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1Abstract—This paper considers the design of a binary 

scalar quantizer of Laplacian source and its application in 

compressed neural networks. The quantizer performance is 

investigated in a wide dynamic range of data variances, and for 

that purpose, we derive novel closed-form expressions. 

Moreover, we propose two selection criteria for the variance 

range of interest. Binary quantizers are further implemented 

for compressing neural network weights and its performance is 

analysed for a simple classification task. Good matching 

between theory and experiment is observed and a great 

possibility for implementation is indicated. 

 

 Index Terms—Image classification; Multilayer perceptron; 

Neural network; Quantization; Source coding.  

I. INTRODUCTION 

Artificial neural networks (NNs) have become an 

attractive research field in recent decades for resolving 

different challenges due to the increasing availability of 

powerful hardware [1]. It is worth mentioning that the most 

significant achievements have been provided in tasks, such 

as image classification [2], object recognition [3], and 

speech processing [4]. However, the application in other 

fields has also been performed, where some promising 

results have been achieved [5]–[7]. 

Specifically, the improved performance (i.e., high 

prediction accuracy level) has often been provided using 

very complex NN architectures, with a large amount of 

parameters, computational and storage resources. This in 

turn can be a limiting factor for the application of NNs in 

portable and edge computing devices with limited memory 

and processing power, or in latency-critical services. Hence, 

the need for NN compression is evident and quantization is 

a widely used approach for that purpose. In that case, NN 

parameters (weights, activations, etc.), usually represented 

in 32-bits floating point format (full precision), are mapped 

to fixed-point representations using lower bit lengths. 

The compression of NN parameters and various 
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challenges have been observed in many research papers, 

where different codewords have been used, whose lengths 

are 8 bits [8], 4 bits [9], or 2 bits [10]. In addition, even 

lower representations using ternary [11] and binary [12]–

[17] quantization have been considered, where a significant 

compression ratio accompanied with the competitive 

accuracy level have been offered by the quantized NN. 

Hence, binary quantization takes an important role in the 

compression of NN parameters and deserves to be explained 

in detail from the view of both signal processing and NN 

performance. This kind of analysis is supported in this paper 

and it has not been conducted in previous works [12]–[16]. 

Regarding the recently published paper [17], where a 

comprehensive analysis of the binary quantizer, including 

adaption and application, has been provided, here we deal 

with the design of a fixed (non-adaptive) quantizer for a 

wide dynamic range. This is important as the same quantizer 

can be used for different Laplacian inputs. Note also that 

Laplacian distribution can describe well the weights of NN 

[9], as well as speech [18]–[20]. In particular, we derive 

closed-form expressions for performance estimation and 

introduce two criteria for the selection of the quantizer for 

the variance range of interest. Theoretical results are further 

verified on real data using the weights of NN observed for 

the handwritten digit classification problem. The influence 

of binarized weights on prediction accuracy is also 

investigated and the relation between the weight quality 

(measured by SQNR) and accuracy is established, which has 

not been done so far.  

The rest of the paper is organized as follows. In Section 

II, the design method for the optimal quantizer with respect 

to distortion is given. In Section III, the analysis in a wide 

dynamic range is provided in detail and criteria for selecting 

the quantizer for the defined variance range are proposed. In 

Section IV, the experimental results obtained by 

implementation in neural networks are summarized and 

discussed. Finally, we conclude the paper in Section V. 

II. DESIGN OF BINARY QUANTIZER FOR THE REFERENCE 

VARIANCE 

Let us consider a symmetrical binary (N = 2 levels) scalar 
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quantizer presented in Fig. 1. With α, the representational 

level in the positive range (the level in the negative range is 

simply reflection of the positive one) is denoted. Next, xmax 

denotes the maximal data limit, where α = xmax/2.  

    t = 0

      α = xmax / 2 

    xmax  
Fig. 1.  The observed binary scalar quantizer. 

Let the input data source be described by the Laplacian 

probability density function (PDF) given by [18] 
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where σ2 is the variance of the data. If we adopt the unit 

variance as the reference one (σ2 = σ0
2 = 1), denoting the 

standard approach in scalar quantization [18], then PDF 

takes the following form 

  1
( , 1) exp 2 .

2
   p x x  (2) 

Given an input data source, the distortion in the case of 

symmetrical binary quantizer can be evaluated as 

  
2 2

0
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or in terms of xmax 
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Signal to quantization noise ratio (SQNR) is specified as 
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Figure 2 shows how xmax affects the SQNR. The 

commonly used criterion for the quantizer design is the 

maximal SQNR (or equivalently minimal distortion) [18]. 

Given results, the required criterion is accomplished for xmax 

= 1.4142 (α = 0.7071). This can also be verified using the 

following lemma. 

Lemma 1. The value of xmax of Laplacian binary quantizer 

optimized in terms of distortion is specified as 

 max 2.optx  (6) 

Proof. Finding the first derivative of the distortion with 

respect to xmax and further equalling it to zero results in 

 max

max

1
0.

22


   



xD

x
 (7) 

From the last equation we obtain max 2,x  which 

concludes the proof. Based on Lemma 1 and relation among 

the quantizer parameters, it holds that αopt = 1/ 2.  Note 

also that for xmax = 2 (i.e., α = 1) we obtain the qunatizer 

widely used in NN applications [12]−[16], providing 0.7 dB 

lower SQNR than optimal one. 
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Fig. 2.  Dependence of SQNR on xmax for the binary quantizer (σ0

2 = 1) 

III. DESIGN OF BINARY SCALAR QUANTIZER FOR A WIDE 

DYNAMIC RANGE 

In this section, we consider the situation when a binary 

quantizer (designed for the particular variance) is applied on 

the Laplacian inputs having a variance different from the 

designed one. This is known as variance-mismatched 

quantization [18], [21]. It is familiar that variance-mismatch 

effect reduces the efficiency of the quantization model over 

the broad variance range. Hence, robust quantization models 

are recommended for non-stationary data processing, as 

they can satisfy minimal quality requirements over the entire 

range. Here, we will analyse the binary quantizer in a wide 

dynamic range and derive expressions for performance 

evaluation. In addition, criteria for selection of a binary 

quantizer in the established variance range of interest will be 

proposed. 

A. Derivation of Expressions for Performance Evaluation 

To evaluate the performance of the binary quantizer in a 

wide dynamic range of the input data variances, we use PDF 

defined with (1). Hence, we estimate the distortion as 
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or equivalently 
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where α(σ0) = α and xmax(σ0) = xmax denote the values of 

representation level and maximal data limit in the case of 

variance σ0
2 (see Section II). Next, considering the previous 

expressions, SQNR is given by 
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Figure 3 plots SQNR (10) in the variance range (-10 dB, 

25 dB) with respect to σ0
2 = 1, when xmax = 1/2, xmax = 1, 

xmax = 2,  xmax = 2, and xmax = 4. It can be observed that all 

SQNR curves attain the same maximum (same as the 

optimal quantizer in Section II), but the SQNR does not 

retain the constant value in the rest of the variance range 

and it rapidly decreases. Accordingly, the quantizer 

robustness is low and the efficiency on non-stationary data 

is limited. 
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Fig. 3.  SQNR in a wide dynamic range of input data variances for different 

values of parameter xmax. 

It is also important to discuss the impact of parameter xmax 

on the design approaches presented here (wide dynamic 

range) and in Section II (particular variance). While in the 

approach in Section II selection of non-optimal xmax value 

(xmax ≠ 2 ) causes the degradation in SQNR (see Fig. 2), 

here it causes shifting the curve left or right from the one 

with optimal value of xmax (xmax = 2 ). Note also that each 

SQNR curve attains its maximum at different variance 

points, which is defined with the following lemma.  

Lemma 2. Given variance range and parameter xmax, the 

binary quantizer attains the maximum SQNR at the point 

specified as 

 
 max 0x

.
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Proof. Let us define the function F as 
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Taking the first derivative of F with respect to σ results in 
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Furthermore, equalling (13) to zero, i.e., 0






F
 and 

solving with respect to σ, we obtain 

 maxx
,

2
   (14) 

or in terms of α 

 
2

,
2


   (15) 

which concludes the proof. 

By replacing (14) in (12) and taking the logarithm (base 

10), we obtain SQNR = 3.01 dB, the same as in Section II.  

In addition, we will show that SQNR and distortion attain 

their extreme values (maximum or minimum) at different 

variance points.  

Figure 4 shows the distortion (9) as a function of σ (the 

values of σ are given in the linear domain and the equivalent 

range in log-domain is [-15 dB, 10 dB]) for the same values 

of xmax as in the example of Fig. 3. 
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Fig. 4.  Distortion versus σ for the binary quantizer with different values of 

xmax. 

Note that each curve attains its minimum at different 

variance values; the point where the curve minimum is 

achieved can be determined as the solution / 0,  D  

which results in 

 max

2 2
 

x
 (16) 

and is different from the one defined in (14). The 

corresponding values of σ for both optimization functions, 

SQNR and D, in the case of different xmax are given in Table 

I. 
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In the following subsection, we provide the criteria for 

selecting the best quantizer (i.e., the appropriate xmax value) 

either for a particular variance and a range of variances 

having the width smaller than 35 dB. 

TABLE I. THE VALUES OF σ FOR WHICH DISTORTION IS 

MINIMIZED AND SQNR IS MAXIMIZED FOR DIFFERENT xmax. 

xmax α 
σ 

(SQNR) 

σ 

(Distortion) 

1/2 1/4 0.354 (-9.03 dB) 0.178 

1 1/2 0.707 (-3.01 dB) 0.354 

2  1/ 2  1 (0 dB) 0.5 

2 1 1.414 (3.01 dB) 0.707 

4 2 2.83 (9.03 dB) 1.414 

B. Criteria for Selection of the Binary Quantizer 

Firstly, we consider scenario when the best quantizer 

from the set of quantizers (i.e., the ones with different xmax) 

needs to be selected for the particular variance in the 

defined variance range, observing SQNR as a performance 

criterion. Thus, by direct observing Fig. 3 for the variance 

defined in the point 0 dB (σ = 1 in the linear domain), the 

best quantizer is the one with xmax = 2 achieving the 

SQNR of 3.01 dB (as indicated in Section II). On the other 

hand, for the variance points, e.g., 15 dB (σ = 5.62) and 

20 dB (σ = 10), the binary quantizer with xmax = 4 is the best 

since it provides SQNR of nearly 3 dB and 1.25 dB, 

respectively, and outperforms the other observed quantizers.  

The following two criteria are proposed for selecting the 

best binary quantizer for the variance range of interest. 

The first criterion proposes the selection of the quantizer 

such that the maximal average SQNR (SQNRav) is achieved 

in a defined (fixed) variance range 

  
1

1
SQNR SQNR ,



 
m

av i

im
 (17) 

where m is the number of observed variances σi taken from 

that fixed range. 

With the second criterion, we want to emphasize the 

importance of robustness. Thus, besides taking into account 

SQNRav, the best quantizer has to fulfil one additional 

condition in the given range 

 minSQNR SQNR 1dB,   (18) 

where SQNRmin defines the minimal SQNR that should be 

achieved in the desired range. In other words, if in the 

defined range the quantizers achieve SQNRav values that are 

very close, then the best quantizer will be chosen the one 

providing the widest interval where criterion (18) is 

fulfilled. 

From the theoretical SQNR curves in Fig. 3, it can be 

shown that the width of the range where condition (18) is 

fulfilled is equal and amounts to approximately 17.6 dB. 

Furthermore, the borders of that range denoted as (σmin, σmax) 

for each curve (obtained for different xmax) can be calculated 

as solutions of the following equation 
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and are provided in Table II. 

TABLE II. THE BORDER VALUES OF THE RANGE WHERE SQNR ≥ 

1 dB FOR BINARY QUANTIZER WITH DIFFERENT xmax. 

maxx  σmin σmax 
20log10σmin 

[dB] 

20log10σmax 

[dB] 

1/2 0.200 1.519 -13.98 3.63 

1 0.400 3.038 -7.96 9.65 

2  
0.566 4.296 -4.95 12.66 

2 0.800 6.076 -1.94 15.67 

4 1.600 12.152 4.08 21.53 

 

Table III summarizes the calculated values of SQNRav of 

the binary quantizer with different xmax for three arbitrary 

selected variance ranges. According to the first criterion 

(maximal SQNRav in the observed range), we conclude that 

the binary quantizer with xmax = 2 is the best for the ranges 

of [-3 dB, 15 dB] and [0 dB, 18 dB], while the binary 

quantizer with xmax = 4 is the best for the range of [5 dB, 

25 dB].  

Table IV includes the width of the interval (in decibels) 

within the chosen variance ranges, where condition (18) is 

fulfilled. Using Tables III and IV, the basis for the 

application of the second criterion is provided. Namely, the 

results show matching with the first criterion, as the same 

quantizers are chosen for the established variance ranges. 

TABLE III. SQNRav [dB] FOR DIFFERENT BINARY QUANTIZERS 

AND VARIANCE RANGES. 

xmax [-3 dB, 15 dB] [0 dB, 18 dB] [5 dB, 25 dB] 

1/2 0.896 0.642 0.337 

1 1.638 1.235 0.667 

2  
1.996 1.639 0.929 

2 2.060 1.997 1.270 

4 0.414 1.571 1.937 

TABLE IV. WIDTH OF THE INTERVAL WITHIN THE 

CORRESPONDING VARIANCE RANGE WHERE SQNR ≥ 1 dB FOR 

BINARY QUANTIZER WITH DIFFERENT xmax. 

xmax [-3 dB, 15 dB] [0 dB, 18 dB] [5 dB, 25 dB] 

1/2 6.63 3.63 0 

1 12.65 9.65 4.65 

2  
15.66 12.66 7.66 

2 16.94 15.67 10.67 

4 10.92 13.92 16.53 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The goal of the section is to verify the theoretical analysis 

provided in previous Section III by applying a binary 

quantizer in processing the weights of NN. In addition, we 

will investigate the influence of binarized weights on NN 

performance, measured by prediction accuracy [1]. 

Our experiment is focused on the feedforward neural 

network named the “multilayer Perceptron” (MLP) [1]. This 
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is a classical network and it is composed of input, hidden, 

and output layers. We use MNIST database [22] as input, 

having 60.000 monochrome images of handwritten single 

digits of dimension 28×28 pixels, where for training and 

testing purposes, 50000 and 10000 images, respectively, are 

used. Accordingly, MLP is used for classification tasks; the 

number of nodes in the input, hidden, and output layers is 

784 (28×28), 128, and 10 (the number of classes), 

respectively. Rectified Linear Unit (ReLU) and softmax 

activation functions are used in the hidden and output layer, 

respectively. In addition, the regularization rate, learning 

rate, number of iterations per epoch, and batch size are set to 

0.01, 0.0005, 468, and 128, respectively. 

The MLP NN is trained for 20 epochs achieving the 

prediction accuracy score of 96.7 % (in this case, the 

weights are represented using 32-bit floating point format 

(full precision)). The histogram of the learned weights is 

depicted in Fig. 5. Given the figure, one can note that the 

weights can be approximated with Laplacian PDF of 

variance σw
2 and mean μw (in our case, μw tends to zero), 

providing the basis for implementation of the considered 

binary quantizer (post-training quantization will be 

performed). 

The efficiency of the quantizer on the real data is 

measured using the SQNRex that (assuming the zero-mean) 

is defined as 
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where Dw is the distortion obtained by binarization of 

weights, W is the total number of weights, wi is the original, 

and wi
q is the quantized value of weights. 

The correctness of the theoretical results (in terms of 

SQNR) is investigated on the range of [0 dB, 18 dB] in 

relation to the reference variance that is set to be one of the 

original weights (σw
2). Thus, in Table V, the SQNRex values 

for some selected points from the observed range are 

summarized, considering the quantizer with different values 

of xmax. For illustration purposes, we plotted in Fig. 6 the 

SQNRex versus the variance of the data (weights). 
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Fig. 5.  Histogram of trained weights. 

The selection of the best quantizer based on experimental 

results will be done using the criteria proposed in Section 

III. In Table VI, the values of the average SQNRex 

(SQNRav
ex) and the width of the interval, where SQNRex is 

higher than 1 dB (denoted by ), achieved in the range 

under question by different binary quantizers, are listed. 

TABLE V. EXPERIMENTAL RESULTS: THE VALUES OF SQNREX AND PREDICTION ACCURACY (PA) IN CASE OF BINARY QUANTIZER 

(DIFFERENT xmax) AND DIFFERENT VARIANCES OF WEIGHTS. 

σw
2

 [dB] 

xmax = 1/2 xmax = 1 xmax = 2  xmax = 2 xmax = 4 

SQNR [dB] PA [%] SQNR [dB] PA [%] SQNR [dB] PA [%] SQNR [dB] PA [%] SQNR [dB] PA [%] 

0 1.779 

85.07 

3.441 

90.82 

4.282 

91.55 

3.918 

91.93 

-2.580 

92.24 

3.52 1.180 2.368 3.264 4.184 1.858 

6.02 0.881 1.779 2.500 3.441 3.918 

7.96 0.703 1.420 2.007 2.821 4.383 

9.54 0.584 1.180 1.671 2.368 4.184 

10.88 0.500 1.009 1.430 2.033 3.815 

12.04 0.437 0.881 1.249 1.779 3.441 

13.06 0.388 0.782 1.108 1.580 3.107 

13.98 0.349 0.703 0.995 1.420 2.821 

14.81 0.317 0.638 0.904 1.289 2.577 

15.56 0.290 0.584 0.827 1.180 2.368 

16.26 0.268 0.539 0.763 1.088 2.189 

16.90 0.249 0.500 0.707 1.009 2.033 

17.5 0.232 0.466 0.660 0.941 1.898 

18 0.217 0.437 0.618 0.881 1.779 

It can be perceived that the first criterion proposes a 

binary quantizer with parameter xmax = 4, while according to 

the second criterion, the best quantizer is designed using 

xmax = 2. Note also that the quantizer designed using xmax = 2 

has been the theoretical choice for both criteria for the 

considered range (see Tables III and IV) and matching of 

the theoretical and experimental results is observed in that 

case.  

In addition, the weights (original weights, as well as the 

weights having variance different from the original one) 

quantized using a binary quantizer with various xmax are then 

separately implemented to MLP for classification purposes 

on test data (10000 images from MNIST database [22]) and 

the prediction accuracy is examined. This corresponds to the 
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situation when the same (non-adaptive) binary quantizer is 

used for different MLP networks (as the set of weights is 

different in each case). The accuracy scores are provided in 

Table V, where some interesting conclusions can be 

derived. Observe that for a given binary quantizer defined 

with xmax, each MLP achieves the same prediction accuracy 

score, although different SQNRs are provided. This is 

because the same quantized weights are obtained regardless 

the variance of the weights (the weights are quantized to the 

values -xmax(σw)/2, xmax(σw)/2) and thus the quantized MLP is 

the same. Accordingly, in that case, the relationship between 

the SQNR and prediction accuracy cannot be uniquely 

defined (i.e., SQNR does not dominantly contribute to 

neural network performance). 

On the other hand, in Table V, we can see that the 

accuracy of the quantized MLP increases as the binary 

quantizer uses higher values of xmax. This can be explained 

as follows. As xmax increases, the distance among the 

representational levels increases, enabling better 

classification and higher accuracy scores. The highest 

performance of the quantized MLP is achieved when 

quantizer with xmax = 4 is applied (92.24 %) and slightly 

lower when the quantizer with xmax = 2 is applied (91.93 %). 

Note that these two quantizers are already proposed as the 

most appropriate based on SQNR analysis performed above. 

Further increasing of the parameter xmax (xmax > 4) will result 

in negligible increasing of MLP performance.  

Finally, one can notice that MLP with binarized weights 

provides a lower accuracy score for 4.46 % (xmax = 2) or for 

4.84 % (xmax = 4) than that achieved with full precision 

weights, at the same time reducing the network size by a 

factor 32. 
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Fig. 6.  Experimental results: SQNRex as the function of weight variance. 

TABLE VI. EXPERIMENTAL RESULTS: THE VALUES OF SQNRav
ex 

AND Δ IN THE RANGE OF [0 dB, 18 dB] FOR BINARY QUANTIZER 

WITH DIFFERENT xmax. 

xmax 1/2 1 2  2 4 

SQNRav
ex [dB] 0.516 1,031 1.418 1.856 2.41 

Δ 4.5 10.5 13.5 16.90 15 

V. CONCLUSIONS 

In this paper, a detailed analysis of binary scalar 

quantization of Laplacian source has been carried out along 

with an application for compression of NN parameters. 

Closed-form expressions in terms of SQNR and distortion 

have been derived for analysis in a wide dynamic range, and 

two criteria have been proposed to select the best quantizer. 

Verification of the theoretical results in terms of SQNR 

achieved in a wide dynamic range and quantizer selection 

has been done on real data using NN weights. Furthermore, 

the selected fixed (non-adaptive) binary quantizer has been 

applied to compress different MLP networks (whose 

coefficients follow the Laplacian PDF, but have different 

variances) with a goal to establish relationship among the 

SQNR and prediction accuracy. It has been shown that each 

quantized MLP is the same regardless of the weight 

variance (i.e., the same prediction accuracy has been 

achieved), although for different weights different SQNRs 

have been observed. Therefore, the uniquely defined 

relationship has not been established as SQNR does not 

dominantly contribute to NN performance. In addition, the 

relatively high prediction accuracy has been reported (over 

92 %), that is only 4.46 % lower than the full-precision 

model, along with a compression gain of 32 times. 
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