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Abstract Accurate predictions of solar photovoltaic (PV) systems is very important in order to ensure optimum
power generation at different time horizons are essential for planning and modeling of photovoltaic systems [4]. The
reliable operation of energy management systems._ The output generation schedules should be planned for very-shon,
power of a PV power plant is dependent on nofinear and shortterm and longerm power system operation in order to

intermittent environmental factors, such as solar irradiance, . . .
wind speed, relative humidity, etc. Intermittency and ~ €nsure reliable meration and economic dispatch of modern

randomness of solar PV power effect precision of estimatiofo ~ Power systemgFig. 1).

address the challenge, this paper presents a Swarm The researchers have proposed lots of methods with
Decomposition Technique (SWD) based hybrid model as a various time horizons for modelingnd forecasting of PV
novel approach for very shortterm (15min) solar PV power power, such as deep learning approachek [6], hybrid

generation forecast. The original contribution of the study is to e . :
investigate use of SWD for solar data forecast. The solar PV models [7, [8], artificial intelligence algorithms [9{11],

power generation data with hourly resolution obtained from andsupport vector machines (SVM) [[1213].
the field (grid connected, 857.08kWp Akgul Solar PV Power

Plant in Turkey) are used to develop and validate the forecast
model. Specifically, the analysis showed that the hybrid model
with SWD technique provides highly accurate predictions in Seconds
cloudy periods.
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I. INTRODUCTION Hours -

Rising energy demand and its related environment:
impacts increase the use of renewable energy resources
generation rapidly.Solar photovoltaicPV panels have  Days —
recenly become one of the fastest growing renewable powe
generation techniques. Renewable energy resources are n
linear structures and highly dependent on geographic
locations and weather conditionstegration of largescale v
photovoltaic power systemstm interconnected systems is Time
becoming a major challenge [1]. Fig. 1. Forecasting horizon anélatedapplications.

Since the solar irradiation on the surface shows a highly
variable behavior due to cloudiness, it brings difficulties ilp1u
planning and operation of energy systems with PV power
generation [2]. Somsignificant challengesuch as stability
reliability, supply/demand balance reactive power
compensationand frequency responsé power systems
may be faced due ttargescale implementation of grid
connected PV solar power plantd,[84]. Instability in the
integration of these systems into the grid and harmonics
power outputs neadto be eliminated. Therefore, the
accurate estimation of the energy to be ola@ifrom PV

Scheduling

Both weatherdata (such as wind speed, solar irradiance,
midity, temperature, etc.gnd historical poweroutputs

n be used for forecasting modélfie use of weather data
requires processing obig data, which results in long
analysis timen forecastingBesides, pedictive models can
operate faster with historical power valuesOne of the
disadvantages of these dais islow accuracyduring cloudy
periods Different preprocessingtechniques have been
f)?oposedn the literatureto reduce this disadvantada.[8],

a hybrid model based on random vector functional link
SARIMA time series analysis and use of wavelet
decomposition in prgrocessing step for veshortterm PV
Manuscript receive@5 February2@0; accepted .8 May, 2020. power forecasting was proposdthe data werelecomposed
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into several modes ithe pre-processing step.nlcaseof the oscillation mode of adequate energy, the SWD algorithm
having highfrequency components due to cloudy or rainys finished [15].

sky conditions in the saldPV power output, prprocessing The pseudaode is givenn Algorithm 1

step based on decomposition technique made thaaith

approach perform better. Algorithm 1. Iterative SvF [14].
In this paper, a novel hybrid approach, swarn 1:ProcesdterativeSWFx[ n] , My U, St
decomposition and feed forward neural network (SWD 2x [ nlenN¥ x
FFNN), has been proposed for very shtarm solar power Iy n] Y x
forecasting. The solar power output data obtained from the 45 Y 0
Akgul- Solar PV Power PlantSPB were pre-processed Sirepeat
using SWD for detecting cloudy/rainy sky conditions 6 Y j_+ 1 .
variance. In Section [, SWD technique used in syl n] o Y O SWE o (x[n], M, 1)

8x [ nljny vy

preprocessing is presented. €Thhybrid approach is )
. [yiInl- v ]|

explained with a flowchart in Sectidfl . Simulation results

are presenteth Section I\ Finally, the study is concluded 9:Sth« a, y,;.[n]
in Sectionv. 10: until SD < StDx
Il. PRE-PROCESSINGBASED ONSWARM DECOMPOSITION 1lreturnxa[ n ] MY y
TECHNIQUE 12: endprocess

Apostolidis and Hadjileontiadis [14] have gposed a
novel signal anal ysis call exn] feprasents e mhputcsgmdp, o, aiidtStRoare"the ( S WD
SWD based on biological swarm rules is a-precessing swarm hunting parameters that are members, control
method fora non-stationary signal. The most important steglexibility of swarm and threshold, respectively[n] is
of the SWD is swarm filtering (SWF) that operates with theutput of SWF.
swarmprey huring approachand produces oscillatory  Although this preprocessing method has been used for
components (OCs) fromnaelement input datalt has an the decomposition ahanybiomedical signals [116[17] and
iterative performing of a siftingke operating. The in researchof different nonstationary signal$18], [19], it
prevailing OCsare randomly defined,and then OCsare has been applied to solar data for the first time in this study.
calculated by using consecutive applications of SWike In this study SWD is applied talecompositiorof thereal
aligned OCsare subtracted frorthe input data of the rest of solar powe output data obtained from Akg8IPP for pre
the element§inally, if the residual input data do not includeprocessindFig. 2)
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Fig. 2. Resultsof solar power data decomposition using SWD

Real solar PV power output time series data of SPP wesatput during cloudy periods, have been detected in these
decomposed into fiveubseries by SWDParticularly high subseries. Solar data and reconstructed solar data after the
frequeny components, which have changes in solar powgre-processin@regiven in Fig.3.
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Fig. 3. The normalized real data anetonstructed signal (a) tinaad(b) frequency domain (1&in resolution).

Ill. SWD FORECASTMODEL DEVELOPMENT- A CASE The clear sky and cloudy/rainyeather dataare chosen
STUDY AT AKGUL-SPP from Juy—August 2019 datasethe data of July 2018re
The total installed capacity of solar PV plant at Akgulused for model developmerind that of August 2019for
SPP is 857.08Wp. It was installed in October 2018 int€sting purpose.
Elazig, Tukey. The total amount of energy generated since All data were normalized using (1) before jprecessing
the date of installation is 1,575,116 8&h. Figure 4 shows and steps of analysis
the sample hourly power and energy outputs of the power

plant for two days normalize{ x[n} = [x[n] - min(x[n])]

[max(x[n])- min(x[n])]

1)

800 T
o) The flow chartof the study is given in Figs. Firstly, the

data (with15min resolutior) were collected from SPP and
normalized beforethe pre-processing step. Steeries of
solar data were obtainedsing SWD technique. For each
subseries, FFNN model was established and outputs were
obtained. Separate forecasting results achieved by each sub
series models were collected to obtain the value of final
estimation. The sliding window technique was usedttier
forecasting step. Lag matrix dafiar input wererealized in
theneural network training and forecasting step.

The hybrid approach (SWWBFNN) wasrun 10 times
independently. Me performance results are evaluated
statistically for training and test pées of models.
Simulation results and comparatiamalysisare given in
Fig. 4. Power and energy output for 17/07/2618/07/2019 timéorizon.  Section I\,
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Fig. 5. Flowchart of the SWEFFNN approach.

IV. SIMULATION RESULTS

In order to evaluate thgerformancethe proposed hybrid
SWD-FFNN was used in the onstep very shortterm
(15min) solar power forecasting and was compared with
FFNN. LevenbergMarquart algorithm is used for training
algorithm. For all subseries data, different number of
neurons and models were analyzed tfog first forecasting
step. Finally, accurate fecasting models were obtained for
subseries estimation separately. Figure 6
decomposed signdl forecasting results and performancer
metrics statistically. d

Preprocessing Step
using SWD
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show&here x[n] and X,[n] represent observed and estimation

alues of the solar dataN is the totalnumber of data
eterminedfor perfomance metricsThe reasonfor using

Some error metrigssuch as RMSERoot Mean Square RMSE/MSE is that they expressthe overall error irsolar
Error) andMSE (Mean Square Erroryvereusedto evaluate power output dtafor the entiredataset

the forecasting péwrmances of the proposed model.
The formulation of the used performance metigogiven
as follows:

%1073

Comparativeresults ofthe hybrid modeEWD-FFNN and

FFNN for all data are given in Fig. Wumbers of training
and testing data aB295 and 1412, respectively.
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Fig. 6. The sampleesults(a) a decomposed signalforecastingb) error (c) the standard deviation adidtributionof error.
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