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1Abstract—One of the most critical router’s functions is the 

IP lookup. For each incoming IP packet, IP lookup determines 

the output port to which the packet should be forwarded. IPv6 

addresses are envisioned to replace IPv4 addresses because the 

IPv4 address space is exhausted. Therefore, modern IP routers 

need to support IPv6 lookup. Most of the existing IP lookup 

algorithms are adjusted for the IPv4 lookup, but not for the 

IPv6 lookup. Scalability represents the main problem in the 

existing IP lookup algorithms because the IPv6 address space is 

much larger than the IPv4 address space due to longer IPv6 

addresses. In this paper, we propose a novel IPv6 lookup 

algorithm that supports very large IPv6 lookup tables and 

achieves high IP lookup throughput. 

 

 Index Terms—IP lookup; IP networks; Packet switching; 

Routers.  

I. INTRODUCTION 

The Internet constantly grows in every aspect: number of 

hosts and network devices, number of links, link capacities, 

variety of services and applications, QoS demands. Internet 

routers are the main components of the Internet 

infrastructure because the routers are responsible for the 

forwarding of IP packets to their proper destinations. Thus, 

routers enable the Internet’s global connectivity. Therefore, 

performances of the Internet routers must be continuously 

upgraded so that the routers could support and enable 

Internet’s growth. The Internet routers must implement 

efficient high-speed packet processing to keep up with the 

Internet’s growth. Packet processing includes complex 

tasks, such as IP lookup, packet classification, packet 

scheduling and switching, packet buffering, etc. [1]. 

IP lookup is one of the most critical packet processing 

functions [1]–[3]. For each incoming packet, IP lookup 

examines the lookup table using the packet’s destination IP 

address and retrieves the next-hop information. Lookup 

table contains forwarding information for all the networks 

known to the router. Forwarding information, collected via 

routing protocols (BGP, OSPF, RIP, IS-IS), comprises the 

pairs IP prefix and next-hop information (NHI). IP prefix 

represents the destination network address (or aggregated 

network address that represents multiple destination 

networks). We use term “prefix” to denote IP prefix in the 

remaining part of the paper. NHI represents the ID of the 

output port to which a packet needs to be forwarded. 
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The worst case, considering the IP lookup, is when only 

the shortest possible packets are arriving at a router. In this 

worst case scenario, IP lookup must be completed in a time 

that is equal to the shortest packet duration. Otherwise, 

packets would pile up and eventually some packets would 

be dropped. Nowadays, link capacities are extremely high, 

so the shortest packet duration is very small. For example, 

IP lookup function should support one IP lookup per 5.12 ns 

in case of ethernet frames on 100 Gbps link [1]. This is a 

challenging goal even with today’s technology. Since link 

capacities continue to grow, the lookup time budget 

decreases.  

Also, as a consequence of the Classless Inter-Domain 

Routing (CIDR), IP lookup can find multiple solutions 

(matching prefixes) for the given destination IP address [3]. 

The Longest Prefix Matching (LPM) rule is applied when 

multiple solutions are found [3]. LPM rule selects the prefix 

that has the longest match to a given destination IP address. 

Therefore, it is not enough to find a match during the 

lookup, but a found match must be the longest match as 

well. This makes the IP lookup a complex function because 

IP lookup is a two-dimensional problem because two prefix 

properties (prefix value and prefix length) need to be 

checked during the search process.  

Most of the existing IP lookup algorithms have been 

developed to support IPv4 addresses, and many of them 

scale poorly to IPv6 addresses. However, transition to 

longer IPv6 addresses is inevitable. This transition increases 

lookup table size because of the larger IPv6 address space. 

The larger lookup table size makes more difficult the 

efficient IP lookup implementation. Therefore, IP lookup 

algorithms should have frugal memory requirements even 

when lookup table contains large number of entries (one 

million entries and beyond). Frugal memory requirements 

enable high-level of parallelization and use of fast on-chip 

memories, so faster IP lookup can be performed. 

Network topology changes (router/link failure, traffic 

congestion in some parts of network) can be very frequent 

and they require lookup table updates. A lookup algorithm 

has to efficiently update lookup table entries. Otherwise, IP 

lookup process could be affected and as a consequence 

packets could be incorrectly forwarded or even dropped. 

In this paper, we propose a novel IPv6 lookup algorithm 

Balanced Pipelined Lookup (BPL). BPL uses pipeline 

technique to achieve high lookup throughput and to support 
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high-speed links. BPL is based on the binary tree that is split 

into non-overlapping subtrees. The nodes of the subtrees are 

evenly distributed across the pipeline stages. Each stage 

contains similar number of nodes. In this way, each pipeline 

stage uses the same type of memory making hardware 

implementation very efficient. Only non-empty nodes of the 

subtrees are stored to reduce the memory requirements. 

Non-empty node is a node that contains an existing IP 

prefix. The main contribution of the paper is the proposed 

scalable BPL scheme suitable for fast and efficient IPv6 

lookups. BPL has lower memory requirements compared to 

other similar tree based lookup schemes. Also, BPL 

supports efficient lookup table updates that do not decrease 

the lookup performance. 

The paper is organized as follows. Section II presents the 

related work. We give special attention to the tree based 

lookup algorithms because BPL belongs to this class of IP 

lookup algorithms. Section III contains detailed description 

of BPL. Section IV presents performance analysis of BPL. 

Also, we compare the BPL with the lookup algorithms that 

use similar techniques as the BPL. Section V concludes the 

paper. 

II. RELATED WORKS 

IP lookup was recognized as router’s critical function 

very early [3]. Many lookup algorithms have been proposed 

so far [2]–[29]. Most of the lookup algorithms are designed 

to support IPv4 addresses, but they usually do not scale well 

to longer IPv6 addresses. There is an ongoing effort to 

develop IP lookup algorithms that achieve efficient IPv6 

addresses support [2], [7], [9]–[10], [12], [14], [16], [19]–

[20], [22], [25]–[26], [29]. All lookup algorithms can be 

classified into three main categories [2]: tree based 

algorithms [3]–[22], Ternary Content-Addressable Memory 

(TCAM) based algorithms [23]–[25], and hash based 

algorithms [26]–[29]. We present the tree based algorithms 

related work in this section because BPL belongs to this 

category. 

The binary tree represents a natural way to describe 

lookup table content [3]. Each prefix is represented as a 

node in the binary tree. Path to the node represents the 

prefix value. The binary tree is traversed using one 

corresponding bit from the given destination IP address in 

each step. Obviously, the main disadvantage of the binary 

trees is large number of steps in the worst case. Thus, IP 

lookup is very slow because many memory accesses are 

required in the worst case. Since IP lookup should be very 

fast, small number of memory accesses per one lookup is 

allowed (only one for high-speed links).  

The first technique that was introduced to optimize the 

binary tree was the path compression that collapses one-way 

branch nodes to reduce number of memory accesses on such 

paths [3]. Multiple nodes with prefixes can be visited in the 

binary tree during one lookup. Thus, the best current match 

must be remembered during the tree traversal. To avoid the 

remembering of the best current match, leaf pushing 

technique is introduced [4]–[6], [18]. Leaf pushing 

technique pushes the prefixes from the internal tree nodes to 

leaf nodes, where a leaf node is the node without any child 

nodes. In this way, the lookup result can be obtained only in 

the leaf nodes. Downside of the leaf pushing technique is 

increased number of nodes in the tree.  

To reduce the number of memory accesses during lookup, 

m-ry trees are introduced [3], [6], [8], [17], [21]. M-ry trees 

use a stride of m bits in each step, so the number of memory 

accesses in the worst case is m times lower than in the 

binary tree’s worst case. Downside is that each node in m-ry 

tree has 2
m
 child nodes, i.e., 2

m
 pointers must be stored in 

each node of the m-ry tree. Stride size can be different in 

each step to optimize the structure of the m-ry tree. Some 

prefixes are not visible in m-ry tree because they belong to 

binary tree levels that are not visible in the m-ry tree. 

Therefore, these prefixes need to be pushed to the closest 

level that is visible in m-ry tree. In [17], Huffman coding is 

used to compress the lookup table entries into resulting m-ry 

tree structure. Memory requirements are decreased 

compared to classic m-ry tree solution, but the main 

problem of multiple memory accesses remains.  

The bitmap technique was introduced to minimize the 

memory requirements of the lookup algorithm [2], [6]–[7], 

[15], [18], [20]. One way to use the bitmap technique is to 

reduce the number of pointers in the m-ry trees [6], [20]. 

Instead of 2
m
 pointers in a m-ry tree node, only one pointer 

and associated bitmap vector are used. Pointer points to a 

start location of a memory block that contains child nodes. 

Bitmap vector length is equal to 2
m
 and each bit corresponds 

to one child node. Bit in the bitmap vector represents the 

existence of the corresponding child node. In this way, 

memory size of one node in the m-ry tree is significantly 

reduced. Typically, memory block, where child nodes of 

one m-ry tree node are stored, is sized to store all child 

nodes. Memory block can be sized to contain only the 

existing child nodes to decrease lookup table memory 

requirements, but it is very complicated to efficiently 

manage the positions of these memory blocks in the 

memory.  

The other way to use the bitmap technique is to replace 

the parts of the binary tree (subtrees) with bitmaps [7], [20]. 

Instead of storing complete subtree with all the subtree 

nodes and their pointers, the subtree can be presented via 

bitmap vector where each bit corresponds to one subtree 

node. A bit in the bitmap vector signals the state of the 

corresponding subtree node (empty or non-empty). In this 

way, memory requirements for the subtree storage are 

reduced, and the subtree search is faster because only the 

bitmap vector is inspected.  

To achieve high speed lookups, the maximal number of 

memory accesses per one lookup should be only one. The 

pipeline technique with multiple memory instances needs to 

be used to virtually achieve this goal [4], [7], [13]–[14], 

[18]. There are still multiple accesses per one lookup. 

However, pipeline and multiple memory instances enable 

lookups for multiple destination IP addresses in parallel. 

Thus, it virtually seems like there is only one memory 

access per one lookup. For efficient hardware 

implementation, tree nodes need to be evenly distributed 

across the pipeline stages so that each stage contains the 

similar number of nodes [4], [14]. The even distribution of 

nodes enables the use of the same type of memories in the 

pipeline stages making the hardware implementation more 
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efficient. However, in these solutions, the first few stages 

have lower number of stored nodes. In [13], the imbalance 

problem of the early pipeline stages is avoided by using the 

randomization principle and circular pipeline. The circular 

pipeline enables to start searching at any pipeline stage and 

the randomization principle enables even distribution of 

nodes across all stages. However, the problem is a need for 

scheduling algorithm that schedules the starts of the 

requested IP lookups. Scheduling is needed to avoid the 

potential collisions during the parallel lookups that started in 

different pipeline stages.  

One of the greatest problems of the tree based lookup 

algorithms is transition to IPv6 addresses [2]. The IPv6 

prefixes are longer than the IPv4 prefixes. The number of 

empty nodes is very large in IPv6 case because the nodes in 

the earlier tree levels are empty. The large number of empty 

nodes leads to non-efficient memory usage and increases the 

memory requirements [2].  

In [14], the multilayer B-trees containing only non-empty 

nodes are created. In this way, storage of empty nodes is 

avoided and memory requirements are decreased. Each node 

stores multiple prefixes, however, some free space should 

be left in the nodes for efficient updates. In [5], the priority 

tree structure is proposed. Priority tree eliminates the empty 

nodes in the tree structure. Priority tree is constructed from 

the binary tree in the following way. Each empty node is 

filled with the prefix moved from the leaf that represents the 

descendent of the corresponding empty node. If multiple 

descendent leaves exist, then the leaf that corresponds to the 

longest prefix is selected. After that, the selected leaf node 

is deleted from the tree and all its parent nodes are also 

deleted until the non-empty node is reached or the node that 

has a child on the other side is reached. By repeating this 

process, all empty nodes are eliminated from the tree. The 

main advantage is that the number of nodes in the priority 

tree is always equal to the number of prefixes, so the 

priority tree solution is very scalable. It is very easy to 

calculate the memory requirements for the priority tree 

because the priority tree does not depend on the prefix 

distribution. The downside is that each node in the priority 

tree must contain the prefix value because the priority tree 

path itself is not sufficient to determine the value of the 

prefix associated with the node. In addition, the depth of the 

priority tree is usually not significantly smaller than the 

depth of the original binary tree, so the multiple memory 

accesses problem still remains. The priority tree technique 

can be applied to m-ry trees as well [8]. In [16], a 

hierarchical-balanced search tree is constructed. This tree 

contains only non-empty nodes that store prefix range 

information. Memory requirements are very similar to the 

priority tree ones, and the same problem of multiple 

memory requirements is also present. In [19], priority trees 

are combined with B+ trees and index tables to utilize the 

prefix length distribution characteristics. Multiple priority 

subtrees are created and consequently tree depth is 

decreased.  

Many novel solutions are adjusted and tuned for specific 

platforms [20]–[22]. In [20], IP lookup is adjusted for 

Phase-Change Memory (PCM) based memory system, and 

in [21], the proposed IP lookup solution utilizes the 

Graphics Processing Unit (GPU) parallel computing. IP 

lookup solution proposed in [22] exploits the Single 

Instruction, Multiple Data (SIMD) instructions. 

III. BPL 

The tree based IP lookup solutions usually have two 

major problems that impact the overall performance. The 

first problem is the large memory requirements because the 

empty nodes are stored. The empty nodes do not carry any 

useful information and they are only needed to enable the 

tree traversing. On the other hand, frugal memory 

requirements are desirable to fit the IP lookup solution on-

chip because only on-chip memory would be used then. 

This would enable more efficient implementation that uses 

pipeline and parallelization techniques. In the case of IPv6 

lookup, most of the prefixes belong to the range of 32–48 

bits [30]. This means that there is a huge number of empty 

nodes that need to be stored, which limits the scalability of 

the tree based IP lookup algorithms that store the empty 

nodes. 

The second problem is that the tree structure in its 

original form is not suitable for the pipeline technique. The 

reason is that the tree’s structure is uneven, and typically 

more nodes reside at tree’s bottom levels than in the tree’s 

upper levels. In the case of a naive approach, each tree level 

would be one pipeline stage. This would create uneven 

memory requirements for the pipeline stages and pipeline 

implementation would be inefficient. Thus, a balancing of 

nodes should be performed to achieve the same memory 

requirements for all the pipeline stages. 

Our proposed Balanced Pipelined Lookup (BPL) is based 

on the tree structure similar to priority tree structure [5] that 

stores only the non-empty nodes. This property eliminates 

the problem of empty nodes that most of the tree based 

solutions have. The tree that represents lookup table is 

divided in 2
K
 subtrees, where K represents the top K bits of 

the prefix. The non-empty nodes from all the subtrees are 

stored across the pipeline stages in a balanced way to 

achieve the same memory requirements for each pipeline 

stage. In this way, efficient pipeline implementation is 

enabled. In the remainder of this chapter, we denote non-

empty nodes as nodes. BPL subtree structure is shown in 

Fig. 1. The example shows that the nodes of the subtree are 

distributed across the pipeline stages. Taking into account 

that all the subtrees are following the same principle, the 

number of nodes across the pipeline stages can be balanced. 

Thus, similar number of nodes in each pipeline stage can be 

achieved. This enables very efficient pipeline 

implementation of BPL. The children nodes of a subtree 

node are placed in the same pipeline stage as we explain in 

the following paragraph. 

Note that each node in a subtree contains the prefix value 

and the right/left child pointer. The right and left child of a 

subtree node are stored in successive locations of the same 

pipeline stage in the case when both children exist. In this 

way, the memory requirements are decreased because only 

one pointer is used in each subtree node. During the lookup, 

the subtree is traversed using the bits of the destination IP 

address. In each visited node, IP address is compared to the 

prefix value stored in the node. When the end of the subtree 
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is reached, the last found positive match represents the 

longest matching prefix.  

Figure 2 shows the architecture of our proposed BPL. IP 

lookup is very simple. The selector selects the subtree that 

should be searched. All subtrees are stored in the pipeline 

stages. The selected subtree is traversed and the longest 

matching prefix is found. The corresponding next-hop 

information (NHI) is retrieved from the next-hop memory 

(NHM) at the final step of the IP lookup process. 

 
Fig. 1.  BPL subtree structure. 

 
Fig. 2.  BPL architecture. 

The selector selects the subtree based on the top K bits of 

the destination IP address because the top K bits represent 

the common part for all the prefix values stored in the same 

subtree. We choose the value of K = 16 for two reasons. The 

first reason is that it provides sufficient number of subtrees 

for efficient balancing of nodes across the pipeline stages. 

The second reason is that typically there are no IPv6 

prefixes shorter than 16 bits [30]. The selector comprises the 

memory that contains the pointers to the roots of all the 

subtrees. The pointer comprises two parts, the stage ID and 

the location address. The stage ID identifies the pipeline 

stage and the location address represents the location in the 

corresponding pipeline stage memory where the root node 

resides. The selector memory is addressed with the top K 

bits of the destination IP address and the pointer to subtree’s 

root is retrieved. The selector also removes the top K bits 

from the IP address as they are no longer needed because all 

the prefixes in the selected subtree match these top K bits. 

Each node in the subtree contains the prefix value and the 

left/right child pointer. The prefix value does not contain the 

top K bits as they are already inspected in the selector. If the 

node has both children, the left and right child nodes are 

stored in the same pipeline stage in the successive memory 

locations. Therefore, the pointer comprises a pointer value 

and a 2-bit indicator that indicates the existence of the 

left/right child node. The pointer value comprises two parts, 

the stage ID and the location address. During the lookup, 

subtree is traversed. In each visited node, the remaining part 

of IP address (the top K bits are removed by the selector) is 

compared to the stored prefix value. If there is a match, the 

stage ID and the location address of the matched node are 

remembered as the best solution. Each location in the NHM 

corresponds to one location in the pipeline (pipeline stage 

memories). In this way, the pointers to NHM locations are 

avoided and thus the memory requirements are reduced. 

Based on the stage ID and the location address of the 

longest matching prefix, the corresponding NHM location is 

determined and accessed to retrieve NHI as the final result 

of IP lookup. NHM stores only NHI.  

Figure 3 shows the design of one pipeline stage. 

Pointer_in represents the address of the next node that 

should be visited. Result_in represents the current lookup 

solution. IP_addr_in represents the IP address without top K 

bits that are removed by the selector. Bit_position_in 

represents the position of the bit in the IP_addr_in that 

should be used for determining the next node (left or right 

child). All these inputs are delayed because the stage 

memory introduces read latency. Location part of the 

Pointer_in represents the stage memory read address. The 

delayed Stage_ID part is compared to hardcoded ID of the 

current pipeline stage. If there is no match, all input values 

are passed to corresponding outputs without any processing 

because the current stage does not contain the node of 

interest. If there is a match, the node of interest is accessed 

in the current pipeline stage and processing of the delayed 

input values and node’s content is performed. The bit 

position value is incremented. IF_INC increments the 

pointer value if both child nodes exist and the right child 

should be visited next, otherwise the pointer is not 

incremented. The corresponding multiplexer is set to pass 

the new pointer value to Pointer_out output. If there is a 

match between the IP address and prefix value, we set the 

currently best solution to address of the visited node and set 

the corresponding multiplexer to pass this new solution to 

Result_out output.  

 
Fig. 3.  Pipeline stage design. 

We use incremental updates to update the lookup table. 

The algorithm for adding a new prefix is very simple. First, 

the top K bits of the prefix are inspected to determine the 

existence of the corresponding subtree. If the subtree is 

empty, the root node is created and the new prefix is placed 

in the root node. Note that prefixes stored in the subtrees are 

the original prefixes with the top K bits removed since all 

the prefixes in the same subtree have the same value of the 

top K bits. If the subtree is not empty, we traverse the 

subtree starting from the root node. The traversed path is 

determined by the bits of the new prefix (top K bits are 

omitted). In the traversal step i, we inspect the bit on 

position i to determine the direction of the next step. In each 
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visited node, we compare the length of the new prefix with 

the length of the prefix stored in the currently visited node. 

If the new prefix is longer or has equal length, then we just 

move to the child node determined by the value of the 

corresponding bit in the new prefix. If the new prefix is 

shorter, then we store the new prefix in the currently visited 

node, and the prefix that was previously stored in that node 

becomes the new prefix and we continue to traverse the tree. 

When the end of the path is reached (there is no 

corresponding child to traverse to), a new node is created 

and the new prefix is stored in the new node. 

To achieve similar number of nodes in each pipeline 

stage, the update process evenly distributes the subtree 

nodes across the pipeline stages. When a new node is added, 

the leaf node in the corresponding subtree is created. If the 

parent of the created leaf node already has the other child, 

the new node will be added in the pipeline stage where that 

other child resides, because the child nodes must be in 

successive locations. Note that we reserve location for the 

missing child node when both children do not exist to 

simplify the update process. The justification for this is that 

the number of the non-leaf nodes that do not have both child 

nodes is negligible compared to the total number of the non-

leaf nodes. If the parent of the created leaf node does not 

have the other child, the created node will be added in the 

least populated pipeline stage. If the least populated stage is 

located after the pipeline stage where the parent node 

resides, then the new node is simply stored in the least 

populated pipeline stage. However, if the least populated 

stage is located prior the pipeline stage where the parent 

node resides, then nodes on the path to the added leaf node 

are moved to prior stages as depicted in Fig. 4. An example 

in Fig. 4 shows that the least populated pipeline stage is 

stage 2. The prefixes P2, P3, and P4 are moved to the prior 

stages. The P2 is moved to the stage 2, while the P3 is 

moved to the place previously occupied by P2 in the stage 4. 

In the same way, the P4 is moved to the location previously 

occupied by P3 in the stage 6, while the P5 is stored in the 

location previously occupied by P4 in the stage 12. Note 

that Fig. 4 shows only the nodes on corresponding path of 

the subtree. However, the movement of the nodes comprises 

the movement of both nodes in successive locations. For 

example, when P3 as a right child moves to P2’s old 

location (right child location), the P2’s left child also moves 

to P2’s old location (left child location). This does not 

disturb the remaining part of the subtree because the P2’s 

left child points to stages latter than stage 4 if P2’s left child 

has descendant nodes. This means that the update process 

does not disrupt the subtree structure and connectivity. As a 

result of the described update process, we are able to keep 

the even distribution of the nodes across the pipeline stages. 

 
Fig. 4.  Pipeline stage design. 

The update part of the pipeline stage is not shown in Fig. 

3 for the sake of simplicity. The update is very simple. The 

update data are pushed in the pipeline in the form of the 

address/data pair. The address represents the stage and the 

location where the data should be written. Since dual-port 

memories are used, the IP lookup is not interrupted with the 

update. The replica of the lookup table is stored in the 

control plane. In this way, all calculations are performed in 

the control plane, and the data plane receives only the 

aforementioned address/data pairs for the update process. 

This decoupling of the control and data plane enables the 

Software Defined Networking (SDN) support as well. 

IV. PERFORMANCE EVALUATION 

We compare our proposed lookup algorithm to several 

recently proposed tree based lookup algorithms. We select 

Linear Pipelined IPv6 Lookup Architecture (LPILA) [14], 

Hierarchical Balanced Search Tree (Hi-BST) [16], Splitting 

Approach to IP Lookup with Population Counting (SAIL-

PC) [18], and Multilevel Length-based-classified Index 

Table (MLIT) [19] algorithms because each of them uses 

some of the techniques used in BPL (balancing technique, 

pipeline technique, and only non-empty nodes storage). To 

achieve high lookup throughput, the on-chip memories need 

to be used for the lookup table implementation. We compare 

the on-chip memory requirements of the lookup algorithms 

because the memory requirements of the lookup algorithm 

need to be small enough to fit the on-chip memory. We 

assume the NHI in all inspected lookup algorithms is stored 

in the external memory as the NHI is accessed in the last 

step of the lookup. Since IPv6 lookup tables are still not 

very large (~100 K prefixes [30]), we simulate the contents 

of the large IPv6 lookup tables using the concept of the 

FRuG tool [31]. 

Table I shows the on-chip memory requirements for the 

compared lookup algorithms for the table sizes 500 K–

1500 K prefixes. The on-chip memory is a critical resource 

for the efficient IP lookup implementation. When the on-

chip memory requirements are too large, the slower external 

memory needs to be used which negatively impacts the IP 

lookup performance. Table I shows that the proposed BPL 

has the lowest on-chip memory requirements. BPL has 

lower memory requirements than Hi-BST because the top K 

bits are omitted from the stored prefix values. In LPILA 

scheme, the multiple prefixes are stored in one B-tree node. 

LPILA has slightly larger memory requirements than Hi-

BST and BPL, because a free space is required in B-tree 

nodes for fast updates. SAIL-PC is the second best solution 

in terms of on-chip memory requirements due to efficient 

utilization of bitmap technique and population counting 

technique that decreases the memory requirements for 

pointers. MLIT exhibits good performance for 500 K table 

size, however, the memory requirements significantly 

increase for the larger table sizes. Compared to the next best 

lookup algorithm, the BPL has around 27 % lower on-chip 

memory requirements that represent critical resource for the 

IP lookup implementation. 

We have also tested BPL on the FPGA chip XC7VX980T 

from the Virtex7 family. For the lookup table of 753 K IPv6 

73



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 4, 2021 

 

prefixes, the design requires 6.44 MB (100 %) of the on-

chip memory, 31 K (5 %) LUTs, and 13.5 K (1 %) regs. The 

achieved lookup throughput is the 120 millions of lookups 

per second. The critical resource is the on-chip memory. 

Larger IPv6 tables can be supported using the chips with 

larger on-chip memories. For example, the FPGA chips 

from Xilinx’s Virtex UltraScale family have up to 15.8 MB 

on-chip memory [32]. Thus, our solution can support even 

lookup tables with 1500 K prefixes according to the results 

shown in Table I. 

TABLE I. ON-CHIP MEMORY REQUIREMENTS. 

 Algorithm 
Table size 

500 K 1000 K 1500 K 

On-chip 

memory 

[MB] 

BPL 4.39 8.75 13.04 

LPILA 7.97 13.81 19.91 

Hi-BST 6.37 12.99 19.85 

SAIL-PC 6.01 12.03 18.07 

MLIT 8.00 16.15 32.32 

V. CONCLUSIONS 

In this paper, we have proposed a novel lookup algorithm 

BPL. BPL combines several techniques to achieve high 

performances: pipeline, even distribution of nodes across 

the pipeline stages, and tree with the non-empty nodes 

structure. By comparing the BPL with the existing tree 

based IP lookup algorithms, we show that BPL solves the 

common problem of large on-chip memory requirements of 

the tree based lookup algorithms. BPL has 27 % lower on-

chip memory requirements when compared to the next best 

tree based lookup solution. Using the pipeline technique, 

BPL achieves high lookup throughput of one lookup per 

clock cycle, thus supporting link capacities of 100 Gbps and 

beyond. BPL’s even distribution of nodes across the 

pipeline stages is very attractive property for the efficient 

hardware implementation. Since only non-empty nodes are 

stored, BPL has frugal memory requirements. The frugal 

memory requirements enable the BPL to fit on today’s 

FPGA chips. BPL supports very large IPv4 and IPv6 lookup 

tables. Update complexity of BPL is low, so BPL can 

support frequent network topology changes without 

negative effects on the IP lookup performance. 
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