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1Abstract—Blind Source Separation is an optimization 

method frequently used in statistical signal processing 

applications. There are many application areas such as 

ambient listening, denoising, signal detection, and so on. In this 

study, a new Strength Pareto Evolutionary Algorithm 2-based 

signal separation method is proposed, which combines Multi-

Objective Optimization and Blind Source Separation 

algorithms. The proposed method has been tested for 

denoising, which is widely used in biomedical signal processing. 

That is, the Electrocardiogram (ECG) and White Gaussian 

Noise are mixed together with normally distributed random 

numbers and the original signals of the mixed signals are 

obtained again. To evaluate the performance of the proposed 

method and others (Multi-Objective Blind Source Separation 

and Independent Component Analysis), the Signal-to-Noise 

Ratio (SNR) of the ECG signal obtained from mixed signals 

has been measured. As a result of the simulation studies, it is 

seen that the performance of the proposed method is 

satisfactory.  

 

 Index Terms—Blind source separation; Denoising; Multi-

objective optimization; Strength Pareto evolutionary algorithm 

2; Optimization. 

I. INTRODUCTION 

Blind Source Separation (BSS) is a popular topic that is 

widely applied and has attracted great attention in the field 

of signal processing [1]. Denoising in medical electronics, 

signal detection in radar systems, and signal estimation in 

ambient listening are frequently used for BSS applications 

[2]. Technically, BSS can be defined as the estimation of the 

signals that make up this mixture from the mixture of 

signals without prior information [3]. Usually in BSS the 

source signals are estimated by optimization algorithms 

using an objective function. Optimization with a single-

objective function (single-optimization) may not be 

sufficient for BSS in some application areas such as 

biomedical. Multi-Objective Optimization (MOO) methods 

are used to find a set of optimal solutions for such problems. 

MOO is a method that solves problems involving more than 

one objective function to be optimized simultaneously [4]. 
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Since there is no information on the statistical properties of 

the signals and the mixing process in BSS, this process is 

explained by the Cocktail Party Problem (CPP) in the 

literature. Suppose that there are more than one person in a 

room and they are talking simultaneously. At the same time, 

imagine that there are many microphones in this room and 

the sounds of the people speaking are recorded. Estimate the 

original source signals from the sounds recorded by the 

microphone is defined as CPP [5]. For the solution of CPP, 

Independent Component Analysis (ICA), Joint Approximate 

Diagonalization of Eigenmatrices (JADE), and Non-

negative Matrix Factorization (NMF) algorithms are the 

most frequently used methods [6]–[8]. Pelegrina, Attux, and 

Duarte [9] proposed a method to separate mixed signals 

with the MOO method. Studies have been carried out on the 

MOO-based ICA method for fMRI data analysis, as well as 

to remove the noise of the Electroencephalogram (EEG) 

signal in biomedical signal processing [10]–[12]. BSS is 

widely used in communications and audio source separation 

[3], [13]–[15]. BSS is also widely used in the separation of 

biomedical signals. These studies are mostly used to 

separate the electrocordiogram signals of the unborn child 

and the mother. However, in these studies, the single-

optimization problem is applied. In some studies, the aim is 

to denoise biomedical signals such as ECG by means of 

single-optimization methods. In these studies, the use of 

single-optimization may be insufficient to separate 

biomedical signals with different statistical properties. 

In this study, the Multi-Objective BSS (MO-BSS) method 

is examined, and a new method that increases the accuracy 

of the estimation in signal separation is proposed. In the 

proposed method, the signs are randomly mixed and the 

centralization and whitening process are applied. ECG and 

White Gaussian Noise signals randomly selected from the 

database have been used in the simulation study. In the 

proposed method, two different objective functions are 

determined and these objective functions are minimized by 

the Strength Pareto Evolutionary Algorithm 2 (SPEA2). In 

this direction, the aim is to develop an algorithm that 

separates mixed signals better than MO-BSS. 

The remainder of this paper is organized as follows. In 

Section II, general information about BSS and MOO 
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methods is given. The proposed MOO is explained in 

Section III. The simulation results are presented in Section 

IV, and some concluding remarks are made in Section V. 

II. MATERIALS AND METHODS 

A. Blind Source Separation 

BSS is the separation of a set of source signals from a set 

of mixed signals without prior knowledge of the mixing 

process, which is a fundamental problem in the field of 

signal processing [16]. In the solution of the BSS problem, 

the separation process is performed on the basis of the 

statistical properties of the source signals. However, this 

requires some assumptions about the sources to be made. 

These assumptions are that the source signals are 

statistically independent and do not have a Gaussian 

distribution [17]. It is the statistical calculation of the 

independence ratios of the signals in the mixture and the 

separation of the signals in the mixture according to this 

calculation. The mathematical expression of the mixture of 

independent source signals in the BSS algorithms is 

expressed as follows 

 ( ) ( ),x t As t  (1) 

where ( ),x t  ,A  and s(t)  are the received signal vector, the 

mixing matrix, and the original sources, respectively. In the 

BSS algorithm, Z  is considered as the inverse of A ' as the 

decomposition matrix. The estimate of ,s(t)  a random 

variable, is expressed by ( )y t  and is expressed as follows 

 ( ) ( ),y t Zx t  (2) 

where ( ),x t  the matrix ,A  is tried to be estimated with a 

linear transformation. The independent components are tried 

to be found by multiplying ( )x t  with the ,Z  which is the 

inverse of .A  It is assumed that the signals found by the 

transformation result are independent from each other as 

much as possible [18], [19].  

The decomposition matrix found in (2) includes the 

solution of a single-objective optimization problem, where 

the BSS problem is focused on a single solution and the set 

of resources has a single estimated solution. As shown in 

(3), the solution J(W)  is obtained with a single feature of 

the sources such as sparsity, non-Gaussian, etc. 

 min ( ).J W
w

 (3) 

In practice, it may be necessary to have two or more 

guesses to make a decision. In this case, it may be more 

accurate to use MOO methods. 

B. Multi-Objective Blind Source Separation Method 

The MO-BSS method is used in BSS problems to find the 

optimal solution values of more than one desired objection. 

In MOO, there is no single best solution for all objections; 

instead, there are several solutions. Its mathematical 

representation is given in (4) 

 
1 2

,min ( ), ( )W Wf f
w

 
 

 (4) 

where 
1

f  and 
2

f  are the objective functions [20]. It is 

often very difficult to find a single solution among cost 

functions that minimizes all of them. The solution to this is 

to find the set of non-dominant points in the minimization 

problem. The concept of Pareto optimality is used to solve 

this problem [9]. 

The Pareto method is used to distinguish possible 

solutions in a dominant/non-dominant way in optimization. 

In MOO, a solution is dominant if an objective function 

improves its values without affecting the other objective 

function (without reducing its performance). This 

phenomenon is called “Pareto optimality”. If the solution of 

one objective function can be improved without reducing 

the other objective function, it is defined as a non-Pareto 

optimal solution [20], [21]. 

Evolutionary algorithms are generally used to obtain the 

Pareto optimal solution set. Although evolutionary 

algorithms do not guarantee optimality, it is a very popular 

method among multi-objective techniques. The Strength 

Pareto Evolutionary Algorithm (SPEA) has been introduced 

by Zitzler and Thiele [22]. Subsequently, the necessary 

updates were made by Zitzler, Laumanns, and Thiele [23] 

and used as SPEA2. Both can be given as examples of 

evolutionary-based MOO methods. Its enhanced version, 

known as SPEA2, will also be used in the signal separation 

techniques that will be presented in this study [9]. 

C. Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

The SPEA is a method developed to find or approximate 

the Pareto-optimal set for MOO problems [9]. The 

implementation of the SPEA2 method is explained in 

Algorithm 1 [24]. 

 
Algorithm 1. SPEA2 algorithm.  

Input: N  (population size), N  (archive size), T  (indicates 
maximum number of generations) 
Output: A  (denotes non-dominated set) 

S.1: Initial population 0( )P  and create empty archive 0( ).P   Set 

0.t   

S.2: Assign the fitness of the individuals in tP  and .tP  

S.3: Copy all non-dominated individuals into tP  and tP  to 1tP  

keeping the size .N  
S.4: If t T  or another stopping criterion is satisfied, then set A  to 

the set of decision vectors in .1tP  Stop. 

S.5: Fill a matting pool using a binary tournement on .1tP  

S.6: Apply recombination and mutation operators to the mating pool 

and set 1tP  to the resulting population. Increment generation counter 

( 1)t t   and go to S.2. 

 

SPEA uses an external archive containing previous non-

dominant solutions, which is stored in the archive and 

updated after each iteration [23]. Archive members 

participate in the newly calculated population process. In the 

SPEA2 algorithm, a power ( )S i  is calculated for each 

solution 

  ( )S i j j P P i jt t        (5) 

where ,  ,   represent the cardinality in the set, the 
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union of multiple sets, and the symbol of the Pareto 

domination relationship, respectively. 
tP  and 

tP  represent 

population and empty archive. According to ,S  i th the raw 

fitness value ( )R i  calculated for the individual is given in 

(6) 

 
,

.( ) ( )
j P P j i

t t

R i S j
 

   (6) 

This fitness value is formed by the number of dominant 

and non-dominant solutions in a population. Therefore, it 

uses the archive truncation method to preserve boundary 

solutions and the nearest neighbor approach to preserve 

diversity [25]–[27]. 

D. Objective Functions 

Two objective functions are used to separate the ECG 

signal from the White Gaussian Noise. The first objective 

for MOO is adapted to the minimization problem, and this 

optimization process is given in (7) 

 2

11 ,( ) ( ) ( )T T
i iiJ W E W x t x t w

 
 

    (7) 

where T

iW  represents the row i th of .W  It is determined 

based on a predefined delay   of the calculation of 
1( ).J W  

The 
1 norm  minimization method is used as the second 

objective function. The purpose of SPEA2 is to take into 

account the sparseness of the resources 

 2 1
12

2

.
( )

( )
( )

T
i

i T
i

W x t
J W

W x t
   (8) 

It is seen that the criteria used in MOO have different 

structures from each other. In addition, autocorrelation is 

used to take advantage of the temporal nature of the signals 

received. Therefore, the solution of the MOO problem is 

calculated as follows 

 2 2 1
1 1

2

.
( )

( ) ( ) ,min
( )

T
i

T T
i ii i T

i

W x t
E W x t x t w

W x tW


 

 
  
  
  

    (9) 

With the MOO optimization method, the separation 

criteria are optimized simultaneously. As a result, values 

closer to the objective functions are obtained in each 

iteration. Taking into account Pareto in this optimization, 

the processing time may take a long time. Therefore, the 

processing time of MOO tends to be slower than that of 

single-objective methods [9]. 

III. PROPOSED METHOD 

The MOO method has been applied to BSS methods, and 

success has been achieved. A number of studies have been 

carried out to increase the success rate in the analysis of 

biomedical signals for human health. Before the SPEA2 

algorithm will be used for BSS, the signals have been mixed 

randomly and pre-processed for centralization and 

whitening. Thus, in addition to facilitating data processing, 

it is aimed to reduce the data size and provide rapid 

convergence. The block diagram of this method is shown in 

Fig. 1. 

 
Fig. 1.  Proposed block diagram [17].  

The first pre-processing step that can be done is the 

centralization process. Centralization means that the mean 

value of the variable is set to zero. In other words, it is to 

subtract the average value of the measurement data from all 

the elements in the measurement data. This process 

simplifies the BSS algorithms. The mathematical expression 

of centralization is given by (10), where  E x  is the 

expectation operator 

  .x x E x   (10) 

Another important pre-processing step is the whitening of 

the signal. Some linear transformation must be performed so 

that the observation vector x  is uncorrelated and has unit 

variance. Eigenvalue decomposition is used to perform the 

whitening transformation in a simple way. Thus, the 

mathematical expression of the decomposition of the 

covariance matrix of x  is given by (11) 

   ,
TTE EDExx   (11) 

where  TE xx  and E  denote the covariance matrix of x  

and the orthogonal matrix of eigenvectors, respectively. D  

represents the diagonal matrix of its eigenvalues, namely 

1 .( ,..., )nD diag d d  The whitening process is represented 

by (12) and 
1

2D


 corresponds to taking the square root of 

the diagonal eigenvalues 
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1

2 ,
T

xx ED E


  (12) 

where x  represents the whitened observed signals. The 

effect of whitening on the mixing process is given below 

 
1

2 .Tx ED E As As


   (13) 

As can be seen in (12), the matrix A  (whitened mix 

matrix) after whitening has now become an orthogonal 

matrix. The next step is to apply the whitened signals to the 

MOO method. Size reduction in the parsing matrix with pre-

processing will greatly improve the convergence speed and 

stability performance of the algorithm. Therefore, the 

success rate in BSS will increase significantly with MOO 

[28], [29]. 

IV. EXPERIMENTAL RESULTS 

ECG and White Gaussian Noise signals are used to 

evaluate the performance of the proposed method. These 

signals are taken from the database source [30]. The 

proposed method has been applied to the MO-BSS and ICA 

algorithms by randomly mixed two different signals. To 

obtain the numerical values of the results, the algorithm has 

been run 100 times and the Signal-to-Noise Ratio (SNR) has 

been taken into account. The real experimental environment 

has been provided by randomly mixed the signals in each 

cycle.  

As seen in Fig. 2, the original signals, randomly mixed 

signals, and suggested method results are shown in 1500 

sample sizes. 

The non-dominant solution set results are shown in Fig. 3 

by applying two different objective functions to the SPEA2 

algorithm. These results are the minimum solutions in the 

non-dominant set. Instead of finding a single solution, the 

Pareto-optimal set and the best solutions are shown in the 

graph. The user can estimate the source signal by choosing 

an appropriate solution from this non-dominant Pareto-

optimal set. The graph is taken from a random loop of the 

algorithm. 

Performance analyzes have been calculated using the 

SNR value shown in (14) to prove the accuracy of the signal 

separation process according to time-correlation and 

1 norm  objective functions [31], where,  
iE  represents 

the expected value, 
is  represents the source signals, and 

in  

represents the noise signals 

 
 
 

2

10 2
.10log

i i

i i

E s
SNR dB

E n

 
 
 
 
 

  (14) 

SNR for White Gaussian Noise have been measured for 

different values between 1000 sample length and 5000 

sample length, and the results are given in both Fig. 4 and 

Table I. It is seen that the performance of the method we 

propose for White Gaussian Noise is more successful than 

the MO-BSS method.  

Especially in the White Gaussian Noise, the prososed 

method has definitely proven to give better results than the 

MO-BSS method. As can be seen in Fig. 4, it cannot be said 

that the sample lengths make a positive contribution to the 

separation performance. However, it should not be forgotten 

that increasing the sample length will increase the 

processing cost, and thus the separation time. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.  (a) Original, (b) mixture, and (c) estimated source marks. 

 
Fig. 3.  As a result of the convergence of the SPEA2 algorithm, the non-

dominant cluster. 

 
Fig. 4.  SNRs for the noise signal. 

TABLE I. SNR VERSUS SAMPLE LENGTH FOR WHITE GAUSSIAN 

NOISE.  

Number of 

Samples  

MO-BSS 

(SNR) 

Proposed 

(SNR) 
ICA (SNR) 

1000 20.1 16.6 22 

2000 22 23.6 22.4 

3000 16.7 19.8 20.4 

4000 16.3 21.5 21 

5000 20.9 23 21.5 

 

Due to the mixing matrix and the nature of the source 

signals used, the ICA method has been partially successful, 

especially in the estimation of the White Gaussian Noise. 

Figure 5 and Table II show that the performance of the 

proposed method gives better results when the sample size 
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increases in the ECG signal. 

 
Fig. 5.  SNRs for the ECG signal. 

TABLE II. SNR VERSUS SAMPLE LENGTH FOR ECG. 

Number of 

Samples  

MO-BSS 

(SNR) 

Proposed 

(SNR) 
ICA (SNR) 

1000 22.2 21.3 24.2 

2000 20.2 20.5 22 

3000 18.5 20.9 21.2 

4000 22.6 28 21 

5000 23.2 26 22.1 

 

Figure 6 is given for the success of the White Gaussian 

Noise separation of the proposed method.  

 
Fig. 6.  SNRs for the White Gaussian Noise (100 runs for the proposed 

method). 

It should be noted here that the methods used in the study 

for Monte Carlo analysis have been run 100 times, and the 

averages of the result values have been calculated. When 

looking the graph carefully, it is observed that the SNR is 

between 12 dB and 50 dB. 

Figure 7 shows the SNR of the ECG signal for each 

Monte Carlo analysis cycle [32]. The main reason for these 

changes is the mixing matrix. As mentioned above, the 

mixing matrix is generated randomly. Furthermore, since 

the initial values are randomly assigned in the SPEA2 

algorithm, these assigned variables should be expected to 

affect the detection performance. It has been observed in 

Fig. 7 that it varies between 15 dB and 50 dB, as in the 

previous figure. 

 
Fig. 7.  SNRs for the ECG signal (100 runs for the proposed method). 

TABLE III. OPERATION TIMES OF ALGORITHMS. 

Number of 

Samples 
MO-BSS (s) Proposed (s) ICA (s) 

1000 5.83 5.75 1.8 

2000 6.33 6.21 1.8 

3000 6.92 6.9 2 

4000 7.1 7.07 2.1 

5000 7.44 7.38 2.2 

 

In addition, it can be said that the proposed method 

decomposes ECG more successfully. Considering the signal 

separation performance of BSS algorithms, it can be said 

that almost all of them outperform other signals for White 

Gaussian Noise. 

The operation times of MO-BSS, the proposed method, 

and the ICA method are given in Table III for different 

sample lengths. When the proposed method is compared in 

terms of MO-BSS operation times, it is seen that the 

proposed method is slightly advantageous. Since the 

operation time of the ICA method, which is the most 

frequently used with a single-objective function, does not 

use an evolutionary algorithm, the operation time is quite 

low. 

V. CONCLUSIONS 

Many BSS methods in the literature estimate source 

signals using a single-objective function. Especially in 

recent years, MOO algorithms are applied to BSS methods, 

which are frequently used in biomedical, communication, 

and security. Since no method is perfect in the separation of 

mixed signals, the existing methods have been developed 

and the best has been tried to be obtained. 

In this study, we proposed applying pre-processing to the 

MOO method. With this study, it has been proven that we 

have increased the performance of our main objective, MO-

BSS, at the same time, the usability has been proven by 

comparing the results with the single-objective ICA method, 

which gives successful results. The proposed method has 

been compared with the performances of MO-BSS and ICA. 

As a result of the simulation studies, the superiority of the 

proposed method over the traditional MO-BSS algorithm is 

confirmed. These comparison results have provided 

applicable results to users in the correct analysis of vital 

biomedical signals. In addition, the proposed method has 

low computational cost and high separation quality 

compared to MO-BSS. 
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