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1Abstract—Paper proposes a two-step Convolutional Neural 

Network (CNN) pruning algorithm and resource-efficient 

Field-programmable gate array (FPGA) CNN accelerator 

named “Argus”. The proposed CNN pruning algorithm first 

combines similar kernels into clusters, which are then pruned 

using the same regular pruning pattern. The pruning 

algorithm is carefully tailored for FPGAs, considering their 

resource characteristics. Regular sparsity results in high 

Multiply-accumulate (MAC) efficiency, reducing the amount of 

logic required to balance workloads among different MAC 

units. As a result, the Argus accelerator requires about 170 

Look-up tables (LUTs) per Digital Signal Processor (DSP) 

block. This number is close to the average LUT/DPS ratio for 

various FPGA families, enabling balanced resource utilization 

when implementing Argus. Benchmarks conducted using 

Xilinx Zynq Ultrascale + Multi-Processor System-on-Chip 

(MPSoC) indicate that Argus is achieving up to 25 times higher 

frames per second than NullHop, 2 and 2.5 times higher than 

NEURAghe and Snowflake, respectively, and 2 times higher 

than NVDLA. Argus shows comparable performance to MIT’s 

Eyeriss v2 and Caffeine, requiring up to 3 times less memory 

bandwidth and utilizing 4 times fewer DSP blocks, 

respectively. Besides the absolute performance, Argus has at 

least 1.3 and 2 times better GOP/s/DSP and GOP/s/Block-RAM 

(BRAM) ratios, while being competitive in terms of 

GOP/s/LUT, compared to some of the state-of-the-art 

solutions.  

 
 Index Terms—Machine Learning; Accelerator architecture; 

Convolutional Neural Network pruning; Edge-based 

computing. 

I. INTRODUCTION 

Deep learning [1] has become one of the most powerful 

tools for solving a wide range of problems in different fields 

[2], [3]. One of the most used members of the Deep learning 

field today are Convolutional Neural Networks (CNN). 

Theoretical foundations of CNNs have been developed 

twenty years ago [4], but the first successful CNN 
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architecture was the winning algorithm of the Image 

classification competition in 2012, widely known as 

AlexNet [5]. From that time, every winning entry in the 

competition was from the class of CNNs. However, the 

exceptional accuracy of CNNs comes with high 

computational and storage costs. One of the most 

demanding CNNs in terms of computational load and 

storage is VGG-16 [6]. It performs almost 31 billion 

operations to classify one image with a resolution of just 

224×224 pixels. Although VGG-16 is very regular in terms 

of kernel size and layer structure, its accuracy is low 

considering recent, more complex architectures, like 

Inception [7], ResNet [8], NASNet [9], and MobileNet [10]. 

The improvements are mainly derived from much deeper 

network structures compared to only 16 layers of VGG. 

Even though the number of parameters has dramatically 

decreased (from 138 million in VGG-16 to 23 million for 

Inception v3), the additional layers and their structures 

introduced new complexity for dedicated CNN hardware 

due to the different data flows required to process each new 

layer type. Different types of kernels and filter numbers per 

layer change our view of how underlining CNN hardware 

should be developed to accommodate current and future 

improvements in the field. Another layer of complexity was 

added by demand to efficiently process the compressed 

CNN [11]. 

The development of specialized CNN hardware 

accelerators started almost immediately with the 

introduction of CNNs. Some of successful Application-

specific integrated circuit (ASIC) architectures are Eyeris v2 

[12], Cambricon-x [13], Eyeris [14], NullHop [15], 

DaDianNao [16], SparseNN [17], ENVISION [18], Thinker 

[19], UNPU [20]. Significant growth in the number of 

proposed Field-programmable gate array (FPGA) CNN 

accelerators was mainly driven by the introduction of more 

flexible and versatile FPGA-based SoCs, like the Xilinx 

Zynq family. While ASIC solutions almost always deliver 

the best performance, modern FPGAs offer comparable 

performance and acceptable power consumption with the 

advantage of possible reconfiguration, which can help 

accommodate new CNN layer types. 

Most of the dedicated hardware architectures, both ASIC 

and FPGA, use a 2D array of Processing Elements (PE) 
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which are built around MAC units, with additional local 

memory for storing intermediate results of computations. 

Additional hardware is responsible for feeding this array 

with weights and input feature map (IFM) activations. This 

approach is very efficient when the layers are large in terms 

of the number of kernels and IFMs, like in VGG-16 and 

AlexNet. In this case, there is a big reuse of IFM points, 

which results in simple broadcast networks over PEs. With 

the introduction of new layer types, like the Depthwise layer 

in MobileNet v1 [10], and layers that have a smaller number 

of kernels than the size of a 2D array of PEs, the efficiency 

of this approach significantly decrees. For example, we can 

observe that the greatest improvement in performance 

between Eyeriss v1 [14] and v2 comes from data routing 

networks. This is a typical example of the fact that the 

number of PEs is not the only factor that defines the 

performance of the architecture, but rather both the number 

of PEs and the clustering of PEs in smaller groups with 

dedicated data buffers. 

Unlike the approach that uses a 2D array of PEs, Argus 

has a dedicated PE for every channel of the output feature 

map (OFM). This approach maximizes data sharing among 

PEs because all PEs are processing the same part of IFM 

with different kernels. The main differentiation compared to 

most of the previously proposed CNN accelerators is 

Argus’s capability to process CNNs that are compressed by 

a carefully tailored pruning algorithm, which maximizes and 

balances the utilization of available hardware resources on 

FPGAs. Compression algorithm clusters similar kernels into 

groups that have non-zero weights located at the same 

positions, reducing the skipping logic by cluster size. 

Furthermore, individual kernels are pruned in a structured 

manner. To reduce hardware requirements and to evenly 

distribute computations through PEs, Argus does not skip 

zeros in IFMs. Zeros in IFMs usually have a highly irregular 

distribution, which requires additional hardware for 

balancing the workload between PEs. In addition, Argus 

base architecture can be easily scaled to a more powerful 

version by stacking multiple PE modules with a 

proportional increase in terms of hardware cost. In 

summary, this work makes the following contributions: 

1. Clustering of similar kernels into groups of kernels, 

which will have non-zero weights located at the same 

positions. Clustering reduces zero-skipping logic by a 

factor of 2 and it is independent of the underlining 

pruning method. Furthermore, it reduces on-chip memory 

used for storing non-zero weight positions. 

2. Improvement of the existing Accelerator-aware 

pruning algorithm [21], which reduces zero-skipping 

hardware blocks of the original algorithm by an 

additional factor of 2. While the base algorithm takes into 

consideration only the weight magnitude for the decision, 

which weight to prune, the proposed CNN pruning 

algorithm also accounts for the LUT size to further 

constraint the pruning process. 

3. Development of a complete accelerator that supports 

the developed CNN pruning algorithm. To the best of our 

knowledge, Argus achieves state-of-the-art performance 

density among FPGA accelerators in terms of GOP/s/DSP 

and GOP/s/BRAM, while being competitive with the 

current state-of-the-art considering GOP/s/LUT. 

Argus is not the first CNN accelerator that benefits from 

processing sparse CNNs. Some of the previous works that 

benefit from sparsity in IFM are NullHop [15] and 

DaDianNao [16]. Similar to Argus, SparseNN [17] and 

Cambricon-x [18] take advantage of skipping zeros in CNN 

weights. Beside mentioned, there are many other high-

quality architectures in terms of performance, like Eyeriss 

v2 [12], ENVISION [18], Thinker [19], UNPU [20], 

Snowflake [22], Caffeine [23], CoNNa [24], and 

architectures in [25]–[27]. 

II. FPGA-AWARE PRUNING ALGORITHM 

Let us start by introducing the terminology that will be 

used in the remainder of this paper. Every layer’s input 3D 

tensor will be called the “input feature map” (IFM), while 

every output of a layer will be called the “output feature 

map” (OFM). The IFM bundle designates a local region of 

IFM with a size of NxMxD that is used for one convolution 

or pooling computation. IFM bundle is composed of several 

IFM sticks, as illustrated in Fig. 1. 

 
Fig. 1.  Illustration of the feature map, feature map bundle, and stick. 

The number of network parameters, together with large 

intermediate tensors (IFM/OFM) and the required number 

of MAC operations, generate high computational and 

memory cost of CNN processing. Authors of Eyeriss [12] 

state that their accelerator expects at least 25 GB/s of 

memory bandwidth while using 384 MACs to tackle 

computational complexity. One way of reducing CNN 

computing and memory requirements is to use CNN pruning 

(also known as network compression). CNN pruning 

procedures can be divided into two groups: 

 Fine-grain approaches, where the algorithm decides 

which parameter is redundant at the granularity of a 

single parameter (weight) in each kernel. Han, Mao, and 

Dally [28] demonstrate a massive reduction in terms of 

used parameters of up to 9 times for AlexNet using this 

pruning approach. The fine-grained pruning approach 

usually results in high, but irregular sparsity. It is very 

difficult to take advantage of this kind of sparsity with the 

reasonable cost in terms of additional hardware used for 

balancing workloads between MACs and zero-skipping 

logic.  

 Coarse-grain approaches, in which the pruning 

algorithm removes complete kernels [29]. This type of 

pruning does not introduce irregular sparsity patterns in 

the convolutional layers, which is a big advantage over 

fine-grain pruning. Almost every CNN accelerator 

benefits from this approach. The disadvantage is that 

coarse-grained pruning algorithms cannot achieve the 
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pruning levels of fine-grain pruning approaches. 

Introducing regularity in fine-grain pruning overcomes 

the main disadvantages of complex zero-skipping patterns 

compared to coarse-grain while retaining high pruning 

factors. Argus applies two optimization techniques to reduce 

hardware requirements and to balance the workloads 

between PEs. First is kernel clustering, which reduces the 

complexity of logic by using only one zero-skipping block 

for the whole cluster of PEs instead of one per PE. One way 

of kernel clustering is presented in Cambicon-S [30], but the 

idea was not widely used, especially in synergy with other 

pruning techniques. The idea of clustering is to group 

kernels/neurons inside convolutional/fully-connected layers 

into clusters by the criteria of similarity and to prune all 

kernels in a cluster in the same way. The pruning outcome is 

shown in Fig. 2. The output of this pruning will be a sparse 

CNN, which has clusters of kernels with the same positions 

of non-zero weights within every cluster. Please notice that 

the positions of non-zero weights can differ between 

clusters. Because of this property, the underlining 

accelerator can use one zero-skipping module for the entire 

cluster of PEs instead of one module per one PE. The size of 

the cluster determines the reduction factor of the logic used 

for skipping zero multiplications.  

 
Fig. 2.  Clusters of kernels in one layer. Grey represents the remaining non-

zero weights. 

Algorithm 1 presents the proposed kernel clustering 

approach and reordering of kernels within cluster groups. In 

the beginning, the cluster_and_reorder_CNN algorithm 

goes through a CNN model creating clusters for each 

convolutional and fully-connected CNN layer. For each 

layer, it calls cluster_layer function, which returns clusters 

for the current layer. Cluster_layer takes the weights tensor 

and creates a kernel similarity matrix (sim). The dot product 

is used as a measure of similarity between two kernels. 

After the similarity matrix is created, it is passed to the 

iterative Kerninghan-Lin (KL) clustering algorithm. 

Because of KL algorithm definition, after the first iteration, 

the kernels are divided into two groups with an equal 

number of kernels. For example, if the layer contains 16 

kernels, after the first iteration of the KL algorithm, two 

clusters, each containing eight kernels, will be returned. In 

the second step, the KL algorithm is applied to these two 

clusters of eight kernels to further partition kernels into four 

clusters each having four kernels. After the final step of the 

KL algorithm, the output will be eight clusters of two 

kernels each.  

After clusters are created, cluster_and_reorder_CNN 

function reorders kernels and channels inside 

convolutional/fully-connected and batch normalization 

layers. Reordering CNN model kernels is illustrated in Fig. 

3, showing two layers with eight kernels. Imagine that 

clustering of Layer 0 returns four clusters: [3, 6], [2, 7], [0, 

1], and [4, 5]. Before CNN model is deployed to the 

accelerator, the kernels inside each convolutional layer must 

be reordered in accordance with the computed clusters. 

Reordering of kernels will cause different processing order 

for OFM channels at the output of the accelerator (the 

orange arrow represents OFM channel stream in Fig. 3). To 

avoid on-line reordering inside FPGA, the kernel channels 

of the successor layer need to be reordered in the same way 

as the kernels are reordered in the predecessor layer (Fig. 3, 

right). 

 
Algorithm 1. Kernel clustering. 

func cluster_and_reorder_CNN(CNN_model) 
  for layer in CNN_model: 

    clusters[layer] = cluster_layer(CNN_model,                                                                                                             

                                    layer.name) 

  for layer in CNN_model: 

    conv_pred = find_pred(CNN_model,layer) 

    if(layer.type == Conv): 

      reor_kernels(cluster[layer]) 

      reor_channels(cluster[conv_pred]) 

    if(layer.type == BatchNorm): 

      reor_channels(cluster[conv_pred])   

 

func cluster_layer(CNN_model,layer_name) 

  weight_tensor = 

get_tensor(CNN_model,layer_name) 

  kernel_num = length(weight_tensor) 

  for i in range(0, kernel_num):  

    for j in range(i+1, kernel_num): 

      sim[i][j] = dot_product(weight_tensor[i], 

                    weight_tensor[j]) 

  clusters = Iter_Kerninghan_Lin(sim) 

  return clusters 

 
Fig. 3.  Kernel channel reordering due to clustering. 

In other words, the kernels of the first convolutional layer 

are reordered in the way in which they are clustered. 

Successor layers will get reordered OFM, so their channels 

need to be reordered in the same way as the first layer’s 

kernels.  

To further increase regularity (between clusters), Argus 

uses a modified version of Accelerator-aware pruning 
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algorithm proposed by Kang in [21]. Accelerator-aware 

pruning belongs to the fine-grained group of pruning 

algorithms. It solves the problem of irregular sparsity, which 

is the major drawback of most fine-grained pruning 

algorithms. However, it is not optimized for FPGA 

implementation. The authors did not take into consideration 

particular characteristics of FPGA resources, namely, LUTs, 

which will be used to implement zero-skipping logic. Argus 

modification to the original algorithm [21] takes into 

account LUT characteristics and further constrains the 

positions of non-zero weights regarding the available LUT 

size. As a result, the skipping logic is reduced by half when 

compared with the algorithm proposed in [21], while CNN 

accuracy is not degraded. The basic idea of Kang’s pruning 

algorithm is to split the kernel weights into groups with an 

equal number of weights and then set the same amount of 

the smallest weights to zero in all groups, as shown in Fig. 

4.  

 
Fig. 4.  Accelerator-aware pruning. Group size equals eight, the remaining 

non-zero weights equal four. 

This pruning scheme ensures that every group has the 

same computational cost. Furthermore, it simplifies the 

hardware architecture mainly due to a balanced workload on 

all MAC units. Besides a balanced workload, this pruning 

approach cuts down the complexity of zero-skipping logic. 

Although Kang’s approach reduces the complexity for 

ASICs, it can be seen that the proposed pruning factors and 

group size are not optimized for FPGAs. The main reason 

for this is the difference in the granularity of combinatorial 

logic building blocks between ASIC and FPGA. In ASIC, 

logic is mapped into a network of individual gates, while in 

FPGA, the user logic is being mapped into LUTs. Please 

notice that LUT’s level of granularity is much higher 

compared to gates. This results in step increments of logic 

utilization, when implementing user logic of increasing 

complexity. For example, a multiplexer that is mapped into 

a 6-input LUT will occupy one LUT as long as it has four or 

fewer data inputs. Once the number of data inputs is 

increased to five, the multiplexer will be mapped into 2 

LUTs. The proposed CNN pruning algorithm minimizes this 

step increment in skipping logic (multiplexers) by further 

constraining Kang’s pruning scheme. The result of applying 

additional constraints during pruning is a further reduction 

of skipping logic by half, compared to the original pruning 

scheme proposed in [21]. 

One of the proposed pruning patterns by Kang [21] sets 

the group size to eight and the number of non-zero weights 

to four. Further analysis of this pattern has shown that each 

of the four non-zero weights can be placed on one of the 

five possible places in a group of eight consecutive weights, 

as shown in Fig. 5(a). Please observe that the left-most non-

zero weight can be located only at positions from 0 to 4 

because in the worst case the three remaining non-zero 

weights must be located at positions 5, 6, and 7. The same 

applies to all other positions. It can be seen that using 

Kang’s pruning pattern, the zero-skipping logic for one PE 

unit will be created out of four 5-to-1 multiplexers. Each 

multiplexer will be responsible for fetching one IFM point 

that will be multiplied by the associated non-zero weight. 

Note that in our case, every IFM point is represented by 16 

bits. Using the previous example and assuming 6-input 

LUTs, each cluster of PEs will require IFM multiplexing 

logic utilizing 128 LUTs. This is because the multiplexing 

logic is composed of 4 multiplexers where each requires 32 

LUTs. CNN accelerator, which has 32 cluster units, would 

utilize 4096 LUTs for this purpose only. Note that the 

majority of modern FPGAs have 6-input LUT as the core 

building block of the programmable logic. 

To reduce the high utilization of LUTs, additional 

constraints can be applied to allowable non-zero positions. 

As shown in Fig. 5(b), four, instead of five different 

positions, for each remaining non-zero weight could be 

permitted. This reduces the multiplexer size to 4-to-1, which 

leads to a saving of 64 LUTs per PE cluster. In other words, 

using the same example with 32 clusters, this additional 

constraining will reduce zero-skipping logic resources from 

4096 to 2048 LUTs. Please notice that even when using 

these additional constraints during CNN pruning, it is still 

possible to regain most of the accuracy of the unpruned 

CNN, as can be seen in Table I. Furthermore, the proposed 

pruning pattern will also be beneficial when implementing 

skipping logic in ASIC also, but to a slightly lesser degree, 

reducing the required number of logic gates by about 20 %. 

            
Fig. 5.  Possible positions of non-zero weights in a group: a) original 

pruning proposed in [21] (128 LUTs per IFM selector), b) constrained (64 

LUTs per IFM selector). 

TABLE I. PRUNING RESULTS FOR LARGE AND COMPACT 

NETWORKS. 

CNN 
Unpruned 

Top-5 accuracy 

Constrained 

(Fig. 3(b)) 

ResNet50 92.1 92.1 

VGG-16 90.1 89.8 

MobileNet v1 224 

1.0 
89.5 89.0 

 
The pseudo-code of the proposed FPGA-aware pruning 

algorithm is shown in Algorithm 2. At the beginning of the 

pruning process, CNN’s performance is evaluated and 

stored in the initial_accuracy variable. Next, kernels are 

clustered using the cluster_and_reorder_CNN algorithm. 

The pruning process starts by dividing the kernels into 

sticks. Every stick is further divided into several groups, 

each group being eight weights large, as shown in Fig. 4, by 

calling split_krns_into_groups function. The actual pruning 
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is performed in four steps, removing one weight at a time 

from a group of eight (incremental pruning). In each step, 

for every weight group, a list containing the optimal weight 

pruning order is created by calling the 

create_pruning_order_list function. Creating an optimal 

weight pruning order is a three-stage process. First, the 

weights in weight groups are normalized separately for each 

kernel within the cluster. Next, the absolute values of the 

normalized kernels are added and stored in the temporary 

matrix, which has the same shape as every kernel in a 

cluster. Finally, every group in the temporary matrix is 

sorted in ascending order and a list of indices inside the 

groups is returned.  

Returned order of indexes will be considered first for 

pruning, as is the case in the majority of previously 

proposed pruning algorithms. However, due to additional 

constraints imposed on the allowable non-zero weight 

positions, as shown in Fig. 5(b), this will not be always 

possible. For example, let us assume that in the first two 

pruning steps the weights at positions zero and one have 

been pruned. This will prohibit the removal of the weight at 

position two in the following steps. Allowable weights for 

pruning in steps three and four, in this case, would be the 

weights at positions 3–7, but not the weight at position two. 

Selection of the best possible weight to prune next, while 

obeying the constraints from Fig. 5(b), is performed within 

the set_to_zero function. 

 
Algorithm 2. FPGA-aware Network Pruning. 

func compress_cnn(cnn_model, cluster_size): 

 initial_accuracy = evaluate_network(cnn_model); 

 cluster_and_reorder_CNN(CNN_model); 

 kernel_groups=split_krns_into_groups(cnn_model; 

 for i in range(4): 

  for group in kernel_groups 

    pruning_list =  

      create_pruning_order_list(group, 

clusters); 

    set_to_zero(group, pruning_list); 

retrain pruned CNN 

 

Kernel group size was selected to be eight-weights large 

because most of FPGA SoCs limit the width of the 

Advanced Extensible Interface (AXI) data bus between the 

DRAM controller and the programmable logic to 128 bits. 

Since Argus uses 16-bit operand number representation, 

because of its negligible impact on CNN accuracy [31], 

[32], at most eight operands can be transferred in one beat 

of AXI transaction, so selecting a kernel group size of eight 

would result in the optimal processing performance. 

To evaluate the proposed FPGA-aware pruning 

algorithm, it was used to prune several standard CNN 

networks pretrained on ImageNet [33], using Keras [34]. 

Reported accuracy results after pruning were obtained using 

the validation set. Note that in the performed experiments, 

the first convolutional layer from every selected CNN 

network was excluded from pruning due to its small depth 

of only three IFM points, which seems to be the common 

approach [21]. 

As can be seen in Table I, FPGA-aware pruning 

algorithm results in a negligible loss of pruned network 

accuracy in the case of compact networks like MobileNet 

and VGG-16, and no loss in the case of ResNet50. It is 

worth noting that most hardware architectures used for 

comparison with Argus use 8-bit precision arithmetic, which 

almost always degrades CNN accuracy more than in the 

case of pruned MobileNet v1 [35]. 

III. ARGUS CNN ACCELERATOR ARCHITECTURE 

The most demanding layers in CNNs considering 

computational time are convolutional. They consume up to 

90 % of the time needed for inference [4, 8]. Therefore, the 

accelerator performance is the most dependent on its 

efficiency in the processing of convolutional layers. The 

process of computing a generic convolutional layer is listed 

in Algorithm 3. 

Note that IFM padding and optional bias addition were 

omitted from Algorithm 3. Time for bias addition can be 

masked, while padding does not consume additional time 

because the number of convolutions to compute is 

determined by OFM size (loops L2 and L3), not by IFM 

size. For simplicity, convolutional layer processing is split 

into two functions, calc_layer_ofm and calc_ofm_point. 

 
Algorithm 3. Pseudo-code of generic convolutional layer processing 

algorithm. 

func calc_layer_ofm(IFM, KM): 

L1:for (fn = 0; fn<Kernel_Num; fn++) 

L2: for (y = 0; y <OFM_Height; y++) 

L3:  for (x = 0; x <OFM_Width; x++) 

      ifm_h_part = y*Sv:y*Sv+Kernel_Height 

      ifm_w_part = x*Sv:x*Sv+Kernel_Width 

      ifm_bundle = 

IFM[ifm_h_part][ifm_w_part][:] 

      OFM[x][y][fn] =     

      calc_ofm_point(ifm_bundle, KM[fn]) 

 

func calc_ofm_point(ifm_bundle, km): 

L4:for (kh = 0; kh<Kernel_Height; kh++) 

L5: for (kw = 0; kw<Kernel_Width; kw++) 

L6:  for (kd = 0; kd<Kernel_Depth; kd++) 

      ofm_point += ifm_bundle[kh][kw][kd]* 

                           km[kh][kw][kd] 

   return ofm_point 

 

Calc_layer_ofm takes IFM 3D tensor and kernels (KM) 

as input and process IFM by sliding kernels over it. Its task 

is to prepare the IFM bundle needed for the current OFM 

point calculation and to call calc_ofm_point. The number of 

convolutions per channel is determined by OFM horizontal 

and vertical size, which is represented by the L2 and L3 

loops. Loop L1 is responsible for creating the depth of 

OFM. Calc_ofm_point takes ifm_bundle for the current 

OFM point and kernel as input and returns a dot product of 

these 3D tensors. Loops L4 and L5 determine the vertical 

and horizontal stick coordinates in the kernel. L6 goes 

through IFM by the channel axis until Kernel_Depth is 

reached. Note that Kernel_Depth is equal to IFM depth in 

all, but Depthwise convolutions [10]. 

As opposed to architectures that rely on a 2D array of PEs 

to compute a single convolution, Argus dedicates one PE to 

calculate all convolutions related to a particular kernel. In 

other words, one PE is responsible for computing one 

channel of OFM. Because of kernel clustering, every two 

(cluster size) adjacent PEs share the same skipping logic. 

Speaking in terms of Algorithm 3, one cluster of PEs is 

responsible for executing two calc_ofm_point function calls. 

Note that the hardware implementation of every PE will 
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have dedicated memory for storing kernel weights. These 

weights will be stored as an array created by flattening the 

kernel in stick-first order. Flattening removes any 

information regarding the kernel shape, which means that 

the kernel can be of any shape, which is also an important 

advantage of Argus over many existing solutions. To 

increase the processing performance, Argus unrolls the L1 

loop with a factor of PE_Num, the number of available PEs. 

This means that the Argus is processing PE_Num output 

channels of OFM in parallel. To further speed up 

processing, Argus also does the unrolling of loop L6 by a 

factor of four, which means that every PE is capable to 

execute four MAC operations in a single clock cycle. If a 

network is compressed, these four MACs are covering all 

non-zero multiplications inside a group of eight consecutive 

IFM points, as shown in Fig. 4. When CNN is not 

compressed, PE takes four consecutive points of IFM, 

because there are no zero weights that can be skipped. That 

means that the proposed pruning speeds up the processing 

by a factor of two in the ideal case. Note that just non-zero 

kernel weights are stored inside PE memory if the network 

is compressed. 

To achieve high utilization of PE units, selecting the 

value of PE_Num must be done carefully. The vast majority 

of layers in contemporary CNNs have at least 32 different 

kernels. Setting PE_Num to 32 will lead to high PE 

efficiency for all layers that have 32 or more kernels. Of 

course, a higher number of PEs would increase the 

parallelism and therefore further increase the processing 

performance of layers with more than 32 kernels, but the 

hardware will be underutilized while processing layers that 

have fewer kernels than PE_Num. To solve this 

underutilization problem, Argus uses several groups of PEs, 

each having 32 PEs, called “Convolutional Cores”. 

The top-level block diagram of the generic Argus 

architecture is shown in Fig. 6. Argus is designed as a 

configurable and scalable heterogeneous multi-core 

architecture.

 
Fig. 6.  Top Level Architecture of the Argus CNN Accelerator. 

At the top level, Argus is composed of two major 

components: Convolutional Cores (CCs) and DLP Cores. 

Besides them, several Data Mover (DM) modules are used 

to connect CCs and DLPs to the surrounding logic. DMs 

convert and combine the internal AXI-Stream interfaces, 

used by CCs and DLPs, into a number of AXI-Full 

interfaces, which are used to connect the Argus core to the 

DRAM memory controller. CCs are used to accelerate 

convolutional and fully-connected layer types from CNN, 

which can be compressed using the “FPGA aware pruning” 

algorithm. Please notice that the fully-connected layer type 

can be regarded as a special version of the convolution 

layer, where the kernel size equals the IFM size of the fully-

connected layer. CCs are specifically designed to operate 

efficiently on convolutional layers and are therefore ill-

suited to be used to accelerate other CNN layer types, like 

pooling, adding, etc. The purpose of DLP cores is to 

accelerate the processing of non-convolutional layer types. 

Argus architecture is highly configurable, enabling easy 

creation of different configurations, depending on the 

selected number of CC and DLP cores, with different 

performance/area/power tradeoffs. Before the actual 

implementation, the user can specify the desired number of 

CC, as well as DLP cores.  

CC module, shown in Fig. 7, is composed of Register file, 

DRAM Arbiter, Input Stream (IS), Link, PE array, and 

Output Stream (OS) modules. After configuring the core 

using Register file, IS requests biases, weights, and non-

zero indexes through a DRAM Arbiter. When the weights 

are loaded into the PE array, IS starts streaming IFM while 

the PE array does the computation. OS is responsible for 

storing the computed convolutions into the DRAM memory 

via the associated DM module. 

 
Fig. 7.  Single Convolutional Core (CC) top-level architecture. 

A. Input Stream 

Input Stream plays a major role in reducing data transfer 

between DRAM and CC. The previously published idea 

[36] was exploited by Argus IS. IS generates read requests 

for IFM sticks and stores them in the on-chip cache, which 

is a part of IS. Reading starts from the upper left stick and 

continues through the first row of IFM as shown in Fig. 
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8(a). After Kernel_Height (KH) rows are stored, IS starts 

sending IFM bundles to PE array which computes the first 

row of OFM, Fig. 8(a) (KH and KW equal three). 

Meanwhile, IS continues requesting IFM stick data for row 

number 3.  

As can be seen in Fig. 8(a), there is an opportunity for 

significant data reuse while processing IFM by up to 9 times 

for kernel size 3×3 with vertical and horizontal stride values 

of one [37]. The first bundle includes nine IFM sticks from 

the upper-left corner. These sticks contain the first three 

sticks from rows 0–2 of IFM. After PE_Num OFM points 

are computed, IS slides over the IFM by moving one place 

to the right, assuming that the horizontal stride equals one. 

The second bundle now contains sticks from columns 1–3 in 

rows 0–2. Note that this second IFM bundle reuses six IFM 

sticks from the previous IFM bundle (six sticks from 

columns 1 and 2). The third IFM bundle (dark grey bundle 

in Fig. 8(a)) reuses sticks from the second column for the 

third time. After sliding down by one row, row 0 is not 

needed anymore and can be replaced by row 3 from the 

IFM. 

 
Fig. 8.  Processing of IFM by bundles (the grey part of IFM): a) Computing 

the first OFM row while preloading row 3 into IS cache; b) Loading pattern 

when the cache size is less than needed to store the whole IFM. 

To avoid restrictions on IFM size that can fit into the 

cache, IS can split IFM vertically into several parts, as 

shown in Fig. 8(b). Partitioning of IFM along the width 

axis, known as striping [36], allows setting the cache size 

according to the available on-chip memory resources rather 

than according to the IFM size. Please notice that when 

using striping, some of the sticks on the vertical boundary 

will be loaded twice, but this will not cause a significant 

increase in the required throughput because just a few 

columns will be loaded more than once.  

As can be seen in Fig. 9, IS consists of 4 main blocks. 

The Stick requester generates the stick address in DRAM 

based on information about the IFM position in DRAM. 

Data from DRAM (response on request) goes through 

Cache writer, whose responsibility is to calculate the stick 

cache address and write it in the cache. Addresses are 

created based on a request pattern that is known in advance.  

The Memory module is built around two-port RAM, with 

the addition of a valid row status, which indicates which 

row of the cache is valid and which is free for new sticks. 

This status line is used by both Cache writer and Cache 

reader. If there is no free space in Memory, the Cache 

writer will block the DRAM controller by pulling down the 

ready signal. On the other hand, The Cache reader will stop 

the IFM stick readout process if the requested stick is not 

yet in Memory. Cache reader, as the most complex module 

in IS, is responsible for generating the correct read address 

of the stick in the cache memory. Besides mentioned, Cache 

reader has information about padding, so it can request zero 

padding at appropriate moments. 

 
Fig. 9.  Input Stream block diagram. 

B. DRAM Arbiter and Output Stream 

DRAM Arbiter, as shown in Fig. 7, is responsible for the 

arbitration of read requests to DRAM. Read requests are 

coming mainly from IS and sometimes from the OS module. 

IS requests sticks from IFM whenever the internal cache in 

IS is ready to store a new stick. OS creates requests only 

when CC is computing partial convolutions, which is the 

case when CC cannot process a complete convolutional 

filter in a single pass. Because of the limited on-chip 

memory resources, CC can split the filter into two or more 

parts along a channel axis. In the first pass, CC will 

calculate the first part of the convolution and store it off-

chip. Next, CC will load the second slice of each filter and 

process the rest of the IFM. These two parts have to be 

added together to compute the final convolution result. To 

do that, OS pulls the first partial convolution results part 

through DRAM Arbiter and adds them to the second partial 

convolution results delivered by the PE array. This way, CC 

masks the time needed for the partial results addition 

operation to avoid the performance penalty when doing 

partial convolutions. 

 
Fig. 10.  Output stream block diagram. 
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The Output stream (OS) module, shown in Fig. 10, takes 

the convolution results from the PE array and passes them to 

the DRAM memory controller. It creates AXI requests with 

the appropriate physical address of the OFM stick and 

transfer size in bytes. In addition, it implements a 

mechanism for partial convolution completion with a 

dedicated FSM for requests and an additional adder in the 

data path for addition. Besides partial convolution, an adder 

could also be used for adding shortcut connections at the 

end of each residual block in ResNet networks. 

C. Processing Element Array 

PE array is the biggest module of CC, composed of 32 

PEs grouped into 16 clusters. The internal architecture of 

the PE array is presented in Fig. 11. PE array uses two data 

streams, the Input stream, and the Output stream. Both 

streams use the 128-bit AXI-Stream protocol. The input 

stream is used for loading bias, weights, non-zero index, and 

IFM. The output stream is responsible only for moving the 

convolution results to OS. 

The processing sequence starts with bias loading into the 

Bias Storage module, which is a simple register bank of 32 

registers, one per PE. When all biases are loaded, IS 

delivers weights and non-zero indexes to the Memory bank. 

The Memory bank is built of 32 Block RAMs (BRAM) for 

weight storage. Each BRAM is allocated to one PE, storing 

2048 weight values. Alongside BRAMs for weights, there 

are 4 additional BRAMs for non-zero index values. After 

the weights are loaded, IFM starts streaming through Input 

stream to all IFM point selectors (zero-skipping block). 

Every IFM point selector has four 4-to-1 multiplexers for 

choosing IFM points that match positions of non-zero 

weights in a group of 8, as described in Section II (“FPGA-

aware pruning algorithm”). The size of the IFM point 

selector is reduced by using the constraints shown in Fig. 

5(b) to only 64 LUTs per selector, 16 LUTs per multiplexer. 

Note that one IFM point selector is used per cluster, 

meaning that only one zero-skipping block is used per two 

PEs. 

 
Fig. 11.  Architecture of Processing Element array. 

All computations in the PE array are done in 32 PEs. 

Every PE is built around 2 DSP blocks that are capable of 

computing 4 MAC operations in one system clock cycle. To 

achieve 2 MAC operations per single DSP, a Multi-

Pumping technique [38], [39] has been used.  

The Result collector is the last block in the PE array 

pipeline, which collects results from all PEs. It is capable of 

processing eight values in a single clock cycle and it is 

taking results from PEs in a Round-Robin manner, in blocks 

of eight. 

D. Multi-Core Convolutional Engine 

Even though a single CC has high MAC utilization over 

almost all existing CNN architectures, the selected number 

of PEs (32) can be a limiting factor for achieving the 

required performance for more complex CNNs. CCs peak 

performance is 32 GMAC/s, which can effectively be seen 

as 64 GMAC/s if the network is compressed. 

If more performance is needed, the number of used PEs, 

PE_Num, must be increased. To scale up the Argus 

performance without degrading PE utilization on shallow 

layers, CC/IS pairs can be replicated several times, as shown 

in Fig. 12.  

In this setup, every CC will have a dedicated IS, which 

means that every CC can operate on different parts of 

shallow IFMs, keeping the PE utilization high. On the other 

hand, while processing layers that have more than PE_Num 

kernels, there is no need to supply every CC with a different 

IFM part, instead all PEs can now process the same IFM 

bundle. In this case, only one IS will fetch the IFM from the 

DRAM and pass the IFM bundles through blocks called 

Link to other CCs, while the other IS modules would be 

idle. 

As an example, let us consider an Argus core composed 

of four CCs with a total of 128 PEs, as shown in Fig. 12. 

Also, let us assume that the convolutional layer that is being 

processed has 64 kernels. 

To achieve the maximum utilization of PEs, CC_0 uses 

32 kernels that belong to one group of 16 clusters, and CC_ 

1 uses the remaining 32 kernels (belonging to the other 16 

clusters). To employ CC_2 and CC_3 modules, Argus also 

loads the first group of clusters into CC_2 and the second 

cluster group into CC_3. Finally, CC_0 will have the same 

copy of kernels as CC_2, and CC_1 will have equal memory 
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content as CC_3. IS_0 loads the upper half of the IFM and 

broadcasts it also to CC_1 using the Link module (see 

orange arrows in Fig. 12). This means that CC_0 and CC_1 

are computing the upper half of OFM using the same IFM 

bundles. A similar approach is used with CC_2 and CC_3, 

but now IS_2 is responsible for streaming the lower half of 

the IFM to CC_2 and CC_3 modules. Please notice that 

IS_1 and IS_3 modules are idle, thus reducing DRAM 

throughput. 

 
Fig. 12.  Scaling up the performance of the accelerator by stacking more CC and connecting them using Link modules. 

E. Dense Layer Processing Core 

The purpose of the Dense Layer Processing Core (DLP) 

core is to enable Argus to process maximum pooling, 

average pooling, and adding layer types. The DLP has six 

pipeline stages, which are controlled by FSM (Fig. 13). The 

DLP core can work in three different configurations, where 

some of the stages could be skipped, depending on the layer 

type. The processing of layers always has three steps. In the 

first step, the first IFM stick is sent to the Memory module 

through the Input regs array block. In the second step, all 

remaining sticks from the IFM bundle are being processed, 

storing intermediate results in the Memory. When all sticks 

are processed, in the third step, the final results are sent 

from the Memory module to the output of the DLP core. 

Each DLP pipeline stage is vectorized, consisting of eight 

lanes of identical processing elements, enabling the DLP 

core to process eight IFM points in parallel. All stages 

operate on 16-bit numbers, except the Memory and Mul 

array modules, which use 24-bit operands. During the 

calculation in the first step, which is common to all 

supported layer types, only Input regs array and Memory 

pipeline stages are active. The purpose of this phase is to 

initialize the content of the Memory with the values from the 

first IFM stick. 

When processing a maximum pooling layer, during the 

second step, the first four pipeline stages are active. The 

Memory module stores the current maximum value of each 

OFM point from the current OFM. The Add array stage 

calculates the difference between a vector of eight 

consecutive IFM points and the corresponding current 

maximum OFM vector stored in the Memory. Based on this 

comparison, the Cmp Mux array stage updates the content 

Memory module with the appropriate maximum OFM 

vector. In the third step, the Memory and the Output regs 

array modules are active, sending the final maximum 

pooling results from the Memory to the output of the DLP 

core. 

 
Fig. 13.  Architecture of the Dense Layer Processing Core. 

In the case of average pooling layer processing, the first 

step is identical to that of the maximum pooling layer. 

During the second step, the Input regs array, Add array, and 

Memory stages are active. The Memory module stores the 

running sum of every OFM point from the current OFM 

stick. The new IFM stick from the current IFM bundle, fed 

through the Input reg array stage, is added to the OFM 

running sum stick in the Add array stage. In the final step, 

the Memory, Mul array and Output regs array stages are 

active. The final OFM point sum is averaged by multiplying 

it with the value supplied as part of the DLP configuration. 

After the multiplication, the output of the Mul array stage is 
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the final vector of average values of eight consecutive OFM 

points, which is sent to the output of the DLP core using the 

Output regs array stage. 

When processing an adding layer, the first step is 

identical to the first processing steps of pooling layers. In 

the second step, the Input regs array, Add array, and 

Memory stages are active. The Memory contains the running 

sum of the current OFM stick. Add array module 

accumulates the values of the IFM sticks from appropriate 

IFMs to this running sum OFM stick. When IFM sticks 

from all IFMs that are being added together are processed, 

the final sum value of the current OFM stick is stored in the 

Memory module. In the third step, the OFM stick is sent to 

the DLP’s output. 

IV. IMPLEMENTATION RESULTS 

To show the trade-off between performance and hardware 

utilization, Argus was implemented in three different 

configurations. The most compact version has one CC and 

one DLP and can be fitted in a wide range of FPGA SoCs. 

A balanced version in terms of performance and required 

hardware resources has two instances of CC block and one 

DLP, showing almost doubled performance compared to the 

one-CC version. The most powerful version has four CCs 

and one DLP, and it is meant for mid-range SoCs. All three 

configurations have been implemented using Xilinx Vivado 

Suite 2019.1, targeting the ZU7 MPSoC device. The 

synthesis was performed using Flow Perf Optimized High, 

while Performance Net Delay High strategy was used for 

implementation. Resource utilization is shown in Table II, 

together with the utilization for some of the previously 

published accelerators that were used for comparison. Table 

III shows FPGA devices that can accommodate various 

accelerators in terms of available resources. 

TABLE II. RESOURCE UTILIZATION OF ACCELERATORS USED 

FOR COMPARISON. 

Accelerator 
No. of 

MACs 

LUT 

(FPGA) 

BRAM 

(FPGA) 

LUT/ 

DSP 

Arith. 

(bits) 

FpgaConvNet 
(a) 

900 218K 615 242 16 

Snowflake 256 - 192 - 16 

NullHop 

(FPGA) 
128 229K 386 1789 16 

NEURAghe 864 88K 320 101 16 

CoNNa C4 256 267K 596 1042 16 

Caffeine 1058 100K 783 94 16 

Depthwise 

optimized 

accelerator(b) 

3283 121K - 36.8 8 

Eyeriss v2 384 - - - 8 

Thinker 1024 - - - 8/16 

Envision 512 - - - 4/8/16 

[25](a) 220 13.4 98 61 8 

[26](a) 1144 252 912 220 16 

[27](a) 1350 178.1 1460 132 8/16 

NVDLA 256 - - - 4/8/16 

Argus 4CC 272 46K 218.5 168 16 

Argus 2CC 140 25K 96.5 177 16-bit 

Argus 1CC 74 14K 55 195 16-bit 

Note: (a)Accelerators are scalable, meaning that utilization can be both 

lower and higher. Utilization numbers are presented for configurations that 

are used for performance comparison; (b)Specialized accelerator for CNN 

architectures that exploits Depthwise separable convolutions. All hardware 

requirements are reported assuming the implementation results presented 

in the paper [40]. 

Please notice that some accelerators are scalable, meaning 

that they can fit into smaller devices than shown in Table 

III. Both Table II and Table III report the utilization/fitment 

for the configurations of these accelerators used for 

performance comparison. FpgaConvNet and Caffeine are 

implemented using HLS approach, which is flexible but can 

be inefficient in terms of required hardware resources. 

Furthermore, HLS-based accelerators cannot support 

changing the CNN model on-the-fly, which is not the case 

with Argus. Argus is a general CNN accelerator 

independent of the CNN model. Both architectures use a big 

amount of MAC units (equivalent to DSP blocks in FPGA) 

and the proportionally large amount of available on-chip 

memory resources, which disqualifies them from being used 

in the entry-level FPGA SoCs. Besides being inefficient in 

mapping algorithms to the underlining hardware, HLS does 

not manage to use the complete computational potential of a 

DSP block. 

An important parameter when comparing various 

accelerators, which can be skipped at first glance, is the 

utilization of LUTs per single DSP. Two extremes regarding 

this criterion are CoNNa C4 and NullHop. In the case of 

CoNNa, high efficiency and complex zero-skipping logic 

result in requiring more than 1000 LUTs per one DSP 

block. Speaking in terms of required DSP blocks, CoNNa 

can fit almost every FPGA device. On the other hand, high 

LUT utilization prevents it to be implemented in the entry-

level FPGA devices. In addition, CoNNa can not utilize all 

available DSP blocks. The same is the case with the 

NullHop. 

TABLE III. FPGA-BASED ACCELERATORS COMPARISON FOR 

DIFFERENT SOCS. 

Accelerat

or 

Required 

LUT/ 

DPS 

Zynq UltraSCALE + MPSoC 

Zu2 Zu3 Zu4 Zu5 Zu7 

Available 

LUT/DS

P 

 196 196 120 93 133 

[25] 60 • • • • • 

Caffeine 94     • 

Snowflak

e(a) 
-  • • • • 

NEURAg

he 
101    • • 

[27] 131     •(b) 

Argus 

4CC 
168  • •(a) •(a) • 

Argus 

2CC 
177 • • • • • 

Argus 

1CC 
195 • • • • • 

[26] 220     •(b) 

FpgaConv

Net 
242     •(b) 

CoNNa 

(C4) 
1042     • 

NullHop 1789     • 

Note: (a)Only required DSP and BRAMs are used for fitment comparison 

because LUT utilization is not reported; (b)Accelerators are scalable, 

meaning that they can fit smaller devices. Table III shows the fitment for the 

configurations that are used for performance comparison. 

 
On the other hand, accelerator presented in [25] requires 

the smallest number of LUTs per DSP. However, it does not 

exploit any type of sparsity while processing CNNs, which 
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degrades its performance per used DSP block. When the 

accelerator is scaled up to the limit of the underlining device 

(all DSP blocks are used), many LUTs remain unused. 

Argus utilizes these LUTs to perform zero-skipping, 

decreasing the number of MAC operations performed by 

DSP blocks, which leads to better GOP/s/DSP by up to 3.3 

times.  

NEURAghe [42] has an excellent LUT per DSP ratio, but 

it requires a large number of DSPs and BRAMs, which 

means that only bigger devices can support it. On the other 

hand, Argus shows a very good overall LUT/DSP ratio, 

which is mostly due to the carefully tailored pruning 

algorithm and omitting to skip zeros in the IFM. As can be 

seen from Table III, Argus containing one or two CCs can 

fit into all Zynq UltraSCALE + MPSoC FPGA devices, 

while the most powerful version cannot be implemented 

only with the smallest SoCs, ZU2. In contrast with most 

other architectures, Argus can fit in the largest number of 

FPGAs, while retaining the best performance among FPGA-

based accelerators. 

As stated before, Caffeine, CoNNa, and Accelerator 

architectures in [26] and [27] can only fit into the ZU7 

device, which is the largest device used for comparison. 

NEURAghe can be mapped into smaller devices like ZU5, 

but still not into cost-optimized SoCs like ZU3. Snowflake 

shows similar results as the biggest Argus instance, but it 

should be noted that the LUT utilization is not reported for 

this architecture, so an FPGA device fitment was calculated 

considering only the required DSPs and BRAMs. Our 

analysis of the Snowflake architecture indicates that it 

should not require a large amount of LUTs. 

V. PERFORMANCE RESULTS 

Table IV shows a comparison of performance results 

when accelerating AlexNet, VGG16, MobileNet v1, and 

ResNet50 for several CNN accelerator architectures.  

Performance analysis of AlexNet acceleration shows that 

the major performance degradation for Argus comes due to 

the time needed to process large fully-connected layers. 

These layers consume about 67 % of the inference time. 

Note that most of this time is spent on weight loading rather 

than performing calculation. To fully utilize DSP blocks 

when processing large fully-connected layers, all 

accelerators require extremely high bandwidth, sometimes 

more than 200 GB/s [22], which is not achievable in today’s 

low-cost embedded devices. Furthermore, many papers omit 

the discussion on memory bandwidth requirements when 

processing these layers, some of them remove them from 

performance analysis, while others assume that CNN can be 

compressed [22]. 

TABLE IV. PERFORMANCE COMPARISON OVER DIFFERENT CNN ARCHITECTURES. 

Accelera 

tor 

CNN 

Architecture 

LUT 

(FPGA only) 
No. of MAC’s 

Freq. 

(MHz) 

Frame Rate 

[frames/s] 

Conv only 

Frame Rate 

[frames/s] 

FpgaConvNet AlexNet 218K 900 125 - 121.53 

NVDLA AlexNet - 256 250 - 68.6 

Eyeriss v2 AlexNet - 384 200 287.4(a) 234.1(a) 

Thinker AlexNet - 1024 200 - 254.3 

Envision AlexNet - 512 200 47 - 

Snowflake AlexNet - 256 250 100.5 - 

Argus (4CCs) AlexNet 46K 272 250 254 82.8 

FpgaConvNet VGG16 218K 900 125 - 4.01 

NullHop (FPGA) VGG16 229K 128 60 - 0.44 

NEURAghe VGG16 88K 864 140 - 5.52 

Caffeine VGG16 100K 1058 200 - 8.67(b) 

CoNNa VGG16 267K 256 140 - 7.83 

Argus (4CCs) VGG16 46K 272 250 15.8 11.02 

Eyeriss v2 MobileNet v1 

(128×128, 0.5) 

- 384 200 - 1117 

Argus (4CCs) 46K 272 250 - 1090 

Depthwise 

optimized 

accelerator [40] 

MobileNet v1 121K 3283 150 - 231.2 

Argus (4CCs) MobileNet v1 46K 272 250 - 185 

NVDLA [41] ResNet50 - 256 250 - 17.45 

NVDLA [41] ResNet50 - 256 500 - 29.1 

Snowflake ResNet50 - 256 250 17.7 - 

Argus (4CCs) ResNet50 46K 272 250 40.2 36.5 

Note: (a)Results are recalculated for a maximum throughput of 25 GB/s with a provided degradation of 24 % as the authors stated; (b)Performance is 

calculated using the stated overall throughput divided by 30 GOPS needed for VGG 16. The authors did not provide frames/s results, but we extract their 

counting rules on the total number of operations needed for VGG-16 from this paper. 

 

To perform a fair comparison with the Snowflake and 

Envision, only the convolutional layer inference time was 

measured due to a lack of end-to-end inference results for 

these accelerators. Argus’s performance is more than 5 and 

2.5 times better than Envision and Snowflake, respectively. 

In the case of Snowflake, the performance gain is most 

probably caused by the fact that the Snowflake does not 

support zero-skipping. Compared with the FpgaConvNet, 

Argus is 30 % slower, but FpgaConvNet uses 3.5 and 4 

times more DSP blocks and LUTs, respectively. Compared 

to Thinker, Argus is 3 times slower, but it uses 4 times less 

MAC units. In addition, the authors of Thinker provided 

performance results in terms of GOP/s only, without 

considering memory throughput as a limitation. Because of 
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that, it could be argued that Thinker’s actual performance 

will be worse than that listed in Table IV. Compared to 

Eyeriss v2, Argus has a slightly worse performance when 

processing only convolutional layers, which is mostly due to 

the higher compression ratio used in Eyeriss v2 [12] paper. 

Even though the authors of Eyeriss v2 used almost 3.5 

higher bandwidth to the DRAM and a higher compression 

ratio, on-chip buffering implemented within Argus managed 

to compensate for almost all of these advantages. However, 

there is no buffering technique that can compensate for the 

required throughput on the fully-connected layers if the 

batch size equals 1, which degrades Argus performance 

when processing the complete AlexNet CNN. Note that 

such large fully-connected layers are considered obsolete 

and are not used in modern CNN architectures. 

In the case of VGG 16, Argus achieves better results than 

all other architectures. Besides being faster, Argus requires 

at least 4 times fewer LUTs compared to FpgaConvNet and 

NullHop (FPGA implementation), and about 2 and 1.8 times 

fewer LUTs than Caffeine and NEURAghe, respectively. 

Moreover, please observe that all other architectures, except 

NullHop, use from 3 to over 4 times more MAC units. Once 

more, all previously proposed accelerators require too much 

FPGA resources, which disqualify them from being used in 

entry-level FPGAs and edge devices. 

Performance comparison on MobileNet v1 was done with 

Eyeriss v2 and Depthwise separable convolutional engine 

[40]. In contrast with AlexNet, MobileNet v1 is a modern 

CNN architecture that does not include large fully-

connected layers. Argus shows similar performance as 

Eyeriss v2 on small MobileNet v1 (width multiplier equal to 

0.5) while using at least 3.5 and 10 times lower memory 

throughput when processing Pointwise and Depthwise 

layers, respectively. On the other hand, Argus has a 20 % 

lower performance than the accelerator proposed by Zhao, 

Niu, and Luk [40], which is highly optimized for Depthwise 

convolutions. However, please notice that the proposed 

accelerator [40] uses 12 times more MAC units than Argus 

to reach the reported performance. 

Argus performance for ResNet50 was compared against 

Snowflake and two different NVDLA [41] configurations. 

Same as for AlexNet, Snowflake presents results for 

convolutional layers only, and in this case, Argus is about 

2.27 times faster. Compared to Nvidia’s NVDLA, Argus is 

2.09 faster than NVDLA running at 250 MHz and 1.25 

times faster than the configuration that works at 500 MHz. 

Besides absolute performance comparison (frames per 

second), a very important aspect for FPGAs and scalable 

accelerators is the performance per resource used. 

Moreover, it is important to develop an accelerator that uses 

the available resources in a balanced manner. Balanced 

usage of resources has a great impact on accelerator scaling 

and utilization of available processing resources on a 

dedicated FPGA platform. Table V shows the performance 

comparison among different FPGA accelerators for VGG16 

CNN. Besides GOP/s per DSP and LUT, which are 

commonly used metrics, Table V also lists GOP/s per 

BRAM used, which represents 36 kb of on-chip memory. 

Please note that the performance capability of all 

accelerators was calculated as the total number of operations 

needed to classify one image using a dense CNN, multiplied 

by the reported frames per second. This ensures a fair 

comparison between architectures that exploit CNN sparsity 

and dense accelerators. In addition, some papers report logic 

utilization per logic cell instead of LUT. These results are 

rescaled to match LUT utilization. 

As can be seen from Table V, Argus in configuration 

with 1 CC has the best GOP/s/DSP, with about 30 % better 

results than the first competitor [27]. CoNNa C4 is 50 % 

behind Argus, while others show from 2 to 10 times worse 

GOP/s/DSP results. Considering GOP/s/LUT, [27] is the 

best competitor with a 10 % difference compared to Argus. 

Considering GOP/s/LUT, the best is [26], with a 10 % 

difference compared to Argus. CoNNa shows competitive 

results, while others have from 3 to 100 times lower 

GOP/s/LUT compared to Argus. 

Argus shows far better utilization of BRAMs than all 

others, outputting about 2 GOP/s/BRAM. It has 2 times 

better performance density than the accelerators in [27] and 

[25], and from 2.7 to 45 times better than others. As two 

other ratios, (GOP/s/DSP, GOP/s/LUT), GOP/s/BRAM can 

become a limiting factor for further accelerator scaling, as in 

the case of [27]. In the most powerful configuration, in [27], 

accelerator utilize 80 % of BRAMs, while utilizing only 

53 % of available DSPs. 

Even though Argus has better results than competitors for 

VGG16, it has the potential to be even more efficient in the 

case of modern networks, like the MobileNet family, 

without large fully-connected layers. Because of the limited 

compression ratio (50 %), the loading of weights in fully 

connected layers takes about 25 % of the whole processing 

time. 

TABLE V. COMPARISON OF PERFORMANCE DENSITY PER USED HARDWARE RESOURCES. 

VGG16 [42] [23] [24] [15] [25] [26] [27] Argus 1CC Argus 4CC 

DSP: 1728 1058 256 128 220 1144 1350 74 272 

LUT (k): 200 100 267 229 13.4 252 178 14 46 

BRAM (36 kb): 640 784 596 386 98 912 1460 51 202.5 

GOP/s/DSP: 0.28 0.25 0.95 0.14 0.43 0.27 1.1 1.42 1.25 

GOP/s/k LUT: 2.43 2.66 0.91 0.08 7.13 1.23 8.34 7.51 7.41 

GOP/s/BRAM: 0.76 0.34 0.41 0.05 0.97 0.34 1.02 2.06 1.68 

 

VI. CONCLUSIONS 

This paper proposed a novel CNN pruning algorithm, 

called “FPGA-aware pruning” and a resource-efficient 

complete CNN hardware accelerator called “Argus”. The 

pruning algorithm exploits two different techniques to 

achieve high regularity in compressed CNN. Besides the 

high regularity, the algorithm is specially tailored to be 

suitable for FPGA-based acceleration. One of the used 

techniques, kernel clustering, reduces the size of zero-
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skipping logic by a factor of 2. Furthermore, the proposed 

FPGA-aware pruning algorithm reduces the logic resources 

consumption from 20 % to 50 % in the case of ASIC and 

FPGA implementations, respectively, when compared to the 

previously proposed solution [21]. The architecture of 

Argus, together with the new pruning algorithm, enables 

very efficient usage of available FPGA resources, enabling 

Argus to be implemented in the smallest FPGA devices, and 

still being able to reach high CNN processing performance. 

Therefore, Argus is best suited to be used in edge-based 

applications. Argus compares very favorably with some of 

the previously proposed solutions like FpgaConvNet, 

Snowflake, NullHop, NEURAghe, Caffeine, CoNNa, 

Depthwise optimized accelerator, Eyeriss v2, Envision, and 

NVDLA, usually being able to reach higher frame rates, or 

achieve similar processing performance results with 

significantly lower resource consumption. This is 

particularly the case when the fps-per-MAC metric is being 

used. 
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