
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

1Abstract—Although numerous consumer devices use

Transmission Control Protocol/Internet Protocol (TCP/IP)

protocol stack to connect and communicate over the Internet,

their integration into a single Internet of Things (IoT) solution

represents a challenge, primarily due to the lack of the

standardized interoperability framework on the application

layer. Devices produced by different manufacturers cannot

operate together out of the box, thus raising the cost of system

setup and maintenance. In this paper, a novel protocol is

proposed that aims to bridge this gap. It is based on Message

Queuing Telemetry Transport (MQTT) protocol and allows

the seamless integration of different kinds of IP devices into the

connected system. The proposed protocol is complete as it

covers the aspects of device discovery and association in the

IoT network. It provides mechanisms for IoT network

maintenance and defines the abstract device model and

communication patterns to enable system-wide device

interoperability. The other goal of the protocol is to be

portable to resource-constrained platforms. To validate the

proposed protocol, it was integrated into the existing smart

home hub, and for testing and validation purposes, prototype

devices were developed.

 Index Terms—Internet of Things; Protocol;

Interoperability.

I. INTRODUCTION

Complex IoT solutions, such as smart homes, fitness and

health tracking systems, or assisted living systems, usually

comprise of a number of heterogeneous devices. To achieve

the desired system behaviour, these devices need to work

together, i.e., to form the network and exchange the

application-level data [1] without any additional help. This

is not the case today. There is already a number of

specialized wireless IoT protocol stacks, which are adopted

by consumer electronics manufacturers, and which provide

the device abstraction on the application layer, define the

uniform representation of device capabilities, and the

standardized format of messages exchanged between the

devices [2]–[4]. The standardized communication and

messaging approach allows developers to focus on the

Manuscript received 31 December, 2020; accepted 30 March, 2021.

This research has been supported by the Ministry of Education, Science

and Technological Development of the Republic of Serbia under Grant No.

451-03-68/2020-14/200156 (Project title: “Innovative scientific and artistic

research from the FTS (activity) domain”).

system-level logic and provide advanced features, such as

automation rules or context-aware reactions. From the user

perspective, the existing standards allow the interoperability

of devices produced by different manufacturers and lower

the cost of the system setup.

However, the widely used IoT protocols are often

optimized for low power consumption, providing data rates

that are not sufficient for devices, such as cameras, smart

speakers, or media players. Therefore, there is also a

multitude of smart devices available on the market, which

use the Transmission Control Protocol/Internet protocol

(TCP/IP) communication stack for achieving higher

bandwidth. Additionally, some device developers choose to

use IP due to the availability of existing home or corporate

infrastructure, communication modules, and their familiarity

with the technology. Mainly, such solutions rely on the

WiFi connection to communicate with the rest of the

network, as it requires no network cabling and provides the

mobility of the end device. We will refer to these devices as

IP devices.

Although the IP communication stack is well known, the

semantics related to IoT is missing: there is no uniform

device abstraction defined, and that impacts both the device

manufacturers and the end users. Namely, all manufacturers

have to define and implement their own messaging

Application Programming Interfaces (APIs) and device

abstractions, which results in highly specialized and

proprietary solutions [5]: some manufacturers focus only on

cameras and video surveillance, others on air conditioning,

multimedia, alarm systems, etc. As a consequence, users

have to install and use multiple systems of limited

functionality in parallel, which cannot work together to

provide a unique user experience.

The technology presented in this paper aims to bridge this

gap by providing a scalable, universal protocol, covering the

entire life cycle of a connected device.

The protocol can be used for the interaction between an

IP end-point device (referred to as IP device) and an IoT

hub (referred as hub). That relation can be even replicated to

reach a multilevel hierarchy, as an end-device can also act

as a hub for subordinate end-devices. We will refer to the

proposed protocol as WISE. This protocol goes beyond the

level of being just a communication protocol. Besides

WISE: MQTT-based Protocol for IP Device

Provisioning and Abstraction in IoT Solutions

Istvan Papp1, 2, *, Roman Pavlovic2, Marija Antic1, 2
1Faculty of Technical Sciences, University of Novi Sad,

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
2OBLO Living LLC,

Narodnog fronta 21a, 21000 Novi Sad, Serbia

istvan.papp@rt-rk.uns.ac.rs

http://dx.doi.org/10.5755/j02.eie.28826

86

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

addressing the obvious pain points of device vendors and

integrators (design, interoperability), it also covers the

common features of similar IoT technologies: device

network provisioning, device inclusion into (or exclusion

from) the IoT network, IoT network management, the

interaction model, and the capabilities of IP devices. It also

aims at low power consumption and small communication

overhead, so it can be suitable for battery-powered devices.

WISE defines the hub in a way that it can reside both in the

local network and in the cloud. Scalability and information

protection were built into the foundations of WISE. That

results in a protocol that is:

 Complete - it addresses all usability aspects of a device,

not only communication.

 Lightweight - it can run both on bare-metal, resource-

constrained microcontrollers, as well as on desktop/server

platforms. It imposes almost no translation overhead

compared to Zigbee/Z-Wave and Bluetooth Low Energy

(BLE) as the data model is similar to them, therefore the

bridge devices can be very lightweight.

 Extensible - the data model is always backward

compatible and can be extended to support future devices

and their new services. The data model resembles

generics of the data models used in 802.15.4-based

protocols.

 Scalable - scalability support is built into the protocol to

enable forming large-scale IoT systems.

 Versatile - it is designed having on mind future

technologies and needs: it works well with IPv6, NB-

IoT/5G.

 Efficient - power efficiency and data-bandwidth

efficiency are supported in a way that battery powered

WISE devices will sleep as much as possible without

ruining the user experience, preserving the battery at the

same time.

 Secure - the protocol uses secure MQTT and secure

HyperText Transfer Protocol (HTTP) to ensure data

encryption.

 Easily integrated - use of open standards and

technologies to promote adoption by device vendors.

The proposed protocol is field-tested: it is integrated into

the existing smart home hub [6] and prototype devices. For

the device vendors, a Software Development Kit (SDK) is

created to allow developers to easily create WISE

compatible devices.

II. RELATED WORKS

Various IP-based IoT devices have been proposed by

different authors, such as the indoor air quality detector [7],

temperature control system [8], smart plug [9], infusion

monitoring system [10], or various multisensors [11]. As

some of these devices require mobility, they must be

battery-powered, and their battery lifespan is an issue that

needs to be addressed accordingly. While thermoelectric

energy harvesting was used to build autonomous WiFi

sensors for a heating system [12], it has also been shown

that multiple years of battery lifetime are possible for WiFi

sensors, in the case of periodic data transmission at high

data rates [13]. This corresponds with the principle of

device hibernation already supported by the specialized IoT

technologies [2]–[4].

To make an IP device a functional part of an IoT solution,

the application level logic needs to be created, which allows

the interoperability of different endpoints [14]–[17]. With

this in mind, the design of the home automation system has

been proposed [18], which combines WiFi actuators and

Zigbee sensors with multiple master nodes supporting both

communication technologies. On the other hand, some of

the authors propose methods for device discovery in the

local network and simple control using MQTT messages

[19], while others build the cloud-based WiFi sensor

management system for home automation, based on

Constrained Application Protocol (CoAP) protocol [20].

However, these authors focus mainly on the device

discovery procedure and network association, while only the

basics of device abstraction are covered.

The protocol used to advertise device capabilities must

consider the implementation in a very constrained

environment (low memory, processing and power

consumption) [21], [22]. Some authors opt to use User

Datagram Protocol (UDP) for the communication between

the WiFi sensors [23] to reduce the size of the messages

exchanged, but the proposed solution models device

functionalities by using code words of the predefined

length, and is therefore not easily extensible. While the

UPnP protocol provides mechanisms that could serve as a

base for the more flexible IP device abstraction, its

communication overhead is not suitable for IoT

applications. It has been shown that MQTT and CoAP are

more suitable for IoT purposes [24]. A significant effort has

been made in [25] to provide service abstraction using

oneM2M reference architecture and control system via

MQTT messages. However, device hibernation is not

considered, while the proposed MQTT topic scheme

depends on the IP addresses of devices in the system and is

not suitable for the cases in which the IP address changes

dynamically. Additionally, oneM2M requires an

interworking proxy to connect with the legacy IoT products

and technologies [26]. Other authors suggest using

GraphQL to abstract device functionalities [27], or propose

a data-driven agent-based abstraction layer, which aims to

minimize the overhead of representing the information

generated by devices and services [28].

As mentioned, many IoT devices use 802.15.4-based

communication standards. To allow those devices to be

exposed to the Internet, a bridge device is required that

mediates between the two worlds. In the past, several

protocols were proposed that would bring the 802.15.4

world closer to the Internet: IPv6, 6LoWPAN, and its

successor Thread achieved only a modest success and did

not jeopardize the domination of Zigbee and Z-Wave in

home automation. The latest attempt is Connected Home

over IP (CHIP) [29] initiative started in late 2019. Although

CHIP is supported by major companies, it is still in the

definition and early development phase, without clear

indications of the expected timeline.

As previously pointed out, the existing protocols focus on

the interoperability of different devices, but do not address

the problems of IoT network setup and maintenance. The

87

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

proposed WISE protocol aims to provide the complete

solution and covers both the networking aspects and the

device life cycle. We believe the completeness and

scalability of WISE protocol is a significant enabler for

wide adoption.

In the rest of this paper, the WISE protocol stack is

introduced, and the supported message exchange patterns

are defined. Later, details regarding device association and

network maintenance are provided, as well as the proposed

device abstraction. Finally, the existing smart home hub is

extended to support the proposed technology, and the

prototype implementation of the WISE device is created for

testing purposes.

III. WISE OVERVIEW

As other specialized IoT technologies, the proposed

WISE protocol should cover the aspects of logical IoT

network establishment and maintenance, message routing,

and device abstraction. Since it is designed to enable the

integration of IP devices into the IoT system, the

communication must rely on the protocols of the TCP/IP

stack, and WISE adds a layer on top of them (Fig. 1).

Depending on the architecture of the system with WISE,

Simple Service Discovery Protocol (SSDP) or HTTP can be

used for device discovery and association. Network

monitoring and communication between parties in the

system is based on MQTT protocol, with the topic structure

and message payloads as defined in the sections that follow.

The sensitive payload is accordingly encrypted: MQTT uses

Transport Layer Security (TLS), while HTTP uses Secure

Sockets Layer (SSL).

Logically, the network implementing WISE protocol has

a topology of a star, i.e., WISE puts the IoT hub in the

centre of the logical IoT network, and the hub acts as the

WISE network controller. The role of the IoT hub is to

implement advanced logic, such as if-this-then-that

relationships between changes in the system, grouping of

devices by their location or type, system configuration,

perform functional processing, etc. In addition, it serves as

the interface between client applications and the end

devices.

Fig. 1. WISE protocol stack.

The IoT hub can reside in the same local network as the

IP devices it controls, as depicted in Fig. 2. In this case,

besides all aforementioned roles, it can also serve as the

gateway between different local IoT networking

technologies. In the case of the WISE network, the hub also

runs the MQTT broker. The main advantage of this

approach is the fact that the Wide Area Network (WAN)

connection is not required for the normal system operation,

as long as the Local Area Network (LAN) network is

operational.

Fig. 2. WISE IoT system with the hub in the local network.

On the other hand, the IoT hub can be placed in the IoT

cloud, as shown in Fig. 3. In this case, it is necessary to

move all of the control logic to a virtual hub process in the

cloud, while the MQTT broker instance can be shared by all

virtual hubs. The WAN connection is required for the

system to operate, but it is not required that all connected

devices are at the same location.

Fig. 3. WISE IoT system with the hub in the cloud.

IV. WISE MESSAGING MODEL

The messaging between the devices in the WISE IoT

system is based on MQTT protocol. The WISE layer defines

the MQTT topic structure and message exchange patterns

within the system.

A. Topic Structure

The topics used in the WISE network must comply with

the predefined structure, which allows identifying the

parties performing the communication and their

functionalities. The base topic model consists of three parts:

WISE identifier W, service identifier S, and the message

type mt, as represented in Fig. 4. These elements must be in

the exact order, W/S/mt, separated by the topic level

separator.

The WISE identifier W uniquely addresses a device or

hub in the system, and it is mandatory. It consists of the

following:

 Domain ID: represents the unique name of the IoT

system provider in question, e.g., the hub and IP device

manufacturer.

88

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

 Home ID: identifies a group of IP devices that interact

only among each other and a hub, and form the IoT

system controlled by a particular user.

 Object role: identifies the type of party participating in

the exchange (e.g., hub, IP device, etc.).

 Object ID: the unique identifier of the particular

instance of the device with the defined role.

Service identifier S is an optional identifier used to

address different functionalities or services of an object. It

carries the following information (which will be explained

in Section VIII):

 Service group: represents an identifier of a group of

device functionalities (e.g., temperature, light).

 Service type: identifies the type of functionality (e.g.,

light intensity, light color, etc.).

The message type is the last part of the topic, and it is a

mandatory identifier of one of the possible message types:

request, response, event, or status. Different message types

are used to enable both synchronous and asynchronous

communication between the parties in the data exchange, as

explained in the next section.

Fig. 4. WISE protocol topic structure.

B. Message Exchange

The parties in the system can exchange the data either

synchronously or asynchronously. The synchronous

communication is used when one of the parties in the

exchange attempts to retrieve data or wants to execute a

command and be informed about its execution status. On the

other hand, the asynchronous message exchange is used to

inform one or multiple subscribers to the MQTT topic about

the change in the system.

The latest version (version 5) of the MQTT protocol

specification does support the synchronous data exchange in

the form of requests and responses, but the older versions of

the protocol (3.1.1 and earlier) did not support it, and most

of the implementations are not yet compatible with the latest

standard. Therefore, WISE protocol defines its own

request/response pattern. The synchronous message

exchange begins by the node A sending a message to the

request topic of node B. This can be either the WISE object

request topic WB/req, or the service topic WB/S/req. The

WISE identifier WA of the message sender should be

specified in the payload of the MQTT message in the sender

field (Fig. 5). The receiving party B then responds to the

response topic of the sender, WA/rsp.

The information about the changes in the system is

transmitted asynchronously, using the event topic of the

sender, either the object event topic W/evt or the service

event topic W/S/evt, which the interested parties are

subscribed to. For example, the change of the light intensity

of a bulb can be reported by an event sent to the topic

associated with that particular service of that particular bulb.

Additionally, for network monitoring purposes, the special

status topic is defined, W/sts. This topic is used to

asynchronously transmit information about the status of the

device (online or not).

C. Message Payloads

Although the MQTT protocol does not impose any

limitations regarding the content type of the message,

payload, WISE protocol will require that message payloads

are formatted as JSON, as this is the native format for cloud

applications, and satisfies the low overhead requirement,

while maintaining human readability. The payloads of

various message types are represented in Fig. 5.

Fig. 5. WISE message payloads.

The field UID represents the unique identifier of the

MQTT message exchange session. While every event

message is assigned a new UID, in case of the synchronous

data exchange, both the request and the response message

carry the same UID. The field TS represents the timestamp

of the message generation, while the ETS is the expiration

timestamp. The receiving side should drop the message if it

is received or set to process after the expiration timestamp.

The sender field of the request message is used to identify

the response topic, as explained in Section IV-B. The

89

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

mandatory name field determines the actual semantics of the

request and determines how the optional message

parameters are further processed.

The response messages must contain the response code

and may contain an optional text message explaining the

result. In addition, optional parameters are allowed to carry

the data queried by the request.

The event name specifies the change, which occurred in

the system (device status changed, device property changed,

etc.), while the optional parameters carry the additional

information required to process the event by the subscribers

(e.g., the new status, or the new value of the property).

Status messages are similar to event messages, but they have

the dedicated topic and only carry the information about the

device online status.

V. DEVICE ASSOCIATION AND DE-ASSOCIATION

Although an IP device may be connected to the Internet,

it does not become a fully functional member of an IoT

system, until it joins the logical network of a hub. The

process during which a device joins the logical network of a

hub is called “association”, while the inverse process is

referred to as the de-association of the device.

A. Association

The association process consists of three stages:

discovery, inclusion, and authentication. In the discovery

stage, the IP device scans for the available WISE networks.

In the inclusion phase, it sends the association request to the

hub using the temporary MQTT connection, while in the

authentication stage, it establishes the permanent connection

with the WISE hub.

From the perspective of the association process, the hub

can be in one of the following states:

 Idle: This is the initial state, and the hub is not

accepting association requests.

 Advertising: The hub remains in this state during the

discovery and inclusion stages. If the association process

is not completed within the configured interval (60–300

seconds), the hub returns to the idle state.

 Joined: The inclusion stage is finished, and the hub

accepted the IP device to the network. After remaining in

this state for a short period of time (3 seconds), the hub

returns to the idle state.

On the other hand, the IP device can be in one of the

following states:

 Idle: This is the initial state, and the IP device is not

scanning for networks nor sending association requests.

 Joining: The IP device remains in this state during the

discovery stage and is trying to locate the hub and to

initiate the MQTT message exchange.

 Accepted: The IP device discovered the hub of interest

and proceeds to the inclusion stage.

 Rejected: The IP device has not discovered the hub of

interest and does not want to continue with the

association process. After the configured association

timeout expires, the device will return to the idle state.

 Joined: The hub accepted the IP device association

request and assigned it an object ID. The device is now

included in the network.

1. Discovery stage

The discovery process depends on the location of the hub.

If the IP device and the hub are in the same LAN network,

SSDP protocol is used to transfer the relevant information.

As depicted in Fig. 6, the association process is initiated

by the user, preferably by pressing the dedicated buttons on

the device and the hub. This action brings the IP device to

the joining state, while the hub enters the advertising state.

When switched to the joining state, the IP device must start

listening on NOTIFY ALIVE messages, which are sent by

the hub. The IP device may also actively scan for the

network by sending the M-SEARCH message to the hub

and processing the response M-SEARCH messages.

Both NOTIFY ALIVE messages and M-SEARCH

responses contain information about the location of the hub

description, i.e., the configuration data of interest for

establishing the local IoT network. The device description

of the hub must be implemented according to the UPnP

device schema. The most important part of the description

data is the path to the MQTT broker instance, i.e., the

broker URL and the port it listens on. The rest of the

mandatory data represents the information needed to build

the desired MQTT topics: domain ID, home ID, and hub ID.

Fig. 6. Device association flow.

If the WISE hub resides in the cloud, HTTP is used to

fetch the hub description data from a predefined location.

The IP device is brought to the joining state by the user, and

it uses the HTTP GET request to obtain the description data

in the JSON body of the HTTP response message.

90

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

2. Inclusion stage

Once the hub description is fetched by the IP device and

the parameters of the MQTT broker are known, MQTT

protocol will be used for further communication between

the device and the hub. The inclusion MQTT connection is

established using the default client name and password. This

connection is temporary and closes when the hub returns to

the idle state. For the default client, the hub allows only

requests to the topic WH/req, where WH is the WISE

identifier of the hub, as explained in Section V-A. During

the inclusion stage, the IP device uses its MAC address as

the object ID part of the topic, i.e., it represents itself with

the initial WISE identifier WD
init.

First, the device sends the inclusion details request to the

hub - Fig. 6. The parameters of the message represent the

information about IP device manufacturer, model, version,

supported WISE protocol versions, etc. The hub responds

by either allowing the inclusion or rejecting it based on one

of the reasons (device model/version/manufacturer not

supported, version of WISE protocol not supported,

inclusion process not started on the hub, etc.). If the

inclusion is allowed, the temporary inclusion ID parameter

is created to track the rest of the inclusion process for the

device in question. The hub may request additional

information from the device by sending the capability

request to it. Finally, the hub informs the device about the

assigned object ID by sending the join confirmation.

3. Authentication challenge stage

In this stage, the IP device fetches the MQTT credentials

assigned to it by the hub. These credentials will be used to

establish a WISE network MQTT connection between the

two parties and enable the normal operation of the device.

This process consists of two steps. First, the IP device

obtains the challenge code from the hub. Then, it creates the

authentication code by performing the 128-AES encryption

of the obtained challenge code, using the combination of the

assigned inclusion ID and object ID as a key. If the

encrypted authentication code corresponds to the

information about the device that initiated the association

procedure, the hub generates a client ID and the password

for the IP device, which will be used to establish the device

MQTT session.

B. De-Association

The de-association process is initiated by the hub and

does not require confirmation from the IP device. The

MQTT connection with the device selected for exclusion

from the network is stopped, and the hub clears all details

related to the IP device, including its inclusion ID, device

ID, and device information. The device ID may be reused in

the future and assigned to other devices.

VI. WISE NETWORK MANAGEMENT

Since WISE protocol is based on MQTT, it relies on the

TCP connection to operate. However, since the maintenance

of the permanent TCP connection requires that the

communicating parties send keep-alive messages

periodically, it can have a negative impact on the IP device

battery life time. Therefore, WISE protocol allows device

hibernation and distinguishes between active devices and

sleeping devices.

1. Active devices

These are the devices that maintain a permanent MQTT

connection with the hub. This operation mode is suitable for

actuators with the permanent power supply. Active devices

will try to re-initiate the connection in the case of

connection loss.

When the hub detects the loss of device connection, it

starts sending SSDP advertisements (NOTIFY ALIVE

messages), while the device starts listening to them. These

messages contain the description of the hub, just like the

messages in the discovery stage of association. If the ID of

the advertised hub matches the one the device was

connected to previously, the device should re-instantiate the

MQTT connection using the credentials already obtained

during the authentication challenge stage.

If the hub resides in the cloud, the active device should

request the hub description from the predefined location and

connect to the MQTT broker on the provided URI and port.

Note that the location of the broker may be updated if the

cause of the connection loss is the failure of the broker.

When disconnecting from the WISE network, the active

device must first send a status message to its status topic,

announcing its intention to go offline. After that, it should

close the MQTT connection.

2. Sleeping devices

The sleeping devices do not maintain a permanent MQTT

connection with the hub. When switching to hibernation,

they must disconnect from the MQTT broker. Unlike the

active devices, they should not send the status message first.

They must define the sleeping interval, during which they

remain in the hibernation mode. Once this interval expires,

they must switch to the active state and maintain it for at

least tactive = 10 s. The device must reset the active period

timer after every request from the hub, i.e., it must remain

active for at least tactive after the last request.

During the hibernation period, sleeping devices cannot be

controlled, unless the user manually wakes them up by

pressing a dedicated button. This is the reason the sleeping

mode is usually avoided for actuators and used

predominantly for sensor devices.

VII. DEVICE ABSTRACTION

The description of the IP device functionality represents a

hierarchical structure of service groups, services and

properties (Fig. 7).

Fig. 7. Device object structure.

91

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

The device abstraction resembles the best of Zigbee, Z-

Wave, and Bluetooth Low Energy models, thus allowing

very simple translation between data models. The property

represents the physical or logical state of the device, while

sets of related properties form services. Finally, subsets of

device services can be organized into service groups, each

group identified by the service group identifier SGi, iϵN0.

Every device must support Device Service and

Diagnostics Service, and these services must belong to the

service group SG0. Device Service provides the information

about the sleeping interval, device name, firmware version,

WISE protocol version supported by the device, etc. On the

other hand, Diagnostics Service allows accessing the

information about device uptime, quality of the WiFi

connection, etc. Besides the mandatory services, the IP

device must support at least one additional service. Every

service is defined by the type and the list of properties and

commands it supports. Each property is defined by its name,

type (number, text, boolean, range, etc.), current value, and

read-write flag. Commands are defined by the name and the

list of input parameters.

Every IP device must handle the following requests on

the device object request topic WD/req:

 GetGroupList: Used to fetch the list of service groups

the device supports.

 GetDeviceInfo: Used to fetch the complete device

object, holding the information about the device

manufacturer, model, and the service group list.

 GetState: Used to fetch all changes of the device

properties that occurred since the time specified in the

request parameters.

 SetTime: Used to update the current time of the IP

device to the value specified in the request parameters.

 AdjustTime: Used to adjust the current time of the IP

device by adding the difference specified in the request

parameters.

 VerifyIdentity: Used to validate the product details

provided by the IP device.

 GetServiceList: Used to get the list of all services

within a service group specified in the request.

 GetService: Used to fetch the complete service object

with all its properties and commands.

Every IP device must handle the following requests on

the service request topics WD/Si/req:

 GetPropertyList: Used to fetch the list of properties

supported by the particular service specified in the topic.

 GetPropertyValue: Used to fetch the value of the

particular property of the service specified in the topic.

 SetPropertyValue: Used to set the property to the

desired value.

 GetCommandList: Used to fetch the list of all

commands the service supports.

 ExecuteCommand: Used to execute the command

specified in the request parameters.

For every change of a property of service Si, the IP device

must emit the PropertyChanged event to the service topic

WD/Si/evt: In addition, information about firmware upgrade

and device reboot should be sent to the device topic WD/evt

within FirmwareUpgraded and DeviceRebooted event

messages, respectively.

VIII. IMPLEMENTATION

The proposed protocol was implemented within the

existing smart home hub that already serves as the gateway

between Zigbee, Z-Wave, and IP protocols [6], [16], [17].

The hub supports both WiFi and Ethernet connections, and

it already uses MQTT protocol to communicate with the

cloud and mobile applications. It is based on a WLAN

chipset module running Linux, with 64 MB of RAM

memory. For efficiency, the software is developed using C

and C++ programming languages.

Internally, the hub software consists of three components:

Home Manager, Message Broker, and System Manager. The

Home Manager module acts as an interface to different

communication technologies and provides the advanced hub

logic. A bus is a software component that allows

communication using a given communication protocol. The

Home Manager carries the high-level logic that has to reside

on the premise, like automation scripts and rules support, as

well as various device control algorithms. The System

Manager is responsible for system level maintenance tasks,

firmware upgrade and monitoring of the hub’s performance.

Finally, the Message Broker component is responsible for

MQTT communication within the system - between internal

software components, with the cloud and with WISE

devices. This Message Broker component is extended to

support the WISE topics as defined in previous sections,

while the WISE hub support is added to the Home Manager

component (Fig. 8).

The supported service types are designed to cover the

smart home scenario, and are listed in Table I.

TABLE I. SUPPORTED SERVICE TYPES.

Service Type Description

device
Mandatory device service, containing

information about device network connection.

diagnostics
Mandatory diagnostics service, containing

information about device operational state.

battery Optional service tracking battery level.

switch Used by switches, plugs, etc.

dim Used by dimmers and bulbs.

levelControl

Used by devices that allow control of a level,

but the more specific service does not exist

(e.g., volume or dim service).

color Used by bulbs.

colorTemperature Used by bulbs.

temperature Used by temperature sensors.

humidity Used by humidity sensors.

gas Used by various gas sensors.

motion Used by motion sensors.

contact Used by contact sensors.

flood Used by water leakage sensors.

smoke Used by smoke sensors.

powerMetering Used by metering plugs.

thermostat Used by thermostats.

shutter Used by rollers and shutters.

alarm Used by alarm devices.

volume Used by speaker devices, set top box, etc.

The other party in the communication is the WISE

device. To ease the development of WISE devices, the

WISE client SDK was created. The SDK consists of the

MQTT messenger, SSDP client, utility classes, and the IP

device core implementation (Fig. 9). Utility module

92

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

implements wrapper classes for C/C++ standard libraries

(threading and synchronization mechanisms, timers, JSON

parsing, exception handling, etc.). IP device core

implements the network management, association process,

event reporting, and required WISE API methods as listed

in Section VII.

Fig. 8. Software architecture of the smart home hub.

Fig. 9. IP device internal architecture.

Besides the SDK, for a complete device functionality, the

application logic has to be developed, which will give the

actual function to the device. To support portability, the

WISE device SDK relies on a Platform Abstraction layer

that allows porting to various platforms. As of today, the

SDK has been ported to Linux and to FreeRTOS platforms.

IX. EVALUATION

For evaluation, the following components were used:

 WISE hub running on the existing smart home hub due

to the convenience of cloud connection and client

applications used for testing.

 A WISE device prototype based on a Linux platform

with 1 GB of RAM, 900 MHz, and 4 cores, using

temperature sensors and LEDs (to simulate the switch

behaviour, i.e., digital output). Besides the mandatory

Device and Diagnostics services, the Temperature and

Switch service were also implemented. This platform is

used for performance measurement and SDK verification.

 The other device based on the ESP32 WiFi

microcontroller running at 240 MHz, with 4 MB of flash

memory and 512 kB of RAM, using FreeRTOS. Only

mandatory services were implemented on this platform,

and as such used for resource usage measurement and

functional verification.

For the hub performance testing, JMeter was used. To test

the hub implementation, a total of 30 device association

requests were generated at the same time, and the

processing time was measured. Instead of real WISE

devices, device software models were used. The testing

results for relevant device association commands from Fig.

6 are presented in Table II, where Tavg, Tmin, and Tmax

represent the average, minimum, and maximum processing

time, respectfully.

TABLE II. DEVICE ASSOCIATION TESTING RESULTS.

Message Tavg [ms] Tmin [ms] Tmax [ms] Savg [B]

Inclusion request 52 13 915 86

Capability request 591 62 1436 94

Join confirmation 110 70 428 124

Challenge request 97 38 334 84

Credentials

request
535 320 1625 139

The average MQTT message size is given as Savg. All

devices successfully joined the network within a couple of

seconds. During this test, the average CPU load of the

Message Broker component was 1.4 %, and it used 19.1 MB

of RAM memory on average, while the average CPU load

of the Home Manager component was 4.7 %, and it used

10.1 MB on average.

After the device software models were connected to the

hub, they continued to periodically send the events reporting

the temperature changes and switch state changes. A total of

421771 temperature change and 421631 switch state change

events were generated during the test run, during the 40

hours long test run. The average event processing time on

the hub side was 14 ms, and there were no losses of

connection detected and no errors in event processing.

The WISE client SDK implementation was first tested by

measuring the performance of different commands the

device is required to support.

Each command was executed 1000 times without any

errors, and the results are presented in Table III. It can be

observed that the commands SetPropertyValue and

ExecuteCommand take longer to execute than the others

since they result in the change of the diode state.

TABLE III. IP DEVICE TESTING RESULTS.

Message Tavg [ms]
Tmin

[ms]
Tmax [ms] Savg [B]

GetDeviceInfo 23 15 184 3732

GetGroupList 23 14 168 3117

GetServiceList 23 15 338 2689

GetService 20 13 183 690

GetPropertyList 20 12 214 542

GetPropertyValue 16 9 571 68

SetPropertyValue 42 18 219 39

GetCommandList 16 10 214 124

ExecuteCommand 42 22 211 39

Then, stress performance testing was also performed.

Commands were generated every 250 ms, during the test

run, which lasted 18 hours and 45 minutes. A total of

241583 requests were generated, and the device responded

with no errors. No connection losses were detected.

On the microcontroller-based platform, the basic

implementation consumes a total of 623 kB of flash memory

and 116 kB of RAM memory, including the operating

system, platform abstraction layer, and WISE SDK. This

leaves plenty of room for the application itself. The tests

showed the correct operation of the device, proving that the

protocol is convenient even for resource-constrained

platforms. During the user tests, the device was responsive

as expected at the level of the first prototype.

X. CONCLUSIONS

This paper proposes a WISE protocol stack, designed to

93

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

be a complete solution for IP device integration into the IoT

system, and yet lightweight enough to be used on resource-

constrained platforms. The proposed technology addresses

all aspects of network establishment and management

typically covered by the IoT technologies and enables the

uniform device representation on the application layer. This

allows building a universal ecosystem with interoperable

devices and related services, at one side leading to a better

user experience, while on the other side greatly reducing the

required device development effort for device vendors.

The technology elements are proposed in accordance with

direct functional requirements, but also by taking into

consideration the implementation complexity, resource

usage, scalability, and security. The selected technologies

are complemented with communication flows defining the

behaviour of the communication participants in various

scenarios.

The WISE protocol was implemented on hub and device

prototypes (the smart home hub and the IP temperature

sensor and switch), which were used for testing and

validation. Performance and stability tests were also

conducted. It was shown that the message processing times

are acceptable for realistic usage scenarios. The

implementation of a WiFi microcontroller platform showed

that the complexity of the proposed protocol is well suited

for such resource-constrained platforms. The client SDK

allows the easy development of WISE-compatible IP

devices. It has been successfully applied to integrate

additional devices (Android set top box, home intercom

system, WiFi lightbulb, and smart speakers) into the

existing smart home solution. The results are not presented

here due to paper length limits. In the future, the

implementation can be extended to support other service

types, suitable for industrial, agricultural, or health

monitoring scenarios.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] J. Yun, I.-Y. Ahn, N.-M. Sung, and J. Kim, “A device software

platform for consumer electronics based on the Internet of Things”,

IEEE Trans. Consumer Electron., vol. 61, no. 4, Nov. 2015. DOI:

10.1109/TCE.2015.7389813.

[2] D. Gislason, Zigbee Wireless Networking. Elsevier Inc., 2008.

[3] C. Paetz, Z-Wave Basics: Remote Control in Smart Homes.

CreateSpace IPP, Jun. 2013.

[4] K. Townsend, C. Cufi, Akiba, and R. Davidson, Getting Started with

Bluetooth Low Energy: Tools and Techniques for Low-Power

Networking. O’Reilly Media, Apr. 2014.

[5] T. Perumal, A. R. Ramli, and C. Y. Leong, “Interoperability

framework for smart home systems”, IEEE Trans. Consumer

Electron., vol. 57, no. 4, pp. 1607–1611, Nov. 2011. DOI:

10.1109/TCE.2011.6131132.

[6] I. Lazarevic, M. Sekulic, M. S. Savic, and V. Mihic, “Modular home

automation software with uniform cross component interaction based

on services”, in Proc. of 2015 IEEE 5th International Conference on

Consumer Electronics - Berlin (ICCE-Berlin), Sept. 2015, pp. 363–

365. DOI: 10.1109/ICCE-Berlin.2015.7391281.

[7] L. Zhao, W. Wu, and S. Li, “Design and implementation of an IoT

based indoor air quality detector with multiple communication

interfaces”, IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9621–

9632, Dec. 2019. DOI: 10.1109/JIOT.2019.2930191.

[8] B. L. Hughes, “WiFi and cloud enabled temperature control system”,

U.S. Patent Appl. US10495346B2, Dec. 2019.

[9] S. Jakovljev, M. Subotić, and I. Papp, “Realisation of a smart plug

device based on Wi-Fi technology for use in home automation

systems”, in Proc. of 2017 IEEE International Conference on

Consumer Electronics (ICCE), Jan. 2017, pp. 327–328. DOI:

10.1109/ICCE.2017.7889340.

[10] N. Shofa, A. Rakhmatsyah, and S. A. Karimah, “Infusion monitoring

using WiFi (802.11) through MQTT protocol”, in Proc. of 2017 5th

International Conference on Information and Communication

Technology (ICoIC7), May 2017, pp. 1–7. DOI:

10.1109/ICoICT.2017.8074693.

[11] A. Yoddumnern, R. Chaisricharoen, and T. Yooyativong, “Cloud

based WiFi multi-sensor network”, International Journal of Online

and Biomedical Engineering, vol. 14, no. 8, pp. 35–51, Aug. 2018.

DOI: 10.3991/ijoe.v14i08.8536.

[12] C. A. Trasviña-Moreno, R. Blasco, R. Casas, and A. Marco,

“Autonomous WiFi sensor for heating systems in the Internet of

Things”, Hindawi Journal of Sensors, vol. 2016, article 7235984, pp.

1–14, Feb. 2016. DOI: 10.1155/2016/7235984.

[13] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “WiFi enabled

sensors for Internet of Things: A practical approach”, IEEE

Communications Magazine, vol. 50, no. 6, pp. 134–143, Jun. 2012.

DOI: 10.1109/MCOM.2012.6211498.

[14] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT

middleware: A survey on issues and enabling technologies”, IEEE

Internet of Things Journal, vol. 4, no. 1, pp. 1–20, Feb. 2017. DOI:

10.1109/JIOT.2016.2615180.

[15] L. Bracciale, P. Loreti, A. Detti, R. Paolillo, and N. B. Melazzi,

“Lightweight named object: An ICN-based abstraction for IoT device

programming and management”, IEEE Internet of Things Journal,

vol. 6, no. 3, Jun. 2019. DOI: 10.1109/JIOT.2019.2894969.

[16] V. Moravcevic, M. Tucic, R. Pavlovic, and A. Majdak, “An approach

for uniform representation and control of ZigBee devices in home

automation software”, in Proc. of 2015 IEEE 5th International

Conference on Consumer Electronics - Berlin (ICCE-Berlin), Sept.

2015, pp. 237–239. DOI: 10.1109/ICCE-Berlin.2015.7391244.

[17] I. Papp, G. Velikic, N. Lukac, and I. Horvat, “Uniform representation

and control of bluetooth low energy devices in home automation

software”, in Proc. of 2015 IEEE 5th International Conference on

Consumer Electronics - Berlin (ICCE-Berlin), Sept. 2015, pp. 366–

368. DOI: 10.1109/ICCE-Berlin.2015.7391282.

[18] I. Froiz-Miguez, T. M. Fernandez-Carames, P. Fraga-Lamas, and L.

Castedo, “Design, implementation and practical evaluation of an IoT

home automation system for fog computing applications based on

MQTT and ZigBee-WiFi sensor nodes”, Sensors (Basel), vol. 18, no.

8, Aug. 2018. DOI: 10.3390/s18082660.

[19] S.-M. Kim, H.-S. Choi, and W.-S. Rhee, “IoT home gateway for auto-

configuration and management of MQTT devices”, in Proc. of 2015

IEEE Conference on Wireless Sensors (ICWiSe), Aug. 2015, pp. 12–

17. DOI: 10.1109/ICWISE.2015.7380346.

[20] X. Cai, Y. Wang, X. Zhang, and L. Luo, “Design and implementation

of a WiFi sensor device management system”, in Proc. of 2014 IEEE

World Forum on Internet of Things (WF-IoT), Apr. 2014, pp. 10–14.

DOI: 10.1109/WF-IoT.2014.6803108.

[21] A. Djama, B. Djamaa, and M. R. Senouci, “TCP/IP and ICN

networking technologies for the Internet of Things: A comparative

study”, in Proc. of 2019 International Conference on Networking and

Advanced Systems (ICNAS), Jun. 2019, pp. 1–6. DOI:

10.1109/ICNAS.2019.8807890.

[22] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT

networking via TCP/IP architecture”, NDN Project NDN-0038,

Technical Report, Feb. 2016.

[23] W. Chen, S. Jeong, and H. Jung, “WiFi-Based home IoT

communication system”, Journal of Information and Communication

Convergence Engineering, vol. 18, no. 1, pp. 8–15, Mar. 2020. DOI:

10.6109/jicce.2020.18.1.8.

[24] M. Tucic, R. Pavlovic, I. Papp, and D. Saric, “Networking layer for

unifying distributed smart home entities”, in Proc. of 2014 22nd

Telecommunications Forum Telfor (TELFOR), Nov. 2014, pp. 368–

371. DOI: 10.1109/TELFOR.2014.7034426.

[25] G. Kim, S. Kang, J. Park, and K. Chung, “An MQTT-based context-

aware autonomous system in oneM2M architecture”, IEEE Internet of

Things Journal, vol. 6, no. 5, pp. 8519–8528, Oct. 2019. DOI:

10.1109/JIOT.2019.2919971.

[26] J. Yun, R. C. Teja, N. Chen, N. Sung, and J. Kim, “Interworking of

oneM2M-based IoT systems and legacy systems for consumer

products”, in Proc. of 2016 International Conference on Information

and Communication Technology Convergence (ICTC), Oct. 2016, pp.

423–428. DOI: 10.1109/ICTC.2016.7763511.

94

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 2, 2021

[27] R. Khan and A. N. Mian, “Sustainable IoT sensing applications

development through graphQL-based abstraction layer”, Electronics,

vol. 9, no. 4, p. 564, Mar. 2020. DOI: 10.3390/electronics9040564.

[28] A. Günter, C. Schwarzer, and M. König, “IAL: An information

abstraction layer for IoT middleware”, in Informatik 2020, Sept. 2020,

pp. 1255–1235. DOI: 10.18420/inf2020_114.

[29] CHIP Working Group, “Connected Home over IP”, 2019. [Online].

Available: https://github.com/project-chip

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

95

