are particularly observed during seizure states for 

each patient. The frequencies corresponding to these densities 

represent the seizures frequencies and are typically below 

10 Hz for all patients (Fig. 6(a)). In nonseizure states, the 

amplitudes of low-frequency components are observed to be 

quite low (Fig. 6(b)).

 
Fig. 6.  Frequency spectrum: a) Seizure status; b) Nonseizure status.

However, to increase the speed and efficiency of the 

machine learning process before classifying epilepsy seizures 

using instantaneous frequency values, a feature reduction 

process [19] is performed. In this process, mean frequencies 

(MNF) are obtained from the instantaneous frequency 

magnitudes at each discrete time. 80 % of the data containing 

these feature values were used for training, while the 

remaining 20 % were allocated for testing. The data 

containing these feature values were divided into two classes, 

seizure and nonseizure states, and classified using MLP. The 

performance results obtained from the classification are 

presented in Fig. 7, Tables III and IV. 

Figure 7 shows the performance graphs of accuracy (%) 

and the error rate obtained from the MLP trained on the 

resampled signal (Fs: 64 Hz with K-fold: 5). When 

examining this graph, it can be observed that the accuracy 

value is 98.85 % and the error rate is below 0.1. Furthermore, 

the same study was repeated with different K-fold values 

shown in Table III. 

Table III shows the accuracy (%) values obtained from 

different K-fold values for data containing MNF features 

sampled at a resampling frequency of 60 Hz (80 % training, 

20 % test). The highest accuracy rate is obtained at K-fold: 5, 

as can be seen from this table. Therefore, K-fold: 5 is selected 

and the system performance is investigated for different 

resampling frequencies. For the system’s performance, AUC 

parameters are examined this time. The results are presented 

in Table IV. 

 
Fig. 7.  Accuracy performances & loss rates for K-fold:5. 

TABLE III. ACCURACY PERFORMANCES OF MLP FOR DIFFERENT 

K-FOLD. 

K-Fold Value 
Resampling 

Freq. (Hz) 

Accuracy  

(%) 

K-Fold 

Value 

Fold 1 64 Hz 95.40 % Fold 1 

Fold 2 64 Hz 94.32 % Fold 2 

Fold 3 64 Hz 96.59 % Fold 3 

Fold 4 64 Hz 94.32 % Fold 4 

Fold 5 64 Hz 98.85 % Fold 5 
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TABLE IV. AUC PERFORMANCE VALUES OBTAINED FROM 

DIFFERENT RESAMPLING FREQUENCIES. 

Resampling EEG Data 
Resampling Freq. 

(Hz) 
AUC Parameters 

Raw EEG Data 256 Hz 0.9932 

Resampled EEG Data 128 Hz 0.9934 

Resampled EEG Data 64 Hz 0.9952 

 

As shown in Table IV, the AUC value close to 1 indicates 

excellent performance. In fact, it is clear from this table that 

even better results were achieved by resampling at lower 

frequencies compared to the results obtained with the original 

frequency of 256 Hz. Although a closer to 1 result is obtained 

at lower frequencies, samples at much lower frequencies were 

not included in the study due to the Nyquist theorem [7], 

which requires the maximum frequency in the significant 

frequency range to be at least twice the sampling frequency 

to avoid aliasing effects. Since the frequency range of interest 

in this study was up to 30 Hz, sampling at a frequency of 

64 Hz was considered due to the Nyquist theorem. 

IV. DISCUSSION 

In recent years, various classification methods have been 

developed based on EEG data from childhood epilepsy 

patients. In particular, deep learning models based on 

different architectures of convolutional neural networks 

(CNNs) have been used to predict epileptic seizures using 

EEG signals, achieving accuracy performances of 95 % with 

AlexNet and 94.17 % with GoogleNet [1]–[5]. However, 

CNN structures based on the deep learning approach, 

especially, process signals in 2-dimensional format [30]. 

Therefore, performing complex and time-consuming 2D 

signal processing on EEG signals can be a computationally 

demanding task. In recent literature, studies are also being 

conducted using normal machine learning classification 

methods for EEG signals [31], [32]. These studies have 

achieved classifier performance at levels of 98.4 % and 0.98 

AUC [6]. 

However, the sampling frequencies for raw EEG data are 

generally in the range of 256 Hz. In this study, a model is 

proposed focussing on fast processing and effective 

evaluation of raw EEG data sampled at 256 Hz, which is 

different from other studies. When examining Tables III and 

IV, the proposed model shows particularly high efficiency, 

with 98.85 % accuracy and 0.9952 AUC. This model is based 

on an artificial neural network (ANN) architecture, 

specifically a multilayer perceptron (MLP) model, and 

utilises feature reduction based on reducing the instantaneous 

frequency values obtained from the discrete-time Fourier 

transform (DFT) to the mean frequency (MNF), taking into 

account only the frequency intervals in which childhood 

epilepsy seizures are observed and resampling at a lower 

frequency (e.g., 64 Hz) in lower frequency ranges. This 

model is a contribution to the literature. 

This allows for a reduction in the number of samples that 

need to be processed through resampling, thereby reducing 

the computational complexity involved in processing EEG 

signals. Furthermore, when used in conjunction with feature 

reduction, it reduces the dimensionality of data, requiring less 

memory and computational power for the storage and 

processing of EEG signals. Resampling at low frequencies 

can increase the time resolution of EEG signals, allowing for 

better tracking of rapid changes in the signals. It can also help 

smooth out high-frequency noise or other unwanted signals, 

thus reducing or eliminating distortions in the signal and 

obtaining a better signal-to-noise ratio. Changing the 

sampling frequency of EEG signals can accommodate 

different processing techniques or analysis methods. It can 

also align different EEG signals from different sources or 

devices to the same sampling frequency, making them 

compatible with each other [12]. In this study using 

resampling, considering the age-related changes in electrical 

brain activities and the fact that EEG recordings of child 

patients are more difficult to interpret than those of adult 

patients due to child movement and incomplete brain 

development, careful interpretation by child neurologists is 

required [3]. Moreover, in low- and middle-income countries, 

digital transformation in childhood epilepsy diagnosis is also 

important to reduce the time it takes for neurologists to review 

EEG imaging. 

V. CONCLUSIONS 

In this study, raw EEG recordings sampled at 256 Hz from 

9 patients aged between 7 and 12 years of age obtained from 

Boston Children’s Hospital were processed by resampling the 

signals at the same frequency of 256 Hz and then again at 

lower frequencies. The results were compared in a 

comparative analysis. 

All resampled samples were processed using the DFT to 

obtain instantaneous frequency values generated in discrete 

time and then reduced to MNF features. The resulting MNF 

features were effectively classified using ANN-based MLP 

structures, achieving 98.85 % accuracy and 0.9952 AUC 

performance parameters in differentiating seizure and 

nonseizure states. Furthermore, considering the low 

resampling frequency (e.g., 64 Hz) and the use of feature 

reduction, this study is important in terms of storage space 

and processing speed performance. 
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