
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

1Abstract—Paper proposes a two-step Convolutional Neural

Network (CNN) pruning algorithm and resource-efficient

Field-programmable gate array (FPGA) CNN accelerator

named “Argus”. The proposed CNN pruning algorithm first

combines similar kernels into clusters, which are then pruned

using the same regular pruning pattern. The pruning

algorithm is carefully tailored for FPGAs, considering their

resource characteristics. Regular sparsity results in high

Multiply-accumulate (MAC) efficiency, reducing the amount of

logic required to balance workloads among different MAC

units. As a result, the Argus accelerator requires about 170

Look-up tables (LUTs) per Digital Signal Processor (DSP)

block. This number is close to the average LUT/DPS ratio for

various FPGA families, enabling balanced resource utilization

when implementing Argus. Benchmarks conducted using

Xilinx Zynq Ultrascale + Multi-Processor System-on-Chip

(MPSoC) indicate that Argus is achieving up to 25 times higher

frames per second than NullHop, 2 and 2.5 times higher than

NEURAghe and Snowflake, respectively, and 2 times higher

than NVDLA. Argus shows comparable performance to MIT’s

Eyeriss v2 and Caffeine, requiring up to 3 times less memory

bandwidth and utilizing 4 times fewer DSP blocks,

respectively. Besides the absolute performance, Argus has at

least 1.3 and 2 times better GOP/s/DSP and GOP/s/Block-RAM

(BRAM) ratios, while being competitive in terms of

GOP/s/LUT, compared to some of the state-of-the-art

solutions.

 Index Terms—Machine Learning; Accelerator architecture;

Convolutional Neural Network pruning; Edge-based

computing.

I. INTRODUCTION

Deep learning [1] has become one of the most powerful

tools for solving a wide range of problems in different fields

[2], [3]. One of the most used members of the Deep learning

field today are Convolutional Neural Networks (CNN).

Theoretical foundations of CNNs have been developed

twenty years ago [4], but the first successful CNN

Manuscript received 28 October, 2020; accepted 2 March, 2021.

This project has received partial funding from the European Union’s

Horizon 2020 research and innovation programme under Grant No. 856967.

It has also been partially funded from the Faculty of Technical Sciences

Novi Sad, Department of Power, Electronics and Telecommunications, as

part of the project “Research in the fields of power, electronics,

telecommunications and applied information systems for the modernization

of study programs”.

architecture was the winning algorithm of the Image

classification competition in 2012, widely known as

AlexNet [5]. From that time, every winning entry in the

competition was from the class of CNNs. However, the

exceptional accuracy of CNNs comes with high

computational and storage costs. One of the most

demanding CNNs in terms of computational load and

storage is VGG-16 [6]. It performs almost 31 billion

operations to classify one image with a resolution of just

224×224 pixels. Although VGG-16 is very regular in terms

of kernel size and layer structure, its accuracy is low

considering recent, more complex architectures, like

Inception [7], ResNet [8], NASNet [9], and MobileNet [10].

The improvements are mainly derived from much deeper

network structures compared to only 16 layers of VGG.

Even though the number of parameters has dramatically

decreased (from 138 million in VGG-16 to 23 million for

Inception v3), the additional layers and their structures

introduced new complexity for dedicated CNN hardware

due to the different data flows required to process each new

layer type. Different types of kernels and filter numbers per

layer change our view of how underlining CNN hardware

should be developed to accommodate current and future

improvements in the field. Another layer of complexity was

added by demand to efficiently process the compressed

CNN [11].

The development of specialized CNN hardware

accelerators started almost immediately with the

introduction of CNNs. Some of successful Application-

specific integrated circuit (ASIC) architectures are Eyeris v2

[12], Cambricon-x [13], Eyeris [14], NullHop [15],

DaDianNao [16], SparseNN [17], ENVISION [18], Thinker

[19], UNPU [20]. Significant growth in the number of

proposed Field-programmable gate array (FPGA) CNN

accelerators was mainly driven by the introduction of more

flexible and versatile FPGA-based SoCs, like the Xilinx

Zynq family. While ASIC solutions almost always deliver

the best performance, modern FPGAs offer comparable

performance and acceptable power consumption with the

advantage of possible reconfiguration, which can help

accommodate new CNN layer types.

Most of the dedicated hardware architectures, both ASIC

and FPGA, use a 2D array of Processing Elements (PE)

Argus CNN Accelerator Based on Kernel

Clustering and Resource-Aware Pruning

Damjan M. Rakanovic*, Vuk Vranjkovic, Rastislav J. R. Struharik

Faculty of Technical Sciences, Department of Power, Electronics and Telecommunications, University

of Novi Sad,

Novi Sad, Serbia

rakanovic.de2.2015@uns.ac.rs

http://dx.doi.org/10.5755/j02.eie.28922

57

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

which are built around MAC units, with additional local

memory for storing intermediate results of computations.

Additional hardware is responsible for feeding this array

with weights and input feature map (IFM) activations. This

approach is very efficient when the layers are large in terms

of the number of kernels and IFMs, like in VGG-16 and

AlexNet. In this case, there is a big reuse of IFM points,

which results in simple broadcast networks over PEs. With

the introduction of new layer types, like the Depthwise layer

in MobileNet v1 [10], and layers that have a smaller number

of kernels than the size of a 2D array of PEs, the efficiency

of this approach significantly decrees. For example, we can

observe that the greatest improvement in performance

between Eyeriss v1 [14] and v2 comes from data routing

networks. This is a typical example of the fact that the

number of PEs is not the only factor that defines the

performance of the architecture, but rather both the number

of PEs and the clustering of PEs in smaller groups with

dedicated data buffers.

Unlike the approach that uses a 2D array of PEs, Argus

has a dedicated PE for every channel of the output feature

map (OFM). This approach maximizes data sharing among

PEs because all PEs are processing the same part of IFM

with different kernels. The main differentiation compared to

most of the previously proposed CNN accelerators is

Argus’s capability to process CNNs that are compressed by

a carefully tailored pruning algorithm, which maximizes and

balances the utilization of available hardware resources on

FPGAs. Compression algorithm clusters similar kernels into

groups that have non-zero weights located at the same

positions, reducing the skipping logic by cluster size.

Furthermore, individual kernels are pruned in a structured

manner. To reduce hardware requirements and to evenly

distribute computations through PEs, Argus does not skip

zeros in IFMs. Zeros in IFMs usually have a highly irregular

distribution, which requires additional hardware for

balancing the workload between PEs. In addition, Argus

base architecture can be easily scaled to a more powerful

version by stacking multiple PE modules with a

proportional increase in terms of hardware cost. In

summary, this work makes the following contributions:

1. Clustering of similar kernels into groups of kernels,

which will have non-zero weights located at the same

positions. Clustering reduces zero-skipping logic by a

factor of 2 and it is independent of the underlining

pruning method. Furthermore, it reduces on-chip memory

used for storing non-zero weight positions.

2. Improvement of the existing Accelerator-aware

pruning algorithm [21], which reduces zero-skipping

hardware blocks of the original algorithm by an

additional factor of 2. While the base algorithm takes into

consideration only the weight magnitude for the decision,

which weight to prune, the proposed CNN pruning

algorithm also accounts for the LUT size to further

constraint the pruning process.

3. Development of a complete accelerator that supports

the developed CNN pruning algorithm. To the best of our

knowledge, Argus achieves state-of-the-art performance

density among FPGA accelerators in terms of GOP/s/DSP

and GOP/s/BRAM, while being competitive with the

current state-of-the-art considering GOP/s/LUT.

Argus is not the first CNN accelerator that benefits from

processing sparse CNNs. Some of the previous works that

benefit from sparsity in IFM are NullHop [15] and

DaDianNao [16]. Similar to Argus, SparseNN [17] and

Cambricon-x [18] take advantage of skipping zeros in CNN

weights. Beside mentioned, there are many other high-

quality architectures in terms of performance, like Eyeriss

v2 [12], ENVISION [18], Thinker [19], UNPU [20],

Snowflake [22], Caffeine [23], CoNNa [24], and

architectures in [25]–[27].

II. FPGA-AWARE PRUNING ALGORITHM

Let us start by introducing the terminology that will be

used in the remainder of this paper. Every layer’s input 3D

tensor will be called the “input feature map” (IFM), while

every output of a layer will be called the “output feature

map” (OFM). The IFM bundle designates a local region of

IFM with a size of NxMxD that is used for one convolution

or pooling computation. IFM bundle is composed of several

IFM sticks, as illustrated in Fig. 1.

Fig. 1. Illustration of the feature map, feature map bundle, and stick.

The number of network parameters, together with large

intermediate tensors (IFM/OFM) and the required number

of MAC operations, generate high computational and

memory cost of CNN processing. Authors of Eyeriss [12]

state that their accelerator expects at least 25 GB/s of

memory bandwidth while using 384 MACs to tackle

computational complexity. One way of reducing CNN

computing and memory requirements is to use CNN pruning

(also known as network compression). CNN pruning

procedures can be divided into two groups:

 Fine-grain approaches, where the algorithm decides

which parameter is redundant at the granularity of a

single parameter (weight) in each kernel. Han, Mao, and

Dally [28] demonstrate a massive reduction in terms of

used parameters of up to 9 times for AlexNet using this

pruning approach. The fine-grained pruning approach

usually results in high, but irregular sparsity. It is very

difficult to take advantage of this kind of sparsity with the

reasonable cost in terms of additional hardware used for

balancing workloads between MACs and zero-skipping

logic.

 Coarse-grain approaches, in which the pruning

algorithm removes complete kernels [29]. This type of

pruning does not introduce irregular sparsity patterns in

the convolutional layers, which is a big advantage over

fine-grain pruning. Almost every CNN accelerator

benefits from this approach. The disadvantage is that

coarse-grained pruning algorithms cannot achieve the

58

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

pruning levels of fine-grain pruning approaches.

Introducing regularity in fine-grain pruning overcomes

the main disadvantages of complex zero-skipping patterns

compared to coarse-grain while retaining high pruning

factors. Argus applies two optimization techniques to reduce

hardware requirements and to balance the workloads

between PEs. First is kernel clustering, which reduces the

complexity of logic by using only one zero-skipping block

for the whole cluster of PEs instead of one per PE. One way

of kernel clustering is presented in Cambicon-S [30], but the

idea was not widely used, especially in synergy with other

pruning techniques. The idea of clustering is to group

kernels/neurons inside convolutional/fully-connected layers

into clusters by the criteria of similarity and to prune all

kernels in a cluster in the same way. The pruning outcome is

shown in Fig. 2. The output of this pruning will be a sparse

CNN, which has clusters of kernels with the same positions

of non-zero weights within every cluster. Please notice that

the positions of non-zero weights can differ between

clusters. Because of this property, the underlining

accelerator can use one zero-skipping module for the entire

cluster of PEs instead of one module per one PE. The size of

the cluster determines the reduction factor of the logic used

for skipping zero multiplications.

Fig. 2. Clusters of kernels in one layer. Grey represents the remaining non-

zero weights.

Algorithm 1 presents the proposed kernel clustering

approach and reordering of kernels within cluster groups. In

the beginning, the cluster_and_reorder_CNN algorithm

goes through a CNN model creating clusters for each

convolutional and fully-connected CNN layer. For each

layer, it calls cluster_layer function, which returns clusters

for the current layer. Cluster_layer takes the weights tensor

and creates a kernel similarity matrix (sim). The dot product

is used as a measure of similarity between two kernels.

After the similarity matrix is created, it is passed to the

iterative Kerninghan-Lin (KL) clustering algorithm.

Because of KL algorithm definition, after the first iteration,

the kernels are divided into two groups with an equal

number of kernels. For example, if the layer contains 16

kernels, after the first iteration of the KL algorithm, two

clusters, each containing eight kernels, will be returned. In

the second step, the KL algorithm is applied to these two

clusters of eight kernels to further partition kernels into four

clusters each having four kernels. After the final step of the

KL algorithm, the output will be eight clusters of two

kernels each.

After clusters are created, cluster_and_reorder_CNN

function reorders kernels and channels inside

convolutional/fully-connected and batch normalization

layers. Reordering CNN model kernels is illustrated in Fig.

3, showing two layers with eight kernels. Imagine that

clustering of Layer 0 returns four clusters: [3, 6], [2, 7], [0,

1], and [4, 5]. Before CNN model is deployed to the

accelerator, the kernels inside each convolutional layer must

be reordered in accordance with the computed clusters.

Reordering of kernels will cause different processing order

for OFM channels at the output of the accelerator (the

orange arrow represents OFM channel stream in Fig. 3). To

avoid on-line reordering inside FPGA, the kernel channels

of the successor layer need to be reordered in the same way

as the kernels are reordered in the predecessor layer (Fig. 3,

right).

Algorithm 1. Kernel clustering.

func cluster_and_reorder_CNN(CNN_model)
 for layer in CNN_model:

 clusters[layer] = cluster_layer(CNN_model,

 layer.name)

 for layer in CNN_model:

 conv_pred = find_pred(CNN_model,layer)

 if(layer.type == Conv):

 reor_kernels(cluster[layer])

 reor_channels(cluster[conv_pred])

 if(layer.type == BatchNorm):

 reor_channels(cluster[conv_pred])

func cluster_layer(CNN_model,layer_name)

 weight_tensor =

get_tensor(CNN_model,layer_name)

 kernel_num = length(weight_tensor)

 for i in range(0, kernel_num):

 for j in range(i+1, kernel_num):

 sim[i][j] = dot_product(weight_tensor[i],

 weight_tensor[j])

 clusters = Iter_Kerninghan_Lin(sim)

 return clusters

Fig. 3. Kernel channel reordering due to clustering.

In other words, the kernels of the first convolutional layer

are reordered in the way in which they are clustered.

Successor layers will get reordered OFM, so their channels

need to be reordered in the same way as the first layer’s

kernels.

To further increase regularity (between clusters), Argus

uses a modified version of Accelerator-aware pruning

59

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

algorithm proposed by Kang in [21]. Accelerator-aware

pruning belongs to the fine-grained group of pruning

algorithms. It solves the problem of irregular sparsity, which

is the major drawback of most fine-grained pruning

algorithms. However, it is not optimized for FPGA

implementation. The authors did not take into consideration

particular characteristics of FPGA resources, namely, LUTs,

which will be used to implement zero-skipping logic. Argus

modification to the original algorithm [21] takes into

account LUT characteristics and further constrains the

positions of non-zero weights regarding the available LUT

size. As a result, the skipping logic is reduced by half when

compared with the algorithm proposed in [21], while CNN

accuracy is not degraded. The basic idea of Kang’s pruning

algorithm is to split the kernel weights into groups with an

equal number of weights and then set the same amount of

the smallest weights to zero in all groups, as shown in Fig.

4.

Fig. 4. Accelerator-aware pruning. Group size equals eight, the remaining

non-zero weights equal four.

This pruning scheme ensures that every group has the

same computational cost. Furthermore, it simplifies the

hardware architecture mainly due to a balanced workload on

all MAC units. Besides a balanced workload, this pruning

approach cuts down the complexity of zero-skipping logic.

Although Kang’s approach reduces the complexity for

ASICs, it can be seen that the proposed pruning factors and

group size are not optimized for FPGAs. The main reason

for this is the difference in the granularity of combinatorial

logic building blocks between ASIC and FPGA. In ASIC,

logic is mapped into a network of individual gates, while in

FPGA, the user logic is being mapped into LUTs. Please

notice that LUT’s level of granularity is much higher

compared to gates. This results in step increments of logic

utilization, when implementing user logic of increasing

complexity. For example, a multiplexer that is mapped into

a 6-input LUT will occupy one LUT as long as it has four or

fewer data inputs. Once the number of data inputs is

increased to five, the multiplexer will be mapped into 2

LUTs. The proposed CNN pruning algorithm minimizes this

step increment in skipping logic (multiplexers) by further

constraining Kang’s pruning scheme. The result of applying

additional constraints during pruning is a further reduction

of skipping logic by half, compared to the original pruning

scheme proposed in [21].

One of the proposed pruning patterns by Kang [21] sets

the group size to eight and the number of non-zero weights

to four. Further analysis of this pattern has shown that each

of the four non-zero weights can be placed on one of the

five possible places in a group of eight consecutive weights,

as shown in Fig. 5(a). Please observe that the left-most non-

zero weight can be located only at positions from 0 to 4

because in the worst case the three remaining non-zero

weights must be located at positions 5, 6, and 7. The same

applies to all other positions. It can be seen that using

Kang’s pruning pattern, the zero-skipping logic for one PE

unit will be created out of four 5-to-1 multiplexers. Each

multiplexer will be responsible for fetching one IFM point

that will be multiplied by the associated non-zero weight.

Note that in our case, every IFM point is represented by 16

bits. Using the previous example and assuming 6-input

LUTs, each cluster of PEs will require IFM multiplexing

logic utilizing 128 LUTs. This is because the multiplexing

logic is composed of 4 multiplexers where each requires 32

LUTs. CNN accelerator, which has 32 cluster units, would

utilize 4096 LUTs for this purpose only. Note that the

majority of modern FPGAs have 6-input LUT as the core

building block of the programmable logic.

To reduce the high utilization of LUTs, additional

constraints can be applied to allowable non-zero positions.

As shown in Fig. 5(b), four, instead of five different

positions, for each remaining non-zero weight could be

permitted. This reduces the multiplexer size to 4-to-1, which

leads to a saving of 64 LUTs per PE cluster. In other words,

using the same example with 32 clusters, this additional

constraining will reduce zero-skipping logic resources from

4096 to 2048 LUTs. Please notice that even when using

these additional constraints during CNN pruning, it is still

possible to regain most of the accuracy of the unpruned

CNN, as can be seen in Table I. Furthermore, the proposed

pruning pattern will also be beneficial when implementing

skipping logic in ASIC also, but to a slightly lesser degree,

reducing the required number of logic gates by about 20 %.

Fig. 5. Possible positions of non-zero weights in a group: a) original

pruning proposed in [21] (128 LUTs per IFM selector), b) constrained (64

LUTs per IFM selector).

TABLE I. PRUNING RESULTS FOR LARGE AND COMPACT

NETWORKS.

CNN
Unpruned

Top-5 accuracy

Constrained

(Fig. 3(b))

ResNet50 92.1 92.1

VGG-16 90.1 89.8

MobileNet v1 224

1.0
89.5 89.0

The pseudo-code of the proposed FPGA-aware pruning

algorithm is shown in Algorithm 2. At the beginning of the

pruning process, CNN’s performance is evaluated and

stored in the initial_accuracy variable. Next, kernels are

clustered using the cluster_and_reorder_CNN algorithm.

The pruning process starts by dividing the kernels into

sticks. Every stick is further divided into several groups,

each group being eight weights large, as shown in Fig. 4, by

calling split_krns_into_groups function. The actual pruning

60

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

is performed in four steps, removing one weight at a time

from a group of eight (incremental pruning). In each step,

for every weight group, a list containing the optimal weight

pruning order is created by calling the

create_pruning_order_list function. Creating an optimal

weight pruning order is a three-stage process. First, the

weights in weight groups are normalized separately for each

kernel within the cluster. Next, the absolute values of the

normalized kernels are added and stored in the temporary

matrix, which has the same shape as every kernel in a

cluster. Finally, every group in the temporary matrix is

sorted in ascending order and a list of indices inside the

groups is returned.

Returned order of indexes will be considered first for

pruning, as is the case in the majority of previously

proposed pruning algorithms. However, due to additional

constraints imposed on the allowable non-zero weight

positions, as shown in Fig. 5(b), this will not be always

possible. For example, let us assume that in the first two

pruning steps the weights at positions zero and one have

been pruned. This will prohibit the removal of the weight at

position two in the following steps. Allowable weights for

pruning in steps three and four, in this case, would be the

weights at positions 3–7, but not the weight at position two.

Selection of the best possible weight to prune next, while

obeying the constraints from Fig. 5(b), is performed within

the set_to_zero function.

Algorithm 2. FPGA-aware Network Pruning.

func compress_cnn(cnn_model, cluster_size):

 initial_accuracy = evaluate_network(cnn_model);

 cluster_and_reorder_CNN(CNN_model);

 kernel_groups=split_krns_into_groups(cnn_model;

 for i in range(4):

 for group in kernel_groups

 pruning_list =

 create_pruning_order_list(group,

clusters);

 set_to_zero(group, pruning_list);

retrain pruned CNN

Kernel group size was selected to be eight-weights large

because most of FPGA SoCs limit the width of the

Advanced Extensible Interface (AXI) data bus between the

DRAM controller and the programmable logic to 128 bits.

Since Argus uses 16-bit operand number representation,

because of its negligible impact on CNN accuracy [31],

[32], at most eight operands can be transferred in one beat

of AXI transaction, so selecting a kernel group size of eight

would result in the optimal processing performance.

To evaluate the proposed FPGA-aware pruning

algorithm, it was used to prune several standard CNN

networks pretrained on ImageNet [33], using Keras [34].

Reported accuracy results after pruning were obtained using

the validation set. Note that in the performed experiments,

the first convolutional layer from every selected CNN

network was excluded from pruning due to its small depth

of only three IFM points, which seems to be the common

approach [21].

As can be seen in Table I, FPGA-aware pruning

algorithm results in a negligible loss of pruned network

accuracy in the case of compact networks like MobileNet

and VGG-16, and no loss in the case of ResNet50. It is

worth noting that most hardware architectures used for

comparison with Argus use 8-bit precision arithmetic, which

almost always degrades CNN accuracy more than in the

case of pruned MobileNet v1 [35].

III. ARGUS CNN ACCELERATOR ARCHITECTURE

The most demanding layers in CNNs considering

computational time are convolutional. They consume up to

90 % of the time needed for inference [4, 8]. Therefore, the

accelerator performance is the most dependent on its

efficiency in the processing of convolutional layers. The

process of computing a generic convolutional layer is listed

in Algorithm 3.

Note that IFM padding and optional bias addition were

omitted from Algorithm 3. Time for bias addition can be

masked, while padding does not consume additional time

because the number of convolutions to compute is

determined by OFM size (loops L2 and L3), not by IFM

size. For simplicity, convolutional layer processing is split

into two functions, calc_layer_ofm and calc_ofm_point.

Algorithm 3. Pseudo-code of generic convolutional layer processing

algorithm.

func calc_layer_ofm(IFM, KM):

L1:for (fn = 0; fn<Kernel_Num; fn++)

L2: for (y = 0; y <OFM_Height; y++)

L3: for (x = 0; x <OFM_Width; x++)

 ifm_h_part = y*Sv:y*Sv+Kernel_Height

 ifm_w_part = x*Sv:x*Sv+Kernel_Width

 ifm_bundle =

IFM[ifm_h_part][ifm_w_part][:]

 OFM[x][y][fn] =

 calc_ofm_point(ifm_bundle, KM[fn])

func calc_ofm_point(ifm_bundle, km):

L4:for (kh = 0; kh<Kernel_Height; kh++)

L5: for (kw = 0; kw<Kernel_Width; kw++)

L6: for (kd = 0; kd<Kernel_Depth; kd++)

 ofm_point += ifm_bundle[kh][kw][kd]*

 km[kh][kw][kd]

 return ofm_point

Calc_layer_ofm takes IFM 3D tensor and kernels (KM)

as input and process IFM by sliding kernels over it. Its task

is to prepare the IFM bundle needed for the current OFM

point calculation and to call calc_ofm_point. The number of

convolutions per channel is determined by OFM horizontal

and vertical size, which is represented by the L2 and L3

loops. Loop L1 is responsible for creating the depth of

OFM. Calc_ofm_point takes ifm_bundle for the current

OFM point and kernel as input and returns a dot product of

these 3D tensors. Loops L4 and L5 determine the vertical

and horizontal stick coordinates in the kernel. L6 goes

through IFM by the channel axis until Kernel_Depth is

reached. Note that Kernel_Depth is equal to IFM depth in

all, but Depthwise convolutions [10].

As opposed to architectures that rely on a 2D array of PEs

to compute a single convolution, Argus dedicates one PE to

calculate all convolutions related to a particular kernel. In

other words, one PE is responsible for computing one

channel of OFM. Because of kernel clustering, every two

(cluster size) adjacent PEs share the same skipping logic.

Speaking in terms of Algorithm 3, one cluster of PEs is

responsible for executing two calc_ofm_point function calls.

Note that the hardware implementation of every PE will

61

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

have dedicated memory for storing kernel weights. These

weights will be stored as an array created by flattening the

kernel in stick-first order. Flattening removes any

information regarding the kernel shape, which means that

the kernel can be of any shape, which is also an important

advantage of Argus over many existing solutions. To

increase the processing performance, Argus unrolls the L1

loop with a factor of PE_Num, the number of available PEs.

This means that the Argus is processing PE_Num output

channels of OFM in parallel. To further speed up

processing, Argus also does the unrolling of loop L6 by a

factor of four, which means that every PE is capable to

execute four MAC operations in a single clock cycle. If a

network is compressed, these four MACs are covering all

non-zero multiplications inside a group of eight consecutive

IFM points, as shown in Fig. 4. When CNN is not

compressed, PE takes four consecutive points of IFM,

because there are no zero weights that can be skipped. That

means that the proposed pruning speeds up the processing

by a factor of two in the ideal case. Note that just non-zero

kernel weights are stored inside PE memory if the network

is compressed.

To achieve high utilization of PE units, selecting the

value of PE_Num must be done carefully. The vast majority

of layers in contemporary CNNs have at least 32 different

kernels. Setting PE_Num to 32 will lead to high PE

efficiency for all layers that have 32 or more kernels. Of

course, a higher number of PEs would increase the

parallelism and therefore further increase the processing

performance of layers with more than 32 kernels, but the

hardware will be underutilized while processing layers that

have fewer kernels than PE_Num. To solve this

underutilization problem, Argus uses several groups of PEs,

each having 32 PEs, called “Convolutional Cores”.

The top-level block diagram of the generic Argus

architecture is shown in Fig. 6. Argus is designed as a

configurable and scalable heterogeneous multi-core

architecture.

Fig. 6. Top Level Architecture of the Argus CNN Accelerator.

At the top level, Argus is composed of two major

components: Convolutional Cores (CCs) and DLP Cores.

Besides them, several Data Mover (DM) modules are used

to connect CCs and DLPs to the surrounding logic. DMs

convert and combine the internal AXI-Stream interfaces,

used by CCs and DLPs, into a number of AXI-Full

interfaces, which are used to connect the Argus core to the

DRAM memory controller. CCs are used to accelerate

convolutional and fully-connected layer types from CNN,

which can be compressed using the “FPGA aware pruning”

algorithm. Please notice that the fully-connected layer type

can be regarded as a special version of the convolution

layer, where the kernel size equals the IFM size of the fully-

connected layer. CCs are specifically designed to operate

efficiently on convolutional layers and are therefore ill-

suited to be used to accelerate other CNN layer types, like

pooling, adding, etc. The purpose of DLP cores is to

accelerate the processing of non-convolutional layer types.

Argus architecture is highly configurable, enabling easy

creation of different configurations, depending on the

selected number of CC and DLP cores, with different

performance/area/power tradeoffs. Before the actual

implementation, the user can specify the desired number of

CC, as well as DLP cores.

CC module, shown in Fig. 7, is composed of Register file,

DRAM Arbiter, Input Stream (IS), Link, PE array, and

Output Stream (OS) modules. After configuring the core

using Register file, IS requests biases, weights, and non-

zero indexes through a DRAM Arbiter. When the weights

are loaded into the PE array, IS starts streaming IFM while

the PE array does the computation. OS is responsible for

storing the computed convolutions into the DRAM memory

via the associated DM module.

Fig. 7. Single Convolutional Core (CC) top-level architecture.

A. Input Stream

Input Stream plays a major role in reducing data transfer

between DRAM and CC. The previously published idea

[36] was exploited by Argus IS. IS generates read requests

for IFM sticks and stores them in the on-chip cache, which

is a part of IS. Reading starts from the upper left stick and

continues through the first row of IFM as shown in Fig.

62

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

8(a). After Kernel_Height (KH) rows are stored, IS starts

sending IFM bundles to PE array which computes the first

row of OFM, Fig. 8(a) (KH and KW equal three).

Meanwhile, IS continues requesting IFM stick data for row

number 3.

As can be seen in Fig. 8(a), there is an opportunity for

significant data reuse while processing IFM by up to 9 times

for kernel size 3×3 with vertical and horizontal stride values

of one [37]. The first bundle includes nine IFM sticks from

the upper-left corner. These sticks contain the first three

sticks from rows 0–2 of IFM. After PE_Num OFM points

are computed, IS slides over the IFM by moving one place

to the right, assuming that the horizontal stride equals one.

The second bundle now contains sticks from columns 1–3 in

rows 0–2. Note that this second IFM bundle reuses six IFM

sticks from the previous IFM bundle (six sticks from

columns 1 and 2). The third IFM bundle (dark grey bundle

in Fig. 8(a)) reuses sticks from the second column for the

third time. After sliding down by one row, row 0 is not

needed anymore and can be replaced by row 3 from the

IFM.

Fig. 8. Processing of IFM by bundles (the grey part of IFM): a) Computing

the first OFM row while preloading row 3 into IS cache; b) Loading pattern

when the cache size is less than needed to store the whole IFM.

To avoid restrictions on IFM size that can fit into the

cache, IS can split IFM vertically into several parts, as

shown in Fig. 8(b). Partitioning of IFM along the width

axis, known as striping [36], allows setting the cache size

according to the available on-chip memory resources rather

than according to the IFM size. Please notice that when

using striping, some of the sticks on the vertical boundary

will be loaded twice, but this will not cause a significant

increase in the required throughput because just a few

columns will be loaded more than once.

As can be seen in Fig. 9, IS consists of 4 main blocks.

The Stick requester generates the stick address in DRAM

based on information about the IFM position in DRAM.

Data from DRAM (response on request) goes through

Cache writer, whose responsibility is to calculate the stick

cache address and write it in the cache. Addresses are

created based on a request pattern that is known in advance.

The Memory module is built around two-port RAM, with

the addition of a valid row status, which indicates which

row of the cache is valid and which is free for new sticks.

This status line is used by both Cache writer and Cache

reader. If there is no free space in Memory, the Cache

writer will block the DRAM controller by pulling down the

ready signal. On the other hand, The Cache reader will stop

the IFM stick readout process if the requested stick is not

yet in Memory. Cache reader, as the most complex module

in IS, is responsible for generating the correct read address

of the stick in the cache memory. Besides mentioned, Cache

reader has information about padding, so it can request zero

padding at appropriate moments.

Fig. 9. Input Stream block diagram.

B. DRAM Arbiter and Output Stream

DRAM Arbiter, as shown in Fig. 7, is responsible for the

arbitration of read requests to DRAM. Read requests are

coming mainly from IS and sometimes from the OS module.

IS requests sticks from IFM whenever the internal cache in

IS is ready to store a new stick. OS creates requests only

when CC is computing partial convolutions, which is the

case when CC cannot process a complete convolutional

filter in a single pass. Because of the limited on-chip

memory resources, CC can split the filter into two or more

parts along a channel axis. In the first pass, CC will

calculate the first part of the convolution and store it off-

chip. Next, CC will load the second slice of each filter and

process the rest of the IFM. These two parts have to be

added together to compute the final convolution result. To

do that, OS pulls the first partial convolution results part

through DRAM Arbiter and adds them to the second partial

convolution results delivered by the PE array. This way, CC

masks the time needed for the partial results addition

operation to avoid the performance penalty when doing

partial convolutions.

Fig. 10. Output stream block diagram.

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

The Output stream (OS) module, shown in Fig. 10, takes

the convolution results from the PE array and passes them to

the DRAM memory controller. It creates AXI requests with

the appropriate physical address of the OFM stick and

transfer size in bytes. In addition, it implements a

mechanism for partial convolution completion with a

dedicated FSM for requests and an additional adder in the

data path for addition. Besides partial convolution, an adder

could also be used for adding shortcut connections at the

end of each residual block in ResNet networks.

C. Processing Element Array

PE array is the biggest module of CC, composed of 32

PEs grouped into 16 clusters. The internal architecture of

the PE array is presented in Fig. 11. PE array uses two data

streams, the Input stream, and the Output stream. Both

streams use the 128-bit AXI-Stream protocol. The input

stream is used for loading bias, weights, non-zero index, and

IFM. The output stream is responsible only for moving the

convolution results to OS.

The processing sequence starts with bias loading into the

Bias Storage module, which is a simple register bank of 32

registers, one per PE. When all biases are loaded, IS

delivers weights and non-zero indexes to the Memory bank.

The Memory bank is built of 32 Block RAMs (BRAM) for

weight storage. Each BRAM is allocated to one PE, storing

2048 weight values. Alongside BRAMs for weights, there

are 4 additional BRAMs for non-zero index values. After

the weights are loaded, IFM starts streaming through Input

stream to all IFM point selectors (zero-skipping block).

Every IFM point selector has four 4-to-1 multiplexers for

choosing IFM points that match positions of non-zero

weights in a group of 8, as described in Section II (“FPGA-

aware pruning algorithm”). The size of the IFM point

selector is reduced by using the constraints shown in Fig.

5(b) to only 64 LUTs per selector, 16 LUTs per multiplexer.

Note that one IFM point selector is used per cluster,

meaning that only one zero-skipping block is used per two

PEs.

Fig. 11. Architecture of Processing Element array.

All computations in the PE array are done in 32 PEs.

Every PE is built around 2 DSP blocks that are capable of

computing 4 MAC operations in one system clock cycle. To

achieve 2 MAC operations per single DSP, a Multi-

Pumping technique [38], [39] has been used.

The Result collector is the last block in the PE array

pipeline, which collects results from all PEs. It is capable of

processing eight values in a single clock cycle and it is

taking results from PEs in a Round-Robin manner, in blocks

of eight.

D. Multi-Core Convolutional Engine

Even though a single CC has high MAC utilization over

almost all existing CNN architectures, the selected number

of PEs (32) can be a limiting factor for achieving the

required performance for more complex CNNs. CCs peak

performance is 32 GMAC/s, which can effectively be seen

as 64 GMAC/s if the network is compressed.

If more performance is needed, the number of used PEs,

PE_Num, must be increased. To scale up the Argus

performance without degrading PE utilization on shallow

layers, CC/IS pairs can be replicated several times, as shown

in Fig. 12.

In this setup, every CC will have a dedicated IS, which

means that every CC can operate on different parts of

shallow IFMs, keeping the PE utilization high. On the other

hand, while processing layers that have more than PE_Num

kernels, there is no need to supply every CC with a different

IFM part, instead all PEs can now process the same IFM

bundle. In this case, only one IS will fetch the IFM from the

DRAM and pass the IFM bundles through blocks called

Link to other CCs, while the other IS modules would be

idle.

As an example, let us consider an Argus core composed

of four CCs with a total of 128 PEs, as shown in Fig. 12.

Also, let us assume that the convolutional layer that is being

processed has 64 kernels.

To achieve the maximum utilization of PEs, CC_0 uses

32 kernels that belong to one group of 16 clusters, and CC_

1 uses the remaining 32 kernels (belonging to the other 16

clusters). To employ CC_2 and CC_3 modules, Argus also

loads the first group of clusters into CC_2 and the second

cluster group into CC_3. Finally, CC_0 will have the same

copy of kernels as CC_2, and CC_1 will have equal memory

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

content as CC_3. IS_0 loads the upper half of the IFM and

broadcasts it also to CC_1 using the Link module (see

orange arrows in Fig. 12). This means that CC_0 and CC_1

are computing the upper half of OFM using the same IFM

bundles. A similar approach is used with CC_2 and CC_3,

but now IS_2 is responsible for streaming the lower half of

the IFM to CC_2 and CC_3 modules. Please notice that

IS_1 and IS_3 modules are idle, thus reducing DRAM

throughput.

Fig. 12. Scaling up the performance of the accelerator by stacking more CC and connecting them using Link modules.

E. Dense Layer Processing Core

The purpose of the Dense Layer Processing Core (DLP)

core is to enable Argus to process maximum pooling,

average pooling, and adding layer types. The DLP has six

pipeline stages, which are controlled by FSM (Fig. 13). The

DLP core can work in three different configurations, where

some of the stages could be skipped, depending on the layer

type. The processing of layers always has three steps. In the

first step, the first IFM stick is sent to the Memory module

through the Input regs array block. In the second step, all

remaining sticks from the IFM bundle are being processed,

storing intermediate results in the Memory. When all sticks

are processed, in the third step, the final results are sent

from the Memory module to the output of the DLP core.

Each DLP pipeline stage is vectorized, consisting of eight

lanes of identical processing elements, enabling the DLP

core to process eight IFM points in parallel. All stages

operate on 16-bit numbers, except the Memory and Mul

array modules, which use 24-bit operands. During the

calculation in the first step, which is common to all

supported layer types, only Input regs array and Memory

pipeline stages are active. The purpose of this phase is to

initialize the content of the Memory with the values from the

first IFM stick.

When processing a maximum pooling layer, during the

second step, the first four pipeline stages are active. The

Memory module stores the current maximum value of each

OFM point from the current OFM. The Add array stage

calculates the difference between a vector of eight

consecutive IFM points and the corresponding current

maximum OFM vector stored in the Memory. Based on this

comparison, the Cmp Mux array stage updates the content

Memory module with the appropriate maximum OFM

vector. In the third step, the Memory and the Output regs

array modules are active, sending the final maximum

pooling results from the Memory to the output of the DLP

core.

Fig. 13. Architecture of the Dense Layer Processing Core.

In the case of average pooling layer processing, the first

step is identical to that of the maximum pooling layer.

During the second step, the Input regs array, Add array, and

Memory stages are active. The Memory module stores the

running sum of every OFM point from the current OFM

stick. The new IFM stick from the current IFM bundle, fed

through the Input reg array stage, is added to the OFM

running sum stick in the Add array stage. In the final step,

the Memory, Mul array and Output regs array stages are

active. The final OFM point sum is averaged by multiplying

it with the value supplied as part of the DLP configuration.

After the multiplication, the output of the Mul array stage is

65

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

the final vector of average values of eight consecutive OFM

points, which is sent to the output of the DLP core using the

Output regs array stage.

When processing an adding layer, the first step is

identical to the first processing steps of pooling layers. In

the second step, the Input regs array, Add array, and

Memory stages are active. The Memory contains the running

sum of the current OFM stick. Add array module

accumulates the values of the IFM sticks from appropriate

IFMs to this running sum OFM stick. When IFM sticks

from all IFMs that are being added together are processed,

the final sum value of the current OFM stick is stored in the

Memory module. In the third step, the OFM stick is sent to

the DLP’s output.

IV. IMPLEMENTATION RESULTS

To show the trade-off between performance and hardware

utilization, Argus was implemented in three different

configurations. The most compact version has one CC and

one DLP and can be fitted in a wide range of FPGA SoCs.

A balanced version in terms of performance and required

hardware resources has two instances of CC block and one

DLP, showing almost doubled performance compared to the

one-CC version. The most powerful version has four CCs

and one DLP, and it is meant for mid-range SoCs. All three

configurations have been implemented using Xilinx Vivado

Suite 2019.1, targeting the ZU7 MPSoC device. The

synthesis was performed using Flow Perf Optimized High,

while Performance Net Delay High strategy was used for

implementation. Resource utilization is shown in Table II,

together with the utilization for some of the previously

published accelerators that were used for comparison. Table

III shows FPGA devices that can accommodate various

accelerators in terms of available resources.

TABLE II. RESOURCE UTILIZATION OF ACCELERATORS USED

FOR COMPARISON.

Accelerator
No. of

MACs

LUT

(FPGA)

BRAM

(FPGA)

LUT/

DSP

Arith.

(bits)

FpgaConvNet
(a)

900 218K 615 242 16

Snowflake 256 - 192 - 16

NullHop

(FPGA)
128 229K 386 1789 16

NEURAghe 864 88K 320 101 16

CoNNa C4 256 267K 596 1042 16

Caffeine 1058 100K 783 94 16

Depthwise

optimized

accelerator(b)

3283 121K - 36.8 8

Eyeriss v2 384 - - - 8

Thinker 1024 - - - 8/16

Envision 512 - - - 4/8/16

[25](a) 220 13.4 98 61 8

[26](a) 1144 252 912 220 16

[27](a) 1350 178.1 1460 132 8/16

NVDLA 256 - - - 4/8/16

Argus 4CC 272 46K 218.5 168 16

Argus 2CC 140 25K 96.5 177 16-bit

Argus 1CC 74 14K 55 195 16-bit

Note: (a)Accelerators are scalable, meaning that utilization can be both

lower and higher. Utilization numbers are presented for configurations that

are used for performance comparison; (b)Specialized accelerator for CNN

architectures that exploits Depthwise separable convolutions. All hardware

requirements are reported assuming the implementation results presented

in the paper [40].

Please notice that some accelerators are scalable, meaning

that they can fit into smaller devices than shown in Table

III. Both Table II and Table III report the utilization/fitment

for the configurations of these accelerators used for

performance comparison. FpgaConvNet and Caffeine are

implemented using HLS approach, which is flexible but can

be inefficient in terms of required hardware resources.

Furthermore, HLS-based accelerators cannot support

changing the CNN model on-the-fly, which is not the case

with Argus. Argus is a general CNN accelerator

independent of the CNN model. Both architectures use a big

amount of MAC units (equivalent to DSP blocks in FPGA)

and the proportionally large amount of available on-chip

memory resources, which disqualifies them from being used

in the entry-level FPGA SoCs. Besides being inefficient in

mapping algorithms to the underlining hardware, HLS does

not manage to use the complete computational potential of a

DSP block.

An important parameter when comparing various

accelerators, which can be skipped at first glance, is the

utilization of LUTs per single DSP. Two extremes regarding

this criterion are CoNNa C4 and NullHop. In the case of

CoNNa, high efficiency and complex zero-skipping logic

result in requiring more than 1000 LUTs per one DSP

block. Speaking in terms of required DSP blocks, CoNNa

can fit almost every FPGA device. On the other hand, high

LUT utilization prevents it to be implemented in the entry-

level FPGA devices. In addition, CoNNa can not utilize all

available DSP blocks. The same is the case with the

NullHop.

TABLE III. FPGA-BASED ACCELERATORS COMPARISON FOR

DIFFERENT SOCS.

Accelerat

or

Required

LUT/

DPS

Zynq UltraSCALE + MPSoC

Zu2 Zu3 Zu4 Zu5 Zu7

Available

LUT/DS

P

 196 196 120 93 133

[25] 60 • • • • •

Caffeine 94 •

Snowflak

e(a)
- • • • •

NEURAg

he
101 • •

[27] 131 •(b)

Argus

4CC
168 • •(a) •(a) •

Argus

2CC
177 • • • • •

Argus

1CC
195 • • • • •

[26] 220 •(b)

FpgaConv

Net
242 •(b)

CoNNa

(C4)
1042 •

NullHop 1789 •

Note: (a)Only required DSP and BRAMs are used for fitment comparison

because LUT utilization is not reported; (b)Accelerators are scalable,

meaning that they can fit smaller devices. Table III shows the fitment for the

configurations that are used for performance comparison.

On the other hand, accelerator presented in [25] requires

the smallest number of LUTs per DSP. However, it does not

exploit any type of sparsity while processing CNNs, which

66

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

degrades its performance per used DSP block. When the

accelerator is scaled up to the limit of the underlining device

(all DSP blocks are used), many LUTs remain unused.

Argus utilizes these LUTs to perform zero-skipping,

decreasing the number of MAC operations performed by

DSP blocks, which leads to better GOP/s/DSP by up to 3.3

times.

NEURAghe [42] has an excellent LUT per DSP ratio, but

it requires a large number of DSPs and BRAMs, which

means that only bigger devices can support it. On the other

hand, Argus shows a very good overall LUT/DSP ratio,

which is mostly due to the carefully tailored pruning

algorithm and omitting to skip zeros in the IFM. As can be

seen from Table III, Argus containing one or two CCs can

fit into all Zynq UltraSCALE + MPSoC FPGA devices,

while the most powerful version cannot be implemented

only with the smallest SoCs, ZU2. In contrast with most

other architectures, Argus can fit in the largest number of

FPGAs, while retaining the best performance among FPGA-

based accelerators.

As stated before, Caffeine, CoNNa, and Accelerator

architectures in [26] and [27] can only fit into the ZU7

device, which is the largest device used for comparison.

NEURAghe can be mapped into smaller devices like ZU5,

but still not into cost-optimized SoCs like ZU3. Snowflake

shows similar results as the biggest Argus instance, but it

should be noted that the LUT utilization is not reported for

this architecture, so an FPGA device fitment was calculated

considering only the required DSPs and BRAMs. Our

analysis of the Snowflake architecture indicates that it

should not require a large amount of LUTs.

V. PERFORMANCE RESULTS

Table IV shows a comparison of performance results

when accelerating AlexNet, VGG16, MobileNet v1, and

ResNet50 for several CNN accelerator architectures.

Performance analysis of AlexNet acceleration shows that

the major performance degradation for Argus comes due to

the time needed to process large fully-connected layers.

These layers consume about 67 % of the inference time.

Note that most of this time is spent on weight loading rather

than performing calculation. To fully utilize DSP blocks

when processing large fully-connected layers, all

accelerators require extremely high bandwidth, sometimes

more than 200 GB/s [22], which is not achievable in today’s

low-cost embedded devices. Furthermore, many papers omit

the discussion on memory bandwidth requirements when

processing these layers, some of them remove them from

performance analysis, while others assume that CNN can be

compressed [22].

TABLE IV. PERFORMANCE COMPARISON OVER DIFFERENT CNN ARCHITECTURES.

Accelera

tor

CNN

Architecture

LUT

(FPGA only)
No. of MAC’s

Freq.

(MHz)

Frame Rate

[frames/s]

Conv only

Frame Rate

[frames/s]

FpgaConvNet AlexNet 218K 900 125 - 121.53

NVDLA AlexNet - 256 250 - 68.6

Eyeriss v2 AlexNet - 384 200 287.4(a) 234.1(a)

Thinker AlexNet - 1024 200 - 254.3

Envision AlexNet - 512 200 47 -

Snowflake AlexNet - 256 250 100.5 -

Argus (4CCs) AlexNet 46K 272 250 254 82.8

FpgaConvNet VGG16 218K 900 125 - 4.01

NullHop (FPGA) VGG16 229K 128 60 - 0.44

NEURAghe VGG16 88K 864 140 - 5.52

Caffeine VGG16 100K 1058 200 - 8.67(b)

CoNNa VGG16 267K 256 140 - 7.83

Argus (4CCs) VGG16 46K 272 250 15.8 11.02

Eyeriss v2 MobileNet v1

(128×128, 0.5)

- 384 200 - 1117

Argus (4CCs) 46K 272 250 - 1090

Depthwise

optimized

accelerator [40]

MobileNet v1 121K 3283 150 - 231.2

Argus (4CCs) MobileNet v1 46K 272 250 - 185

NVDLA [41] ResNet50 - 256 250 - 17.45

NVDLA [41] ResNet50 - 256 500 - 29.1

Snowflake ResNet50 - 256 250 17.7 -

Argus (4CCs) ResNet50 46K 272 250 40.2 36.5

Note: (a)Results are recalculated for a maximum throughput of 25 GB/s with a provided degradation of 24 % as the authors stated; (b)Performance is

calculated using the stated overall throughput divided by 30 GOPS needed for VGG 16. The authors did not provide frames/s results, but we extract their

counting rules on the total number of operations needed for VGG-16 from this paper.

To perform a fair comparison with the Snowflake and

Envision, only the convolutional layer inference time was

measured due to a lack of end-to-end inference results for

these accelerators. Argus’s performance is more than 5 and

2.5 times better than Envision and Snowflake, respectively.

In the case of Snowflake, the performance gain is most

probably caused by the fact that the Snowflake does not

support zero-skipping. Compared with the FpgaConvNet,

Argus is 30 % slower, but FpgaConvNet uses 3.5 and 4

times more DSP blocks and LUTs, respectively. Compared

to Thinker, Argus is 3 times slower, but it uses 4 times less

MAC units. In addition, the authors of Thinker provided

performance results in terms of GOP/s only, without

considering memory throughput as a limitation. Because of

67

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

that, it could be argued that Thinker’s actual performance

will be worse than that listed in Table IV. Compared to

Eyeriss v2, Argus has a slightly worse performance when

processing only convolutional layers, which is mostly due to

the higher compression ratio used in Eyeriss v2 [12] paper.

Even though the authors of Eyeriss v2 used almost 3.5

higher bandwidth to the DRAM and a higher compression

ratio, on-chip buffering implemented within Argus managed

to compensate for almost all of these advantages. However,

there is no buffering technique that can compensate for the

required throughput on the fully-connected layers if the

batch size equals 1, which degrades Argus performance

when processing the complete AlexNet CNN. Note that

such large fully-connected layers are considered obsolete

and are not used in modern CNN architectures.

In the case of VGG 16, Argus achieves better results than

all other architectures. Besides being faster, Argus requires

at least 4 times fewer LUTs compared to FpgaConvNet and

NullHop (FPGA implementation), and about 2 and 1.8 times

fewer LUTs than Caffeine and NEURAghe, respectively.

Moreover, please observe that all other architectures, except

NullHop, use from 3 to over 4 times more MAC units. Once

more, all previously proposed accelerators require too much

FPGA resources, which disqualify them from being used in

entry-level FPGAs and edge devices.

Performance comparison on MobileNet v1 was done with

Eyeriss v2 and Depthwise separable convolutional engine

[40]. In contrast with AlexNet, MobileNet v1 is a modern

CNN architecture that does not include large fully-

connected layers. Argus shows similar performance as

Eyeriss v2 on small MobileNet v1 (width multiplier equal to

0.5) while using at least 3.5 and 10 times lower memory

throughput when processing Pointwise and Depthwise

layers, respectively. On the other hand, Argus has a 20 %

lower performance than the accelerator proposed by Zhao,

Niu, and Luk [40], which is highly optimized for Depthwise

convolutions. However, please notice that the proposed

accelerator [40] uses 12 times more MAC units than Argus

to reach the reported performance.

Argus performance for ResNet50 was compared against

Snowflake and two different NVDLA [41] configurations.

Same as for AlexNet, Snowflake presents results for

convolutional layers only, and in this case, Argus is about

2.27 times faster. Compared to Nvidia’s NVDLA, Argus is

2.09 faster than NVDLA running at 250 MHz and 1.25

times faster than the configuration that works at 500 MHz.

Besides absolute performance comparison (frames per

second), a very important aspect for FPGAs and scalable

accelerators is the performance per resource used.

Moreover, it is important to develop an accelerator that uses

the available resources in a balanced manner. Balanced

usage of resources has a great impact on accelerator scaling

and utilization of available processing resources on a

dedicated FPGA platform. Table V shows the performance

comparison among different FPGA accelerators for VGG16

CNN. Besides GOP/s per DSP and LUT, which are

commonly used metrics, Table V also lists GOP/s per

BRAM used, which represents 36 kb of on-chip memory.

Please note that the performance capability of all

accelerators was calculated as the total number of operations

needed to classify one image using a dense CNN, multiplied

by the reported frames per second. This ensures a fair

comparison between architectures that exploit CNN sparsity

and dense accelerators. In addition, some papers report logic

utilization per logic cell instead of LUT. These results are

rescaled to match LUT utilization.

As can be seen from Table V, Argus in configuration

with 1 CC has the best GOP/s/DSP, with about 30 % better

results than the first competitor [27]. CoNNa C4 is 50 %

behind Argus, while others show from 2 to 10 times worse

GOP/s/DSP results. Considering GOP/s/LUT, [27] is the

best competitor with a 10 % difference compared to Argus.

Considering GOP/s/LUT, the best is [26], with a 10 %

difference compared to Argus. CoNNa shows competitive

results, while others have from 3 to 100 times lower

GOP/s/LUT compared to Argus.

Argus shows far better utilization of BRAMs than all

others, outputting about 2 GOP/s/BRAM. It has 2 times

better performance density than the accelerators in [27] and

[25], and from 2.7 to 45 times better than others. As two

other ratios, (GOP/s/DSP, GOP/s/LUT), GOP/s/BRAM can

become a limiting factor for further accelerator scaling, as in

the case of [27]. In the most powerful configuration, in [27],

accelerator utilize 80 % of BRAMs, while utilizing only

53 % of available DSPs.

Even though Argus has better results than competitors for

VGG16, it has the potential to be even more efficient in the

case of modern networks, like the MobileNet family,

without large fully-connected layers. Because of the limited

compression ratio (50 %), the loading of weights in fully

connected layers takes about 25 % of the whole processing

time.

TABLE V. COMPARISON OF PERFORMANCE DENSITY PER USED HARDWARE RESOURCES.

VGG16 [42] [23] [24] [15] [25] [26] [27] Argus 1CC Argus 4CC

DSP: 1728 1058 256 128 220 1144 1350 74 272

LUT (k): 200 100 267 229 13.4 252 178 14 46

BRAM (36 kb): 640 784 596 386 98 912 1460 51 202.5

GOP/s/DSP: 0.28 0.25 0.95 0.14 0.43 0.27 1.1 1.42 1.25

GOP/s/k LUT: 2.43 2.66 0.91 0.08 7.13 1.23 8.34 7.51 7.41

GOP/s/BRAM: 0.76 0.34 0.41 0.05 0.97 0.34 1.02 2.06 1.68

VI. CONCLUSIONS

This paper proposed a novel CNN pruning algorithm,

called “FPGA-aware pruning” and a resource-efficient

complete CNN hardware accelerator called “Argus”. The

pruning algorithm exploits two different techniques to

achieve high regularity in compressed CNN. Besides the

high regularity, the algorithm is specially tailored to be

suitable for FPGA-based acceleration. One of the used

techniques, kernel clustering, reduces the size of zero-

68

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

skipping logic by a factor of 2. Furthermore, the proposed

FPGA-aware pruning algorithm reduces the logic resources

consumption from 20 % to 50 % in the case of ASIC and

FPGA implementations, respectively, when compared to the

previously proposed solution [21]. The architecture of

Argus, together with the new pruning algorithm, enables

very efficient usage of available FPGA resources, enabling

Argus to be implemented in the smallest FPGA devices, and

still being able to reach high CNN processing performance.

Therefore, Argus is best suited to be used in edge-based

applications. Argus compares very favorably with some of

the previously proposed solutions like FpgaConvNet,

Snowflake, NullHop, NEURAghe, Caffeine, CoNNa,

Depthwise optimized accelerator, Eyeriss v2, Envision, and

NVDLA, usually being able to reach higher frame rates, or

achieve similar processing performance results with

significantly lower resource consumption. This is

particularly the case when the fps-per-MAC metric is being

used.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning”, Nature, vol.

521, pp. 436–444, 2015. DOI: 10.1038/nature14539.

[2] G. Litjens et al., “A survey on deep learning in medical image

analysis”, Medical Image Analysis, vol. 42, pp. 60–88, 2017. DOI:

10.1016/j.media.2017.07.005.

[3] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov, and B.

Vorster, “Deep learning in the automotive industry: Applications and

tools”, in Proc. of IEEE International Conference on Big Data (Big

Data), Washington, DC, 2016, pp. 3759–3768. DOI:

10.1109/BigData.2016.7841045.

[4] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition

with gradient-based learning”, in Lecture Notes in Computer Science,

vol. 1681. Springer, Berlin, Heidelberg, 1999. DOI: 10.1007/3-540-

46805-6_19.

[5] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification

with deep convolutional neural networks”, Communications of the

ACM, vol. 60, no. 6, pp. 84–90, May 2017. DOI: 10.1145/3065386.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition”, in Proc. of The 3rd International

Conference on Learning Representations (ICLR2015), 2015. arXiv:

1409.1556.

[7] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision”, in Proc.

of 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 2818–2826. DOI:

10.1109/CVPR.2016.308.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition”, in Proc of 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, 2016, pp. 770–

778. DOI: 10.1109/CVPR.2016.90.

[9] B. Zoph, V. Vasudevan, J. Shlens, and Q. Le, “Learning transferable

architectures for scalable image recognition”, in Proc. of 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 8697–8710. DOI: 10.1109/CVPR.2018.00907.

[10] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for mobile vision applications”, 2017. arXiv: 1704.04861.

[11] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

Convolutional Neural Networks for resource efficient inference”,

2016. arXiv: 1611.06440.

[12] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices”,

IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 9, no. 2, pp. 292–308, 2019. DOI:

10.1109/JETCAS.2019.2910232.

[13] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural

networks”, in Proc. of 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 2016,

pp. 1–12. DOI: 10.1109/MICRO.2016.7783723.

[14] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks”, in Proc.

of 2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), Seoul, South Korea, 2016, pp. 367–

379. DOI: 10.1109/ISCA.2016.40.

[15] A. Aimar et al., “NullHop: A flexible convolutional neural network

accelerator based on sparse representations of feature maps”, IEEE

Transactions on Neural Networks and Learning Systems, vol. 30, no.

3, pp. 644–656, 2019. DOI: 10.1109/TNNLS.2018.2852335.

[16] Y. Chen et al., “DaDianNao: A machine-learning supercomputer”, in

Proc. of 2014 47th Annual IEEE/ACM International Symposium on

Microarchitecture, Cambridge, UK, 2014, pp. 609–622. DOI:

10.1109/MICRO.2014.58.

[17] J. Zhu, J. Jiang, X. Chen, and C.-Y. Tsui, “SparseNN: An energy-

efficient neural network accelerator exploiting input and output

sparsity”, in Proc. of 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, Germany, 2018, pp. 241–

244. DOI: 10.23919/DATE.2018.8342010.

[18] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5

Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-

accuracy-frequency-scalable Convolutional Neural Network processor

in 28nm FDSOI”, in Proc. of 2017 IEEE International Solid-State

Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 246–247.

DOI: 10.1109/ISSCC.2017.7870353.

[19] S. Yin et al., “A 1.06-to-5.09 tops/w reconfigurable hybrid-neural-

network processor for deep learning applications”, in Proc. of

Symposium on VLSI Circuits, Kyoto, Japan, 2017, pp. C26–C27. DOI:

10.23919/VLSIC.2017.8008534.

[20] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A

50.6TOPS/W unified deep neural network accelerator with 1b-to-16b

fully-variable weight bit-precision”, in Proc. of International Solid-

State Circuits Conference - (ISSCC), 2018, pp. 218–220. DOI:

10.1109/ISSCC.2018.8310262.

[21] H.-J. Kang, “Accelerator-aware pruning for Convolutional Neural

Networks”, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 30, no. 7, pp. 2093–2103, 2020. DOI:

10.1109/TCSVT.2019.2911674.

[22] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello,

“Snowflake: A model agnostic accelerator for deep Convolutional

Neural Networks”, 2017. arXiv: 1708.02579.

[23] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards

uniformed representation and acceleration for deep convolutional

neural networks”, in Proc. of IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), Austin, TX, 2016, pp. 1–8. DOI:

10.1145/2966986.2967011.

[24] R. Struharik, B. Vukobratovic, A. Erdeljan, and D. Rakanovic,

“CoNNA - Compressed CNN hardware accelerator”, in Proc. of 2018

21st Euromicro Conference on Digital System Design (DSD), Prague,

Czech Republic, 2018, pp. 365–372. DOI: 10.1109/DSD.2018.00070.

[25] F. Spagnolo, S. Perri, F. Frustaci, and P. Corsonello, “Energy-efficient

architecture for CNNs inference on heterogeneous FPGA”, Journal of

Low Power Electronics and Applications, vol. 10, no. 1, p. 1, 2020.

DOI: 10.3390/jlpea10010001.

[26] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient

hardware accelerator for sparse convolutional neural networks on

FPGAs”, in Proc. of 2019 IEEE 27th Annual International

Symposium on Field-Programmable Custom Computing Machines

(FCCM), San Diego, CA, USA, 2019, pp. 17–25. DOI:

10.1109/FCCM.2019.00013.

[27] C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, “An

efficient hardware accelerator for structured sparse convolutional

neural networks on FPGAs”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 28, no. 9, pp. 1953–1965, 2020. DOI:

10.1109/TVLSI.2020.3002779.

[28] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization, and Huffman

coding”, arXiv: Computer Vision and Pattern Recognition, 2016.

arXiv: 1510.00149.

[29] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf, “Pruning

filters for efficient ConvNets, 2017. arXiv: 1608.08710.

[30] X. Zhou et al., “Cambricon-s: Addressing irregularity in sparse neural

networks through a cooperative software/hardware approach”, in

Proc. of 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2018, pp. 15–28. DOI:

10.1109/MICRO.2018.00011

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 3, 2021

[31] J. Qiu et al., “Going deeper with embedded FPGA platform for

convolutional neural network”, in Proc. of 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays

(FPGA’16), New York, NY, USA, 2016, pp. 26–35. DOI:

10.1145/2847263.2847265.

[32] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A

quantitative analysis on microarchitectures of modern CPU-FPGA

platforms”, in Proc. of 2016 53rd Annual Design Automation

Conference (DAC’16), New York, NY, USA, 2016, pp. 1–6. DOI:

10.1145/2897937.2897972.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,

“Imagenet: A large-scale hierarchical image database”, in Proc. of

IEEE Conference on Computer Vision and Pattern Recognition, 2009,

pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[34] Chollet, Francois, & others, Keras, 2015. [Online]. Available:

https://keras.io

[35] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and K.

Nealis, “Exploration of low numeric precision deep learning inference

using Intel® FPGAs”, in Proc. of 2018 IEEE 26th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2018, pp. 73–80. DOI:

10.1109/FCCM.2018.00020.

[36] R. Struharik and V. Vranjkovic, “Stick buffer cache v2: Improved

input feature map cache for reducing off-chip memory traffic in CNN

accelerators”, in Proc. of 2019 27th Telecommunications Forum

(TELFOR), Belgrade, Serbia, 2019, pp. 1–4. DOI:

10.1109/TELFOR48224.2019.8971049.

[37] D. Rakanovic, A. Erdeljan, V. Vranjkovic, B. Vukobratovic, P.

Teodorovic, and R. Struharik, “Reducing off-chip memory traffic in

deep CNNs using stick buffer cache”, in Proc. of 2017 25th

Telecommunication Forum (TELFOR), 2017, pp. 1–4. DOI:

10.1109/TELFOR.2017.8249398.

[38] R. P. Tidwell, “Alpha blending two data streams using a DSP48 DDR

technique”, Xilinx, XAPP706 (v1.0) Mar. 31, 2005. [Online].

Available:

https://www.xilinx.com/support/documentation/application_notes/xap

p706.pdf

[39] B. Ronak and S. A. Fahmy, “Multipumping flexible DSP blocks for

resource reduction on Xilinx FPGAs”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 36,

no. 9, pp. 1471–1482, 2017. DOI: 10.1109/TCAD.2016.2629421.

[40] R. Zhao, X. Niu, and W. Luk, “Automatic optimising CNN with

depthwise separable convolution on FPGA”, in Proc. of 2018

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2018. DOI: 10.1145/3174243.3174959.

[41] NVDLA. [Online]. Available: http://nvdla.org/

[42] P. Meloni et al., “NEURAghe: Exploiting CPU-FPGA synergies for

efficient and flexible CNN inference acceleration on Zynq SoCs”,

ACM Trans. Reconfigurable Technol. Syst., vol. 11, pp. 18:1–1:24,

2018. DOI: 10.1145/3284357.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

70

